
Explicit Relationships with Roles - A Library Approach

Michael Pradel ∗

EPFL, Switzerland
michael@binaervarianz.de

Abstract
In today’s object-oriented programming languages the rela-
tions between objects are often implicit and scattered over
multiple classes. This creates a gap between design, where
relationships are more explicit, and implementation. Pro-
grams become not only harder to understand but also more
difficult to modify. We present a programming technique that
allows programmers to make relationships explicit by as-
signing roles to participating objects and dynamically mix-
ing new fields and methods into existing objects with delega-
tion semantics. Our approach builds upon commonly avail-
able language constructs and is implemented as a Scala li-
brary, such that it can be easily adopted in practical settings.

Categories and Subject Descriptors D [3]: 3—Classes and
objects

Keywords Object-orientation, programming languages,
roles, relationships, Scala

1. Introduction
In object-oriented programming, objects encapsulate state
and behavior. Classes abstract over sets of similar objects
and make such similarities explicit. However, objects do
not only exist on their own but are related to each other in
manifold and complex ways. Unfortunately, these relations
are implicit in most programming languages and hidden
behind references, method calls, etc.

A promising approach to reducing the complexity of a
network of interrelated objects is to make their relation-
ships explicit. Two ways to achieve this goal have been
proposed: On the one hand, one can use commonly avail-
able programming language constructs and encode relation-
ships with classes and objects [NG95]. This approach is lim-

∗ Work performed at LAMP/EPFL. Presentation support provided, in part,
by ETH Zurich and by the author.

[Copyright notice will appear here once ’preprint’ option is removed.]

ited, though, since the syntactic and semantic expressive-
ness is bounded by the underlying language. On the other
hand, there are approaches towards new programming lan-
guages with relationships as a first-class construct [Rum87,
BW05, BGE07]. While providing extensive support for rela-
tionships, they are hard to adopt in production environments
and have not found their way into mainstream languages yet.

We aim at striking a balance between both approaches
by proposing a library for the Scala programming lan-
guage [OSV08], which allows for explicitly describing re-
lationships. While still being compatible with the underly-
ing language, its expressive power goes beyond simple class-
based encodings. Scala provides a set of powerful basic lan-
guage constructs that enables highly-expressive extensions
in form of libraries, for example, [EMO06, HO06].

Instead of using first-class language constructs for rela-
tionships and roles, we have to express them with existing
constructs. Our approach represents relationships by classes
that are instantiated at runtime. Objects that participate in
a relationship each play a role. Roles are specified as inner
traits of a relationship class and provide fields and methods
(members).1 When an object participates in the relationship,
the members of the role it plays are dynamically mixed into
the members of the object using delegation semantics. Thus,
being part of a relationship enhances existing objects with
new functionality that is only relevant for this relationship.
Internally, an object and its role are two separate objects,
which are combined by a dynamic proxy.

The following code snippet gives a first idea of how our
solution looks like:

val mary = new Person{}

val comp = new Company{}

val e = new Employment(mary, comp)

e.salary = 1200

e.employee.work() // type Person with Employee

e.employer.pay() // type Company with Employer

We instantiate a relationship Employment and pass a per-
son mary and a company comp as its participants. The re-
lationship instance e has a field to store the salary. We can

1 In Scala, a trait is similar to a class, but provides a safe form of multiple
inheritance (mixin composition) [Ode08].

1 2008/10/6

access the participants of the relationship as fields of the re-
lationship instance, where the field names employee and
employer designate their roles. Accessing members of a
participant can be statically type checked, since its type is
that of the participating object and that of the role. For ex-
ample, e.employee has the type Person with Employee,
where Employee is an inner trait of Employment. We elab-
orate on the example in the remainder of the paper.

Our approach provides the typical benefits of explicit
relationships without requiring a special-purpose language.
The overall structure of software becomes easier to under-
stand because entities and the relationships between them
are described separately. Moreover, we obtain high code lo-
cality, because a relationship encapsulates conceptually re-
lated code fragments instead of scattering them over multiple
classes. This facilitates modifications of existing software, as
one can adapt one concern of an application by changing the
program at only one location.

We show in this paper how far a library approach can go
in making relationships explicit. Our main contributions are
the following:

• A programming technique for explicitly describing re-
lationships and their roles, which uses only commonly
available programming language features (Section 3 and
Section 4).

• Dynamic mixin of relationship level members into parti-
cipants with delegation semantics similar to object-based
languages (Section 3).

• Implementation as a Scala library with different varia-
tions of our approach.

Preliminary results of this work have been presented
in [PO08].

2. Roles, Relationships, and Collaborations
This section gives the necessary background by shortly in-
troducing roles, relationships, and collaborations. Moreover,
we introduce a running example for this paper.

Our running example is about people and their profes-
sional life. Suppose we want to describe a couple of general
features of persons, such as name, date of birth, etc. Further-
more, we want to express how people relate to each other as
employees and employers, where employees work and keep
track of their working hours, for which employers pay them.
In real life, persons may be employed at different employ-
ers during their lifetime. Hence, we want to be able to mod-
ify these relations dynamically. Moreover, our software may
cover other, unrelated aspects of persons, such as their fam-
ilies. Thus, we want to keep the employment concern sepa-
rate from the rest.

One solution for such a problem is the use of roles. The
notion of roles that we use in this paper stems from concep-
tual modeling. It has been brought to object-oriented soft-
ware by Reenskaug [RWL96]. A role describes the behavior

of an object in a certain context. Roles are bound to objects
at runtime, in which case we say that an object plays a role.
A comprehensive summary of the various definitions of the
term role is given in [Ste00], which presents 15 features of
roles. The following summarizes the most essential features:

1. A role comes with its own properties and behavior.

2. Roles are dynamic, that is, they can be acquired and
abandoned by objects at runtime. In particular, a role can
be transferred from one object to another.

3. An object can play more than one role at the same time.
It is even possible to play two roles of the same role type
multiple times (in different contexts).

4. The state and the members of an object may be role-
specific. That is, binding a role to an object can change
its state as well as its fields and methods.

5. Roles depend on relationships, that is, a role is only
meaningful in the context of a relationship and cannot
exist without.

There are different notions of relationships with respect
to object-oriented programming languages. For example, re-
lationships are directly mapped to mathematical relations
in [BGE07]. In this paper, we use relationships as a more
general term, referring to a specific context in which a num-
ber of objects interact with each other. We say that two ob-
jects interact if, for example, one has a reference to the other,
or if one is accessing a member of the other.

We can make this general kind of relationships explicit
with collaborations. A collaboration is a set of related roles
that covers one concern of an application. Returning to our
example, we can use two roles Employee and Employer.
Both roles together form an Employment collaboration,
which itself may also contain members, for example, to store
the salary.

3. Dynamic Mixin of Role Members
When objects participate in a relationship, their state and be-
havior may be changed or extended for this specific context.
We allow such adaptations by assigning a role to each partic-
ipant. A role is defined as a set of fields and methods which
are mixed into those of the participating object. For example,
the following defines the employee role:

trait Employee extends Role[Person] {

var hoursWorked = 0

var money = 0

def work = hoursWorked += 8

}

A trait becomes a role by extending Role from our li-
brary. Role takes a type parameter to specify the type of
objects that may play the role (Person in the example). To
allow for binding a role to arbitrary objects, AnyRef, Scala’s
equivalent to Java’s Object, can be passed. By restricting

2 2008/10/6

person: P
employee: E

proxy: P with Eclient

Figure 1. An object (person) and its role (employee) are
represented by a dynamic proxy (dashed arrows depict ref-
erences). The proxy has the compound type of both objects
(P with E).

the type of objects that are allowed to play a role, program-
mers of the role can type-safely refer to fields and methods
of the participating object via a member core inherited from
Role. For instance, we could refer to a person’s name in the
above definition of Employee with core.name.

Adding members to objects at runtime is a known feature
in dynamically typed languages, such as Ruby or Python.
Our approach allows for adding members dynamically and,
at the same time, statically type checking access to them.
That is realized by representing roles by objects and hiding
the role-playing object and its role behind a dynamic proxy
(Figure 1). The type of a dynamic proxy can be specified dy-
namically upon its creation. For example, to attach a role of
type Employee to an object of type Person, we would create
a proxy with the compound type of Employee and Person,
that is, a type containing all the members of Employee and
Person. Dynamic proxies are, for instance, provided by the
Java API and can be used in Scala thanks to its Java compat-
ibility.

One restriction of our library is that roles can only be
bound to instances of traits (and not classes). Hence, Person
must be a trait in the above example. The reason is that
one requires interfaces for setting the type of a dynamic
proxy. Scala’s traits are always accompanied by an inter-
face, whereas generating interfaces for arbitrary classes is
difficult. As traits provide most of the features of classes in
Scala, though, this restriction is not an issue in most appli-
cations.

3.1 Delegation Semantics for Roles
Adding members to an object is not enough, though. A dy-
namic proxy treats method calls reflectively, for example,
by calling corresponding methods of one of the objects that
the proxy hides. The semantics of these method invocations
are worth a closer look. Imagine a situation where a role
should override behavior of the role-playing object. For in-
stance, persons may have a method pickUpPhone that calls
a method greet, where greet is modified by the employee
role. If the proxy simply forwards a call to pickUpPhone to

a

b

a.m()

b.m()

this.n()

a

b

a.m()

b.m() this.n()

Figure 2. Forwarding (left) versus delegation (right). In
case of delegation, this refers to the originally called ob-
ject (arrows depict method calls).

the person, the overridden greet will never be called, be-
cause the person object calls this.greet.

The above issue has been described as the self prob-
lem [Lie86]. The crucial question is whether we use forward-
ing or delegation when the proxy invokes a method of one of
the objects that it hides (Figure 2). Forwarding is the default
behavior in class-based languages, where the control flow
is passed to the callee until the method returns. In contrast,
object-based languages, such as Self [US87], provide dele-
gation. That is, they change the value of this in the callee,
such that this always refers to the originally called object,
hence, in our case the proxy.

To obtain delegation behavior, we make use of the way
Scala translates traits into Java bytecode.2 Consider the fol-
lowing, very simple trait containing one method:

trait T {

def meth = 23

}

The Scala compiler will translate it into two parts: First,
we get a Java interface, which represents the type of the trait
and includes abstract versions of its members.

public interface T {

public abstract int meth();

}

Second, the compiler creates an abstract class with imple-
mentations of the trait’s methods. For each method, there is a
static method which is called whenever a method of the trait
is invoked in a Scala program. Since static methods are not
bound to a particular instance, we have to specify the value
of this to be used inside the method body. Therefore, each
of those static methods takes an additional parameter $this.

public abstract class T$class {

public static int meth(T $this) {

return 23;

}

}

2 For ease of understanding, we give the corresponding Java source code
here.

3 2008/10/6

proxy

pers empl

proxy.pickUpPhone()

pers.pickUpPhone()

$this.greet()

empl.greet()

Figure 3. Method dispatch inside role-playing objects has
delegation semantics; $this always refers to the proxy and
is used instead of this.

The translation scheme for traits allows for simulating
delegation. The dynamic proxy is accompanied by an invo-
cation handler, which reflectively deals with method calls to
the proxy. Our library provides a default invocation handler
with the following policy:

1. If the method to call is implemented by the role, invoke
the corresponding static method and pass the proxy as
value for $this.

2. Otherwise, invoke the static method that corresponds to
the role-playing object, also passing the proxy as value
for $this.

Since we set the type of the proxy to the compound type
of the role and the role-playing object, we can guarantee that
each method that is called is actually implemented in one of
them. Consequently, the invocation handler is always able to
delegate method calls.

As a result of the above policy, a role can override behav-
ior of the participating object. Reconsider the above example
of the employee role that overrides the greet method of per-
sons (Figure 3). A call to pickUpPhone will be dispatched
by the proxy to the static method containing pickUpPhone’s
implementation, passing the proxy as value for the parameter
$this. The call to greet is, thus, made again on the proxy,
which can dispatch it to the employee role .

4. Making Relationships Explicit with
Collaborations

This section shows how we can use the role encoding pre-
sented in Section 3 to implement relationships. We present
collaborations, that is, sets of related roles that encapsulate
relationships and the relationship-specific behavior of parti-
cipating objects. We illustrate different variations of the con-
cept with examples and discuss their properties.

Generally, we represent collaborations by using classes
whose inner traits are considered to be roles. Roles cannot
occur without a collaboration in our approach, according to
Steimann’s feature roles depend on relationships (see Sec-
tion 2). Listing 1 shows the basic structure of a collabora-
tion that describes the relation between employees and em-
ployers. These are described with two role types Employee

and Employer. In line 2 (and 3), we bind an instance of the
Employee (and the Employer) role to a person (and a com-
pany) passed as a constructor argument to the collaboration.
We therefore use the as operator from our library. Calling
o as r, where r is a reference to a role, yields the object o
playing the role r. Internally, a dynamic proxy is created that
hides both the object and the role instance. More details on
the implementation of the as operator are given in [PO08].

4.1 Fixed Roles
A collaboration encapsulates a set of related roles. Our ex-
periments have shown that different variations of this gen-
eral concept are useful. One criterion is the binding between
roles and objects. While some roles are transient and may
change their underlying objects regularly, others are of a
more permanent nature and belong to one participant dur-
ing the entire lifetime of the role. We reflect this distinction
between transient roles and fixed roles in our library.

Listing 1 is an example of a collaboration with two fixed
roles. The participants of a fixed collaboration are passed
as constructor arguments when the collaboration is instanti-
ated:

val e = new Employment(mary, comp)

Once a collaboration instance is created, the participants
cannot change as long as the collaboration is used. We can
access a participating object in its role using the role name
qualified by the collaboration instance:

e.employee.work()

e.employer.pay()

4.2 Transient Roles
While fixed roles are useful if the relationship has a stable
set of participants, we may want a more flexible mechanism
in some cases. Consider, for example, a company with a
high fluctuation of employees, where a new person arriving
should simply take over where another stopped working.

This scenario can be expressed with transient roles,
which are only temporarily bound to objects. Instead of us-
ing the as operator once during the initialization of a col-
laboration instance, users of the relationship call it explicitly
for transient roles. In this manner, a role can be seamlessly
transferred from one object to another, retaining the state of
the role. Since the participants are not fixed, they are not
given in the constructor:

val e = new Employment()

Instead, roles are explicitly bound to objects using the
as operator. This time references to a role must be qualified
with a collaboration instance:

(mary as e.employee).work

(paul as e.employee).work

The implementation of the corresponding collaboration
differs only slightly from Listing 1. All we have to do is

4 2008/10/6

1 class Employment(p: Person, c: Company) extends Collaboration {

2 val employee = p as new Employee{}

3 val employer = c as new Employer{}

4

5 trait Employee extends Role[Person] {

6 var hoursWorked = 0

7 var money = 0

8 def work = hoursWorked += 8

9 }

10

11 trait Employer extends Role[Company] {

12 def pay = {

13 employee.money += employee.hoursWorked * 10

14 employee.hoursWorked = 0

15 }

16 }

17 }

Listing 1. A collaboration with two fixed roles employee and employer.

removing the constructor parameters and changing lines 2
and 3 into:

val employee = new Employee{}

val employer = new Employer{}

Note that using transient roles for the roles as defined in
Listing 1 may cause unexpected behavior. Since the state of
a role is preserved when the role is transferred to another
object, the next person playing the employee role contin-
ues with the value of hoursWorked increased by mary and
paul. However, transient roles are, for instance, useful if the
employee role contains state such as the intermediate result
of a project. In this case, a new employee can continue using
the results of his predecessor.

4.3 Arbitrary Many Role Instances
In the above examples, the number of role instances per
collaboration instance is fixed. However, some relationships
may contain arbitrarily many participants. For instance, let
us consider the case where multiple employees should be
captured in one relationship. If the number of employees
is not statically known, we can use role mappers. From the
user’s point of view, role mappers provide exactly the same
syntax as transient roles. When binding a role to an object
with as, though, new role instances are created dynamically
whenever an object participates that has not played that role
yet.

Using an Employment collaboration with a role mapper
for the employee role, the following creates two role in-
stances:

(mary as e.employee).work

(paul as e.employee).work

(mary as e.employee).work

In the third line, the role instance from the first line,
including its state, is reused and again attached to mary.

To use a role mapper the collaboration developer must
replace the role instantiation by a role mapper object. Mod-
ifying Listing 1 such that the employee role becomes a role
mapper results in Listing 2. We create a role mapper as an
object that extends RoleMapper from our library (line 2).3

It takes the type of the participating object (Person) as well
as the type of the role (Employee) as type parameters. The
employer role is now implemented as a transient role (line 5).
Consequently, both roles defined by the collaboration can be
used with the same syntax, namely the as operator. In the
Employer role, we have to change the pay method, such
that it gets the employee that should be paid as an argument
(line 12). This is necessary since multiple employees may
participate in the collaboration.

4.4 Querying
Role mappers allow for arbitrarily many participants play-
ing a certain role in one collaboration instance. We sup-
port querying the set of participants with Boolean functions.
For example, one may be interested in employees that have
worked for more then a certain amount of hours. This can be
queried with:

e.employee.query(x => x.hoursWorked > 100)

The result will be an iterator over the set of all objects
that play the employee role and that fulfill the predicate
hoursWorked > 100.

4.5 Multiplicities
In modeling, one can usually specify multiplicities for rela-
tionships. We allow for setting an upper bound for the num-
ber of participants bound by a role mapper. The role mapper
specification may, for example, include:

3 The object keyword in Scala makes the Singleton pattern [GHJV95] part
of the language. It creates a class and its one and only instance.

5 2008/10/6

1 class Employment extends Collaboration {

2 object employee extends RoleMapper[Person, Employee] {

3 override def createRole = new Employee{}

4 }

5 val employer = new Employer{}

6

7 trait Employee extends Role[Person] {

8 // same as in Listing 1

9 }

10

11 trait Employer extends Role[Company] {

12 def pay(e: Employee) = {

13 e.money += e.hoursWorked * 10

14 e.hoursWorked = 0

15 }

16 }

17 }

Listing 2. The employment collaboration with a role mapper employee. It allows for arbitrarily many instances of the
employee role.

override def max = 5

As a result, calling as with more than five different
objects produces a runtime exception. A convenient way
of specifying multiplicities that can be statically checked
within our approach is an open issue.

5. Discussion
We use a lightweight approach by providing explicit roles
and relationships as a library instead of changing the under-
lying language. Surprisingly, we can nevertheless provide
many benefits of languages with first-class relationships or
first-class roles. Having a low cost of adoption, we believe
that our proposal is a good candidate to gain practical expe-
rience with relationships and roles in programming.

One issue that is not solved so far is how to remove
objects from a relationship. We do not provide an explicit
removal operator, because it could lead to inconsistencies
due to aliasing. Consider the following example, where the
employee role is implemented with a role mapper:

val x = paul as e.employee

val y = bill as e.employee

e.employee.query(true) // 2 employees

// remove paul from the collaboration

e.employee.query(true) // 1 employee

x.work // inconsistency

By storing paul as e.employee into x, we can still ac-
cess paul in the employee role, even after explicitly remov-
ing him from the collaboration. This would contradict the re-
sult of querying the collaboration, where bill is not present
anymore. Unfortunately, we cannot detect such situations
statically (throwing a runtime exception would be possible,

though). To protect users from such inconsistencies, we do
not provide a removal mechanism for role mappers. As a re-
sult, objects added to a relationship belong to it until the col-
laboration instance is removed by garbage collection. Find-
ing a safe way of removing relationships remains as future
work.

Rumbaugh argues for first-class relationships because
they “abstract [..] the high-level static structure of the sys-
tem” [Rum87]. In our approach, the information about
which classes can be related via which collaborations is
specified by the type parameter of Role that constrains the
objects playing that role into a certain type. As a result, it is
trivial to detect statically that persons may be related via an
employment relationship.

Our approach builds upon commonly available constructs
of object-oriented languages. In other languages that provide
inner classes and dynamic proxies, such as Java, similar im-
plementations are possible. Our implementation makes use
of a number of particularities of Scala. First, the as operator
is implemented using infix notation for method calls and im-
plicit conversions, language features not provided by Java.4

Second, we benefit from Scala’s translation scheme for traits
to realize delegation (as explained in Section 3). Neverthe-
less, we believe many of the ideas of our work to be trans-
ferable to other languages with minor adaptations.

In Section 2, we mentioned essential features of roles
given by [Ste00]. Our approach provides these features as
follows:

1. A role comes with its own properties and behavior, since
roles are defined as traits and provide fields and methods
(Section 3).

4 An implicit conversion is a special function inserted by the compiler
whenever an expression would not be otherwise type-correct.

6 2008/10/6

2. Roles are dynamic and can be acquired and abandoned at
runtime using transient roles and the as operator. A role
r can be transferred from one object to another by using
.. as r with different objects as shown in Section 4.2.

3. An object can play more than one role at the same
time by using as multiple times. For example, an em-
ployee can take the role of a workaholic with (paul as
employee) as workaholic. For playing two roles of
the same role type in different contexts one must use two
different collaboration instances. For example, being em-
ployed with two different companies can be expressed as
follows:

(paul as e1.employee).work

(paul as e2.employee).work

By adding both roles together with

(paul as e1.employee) as e2.employee

the members of the second role override those of the first.

4. The state and the members of an object may be role-
specific and a role can override members of an object as
discussed in Section 3.

5. Roles depend on relationships, since roles are defined in-
side collaborations. At runtime, roles have to be qualified
with a collaboration instance.

6. Related Work
This work draws on other approaches to making roles and
relationships more explicit in object-oriented programming
languages. Rumbaugh was the first to propose relationships
(relations) as a first-class construct, aiming at externaliz-
ing otherwise scattered references into a symmetric con-
struct [Rum87].

In [BW05], a prototypical programming language with
first-class relationships, RelJ, is formalized. The authors
stress a notion of relationship inheritance different from
class inheritance, where at most one relationship instance
between two objects may exist, while sub-relationships dele-
gate to super-relationships. Balzer et al. build upon [BW05]
and develop a relational model based on mathematical re-
lations to describe object collaborations in a declarative
way [BGE07] . Members can be added to objects that partic-
ipate in a relationship (membership interposition). Further-
more, the authors investigate sophisticated relationship in-
variants.

Implementing relationships with existing language con-
structs is also proposed in [NG95]. The authors propose the
use of relationship objects that either keep references to par-
ticipating objects and forward calls to them, or are depen-
dents of these objects and get updated via the Observer pat-
tern [GHJV95]. Østerbye presents a library for expressing
association relationships in C# [Øs07], which makes heavy
use of runtime reflection on type parameters. It defines roles

as fields in the core classes that relate to it. The library
provides both a relationship-centric view and a role-centric
view, and facilitates to switch from one to the other.

An aspect library, expressing relationships as separable,
cross-cutting concerns, is presented in [PN06]. The authors
distinguish static relationships, implemented with inter-type
declarations, and dynamic relationships. Similar to our ap-
proach, the latter allows for dynamically adding objects to
relationships when needed. However, the paper considers
only structural aspects of relationships; changing the behav-
ior of participants in a dynamic relationship is not supported.
Our work also relates to the aspect-oriented paradigm in gen-
eral, since a role can intercept the methods of an object and
change its behavior without modifying the object’s source
code.

In the remainder of this section, we present related work
that focuses on roles rather than relationships. The Role Ob-
ject pattern [BRSW00] describes how to split one conceptual
object into a core object and multiple role objects, such that
roles can be added and removed dynamically. The pattern
does not discuss grouping of roles into collaborations. We
develop the ideas of the pattern by allowing for role member
mixin with delegation semantics and statically type-checked
access of them.

ObjectTeams/Java is an extension of Java which provides
roles and teams as first-class language constructs [Her07].
A team is a set of related roles and corresponds roughly to
our collaborations. The self problem is solved with particular
semantics for roles that override methods, where potentially
overridden calls are intercepted and redirected to the role. A
similar approach is Epsilon [TUI07] and its Java-based im-
plementation EpsilonJ. The authors propose collaboration
fields that contain roles. Similar to our approach and Ob-
jectTeams/Java, roles are defined as nested types. In the Ep-
silon model, roles exist as first-class citizens at runtime and
are bound to objects with a bind primitive. Our work dif-
fers from ObjectTeams/Java and EpsilonJ by building upon
an existing language instead of designing a special-purpose
language.

Another extension of Java to support roles is power-
Java [BBvdT07a]. In powerJava, the execution of methods
depends on the view of the caller, which assigns a role to the
callee. Access to different roles is accomplished with role
castings; they roughly resemble the as operator. In contrast
to our work, powerJava’s method dispatch for role-playing
objects is pure forwarding. The authors also discuss the im-
plementation of relationships with roles [BBvdT07b]. It is
proposed to implement binary relationships by defining the
role of one participant as inner class of the other (and vice
versa) and referring to it with attributes. This extends the re-
lationship as attribute pattern [Nob99] by allowing to add
state and behavior to objects entering a relationship. One
drawback is the strong coupling between classes whose in-
stances may participate in a relationship.

7 2008/10/6

7. Conclusions
We propose an implementation technique to express rela-
tionships and roles, and implement it as a Scala library. It
allows for adding behavior to objects that participate in a
relationship. Mixing new members into existing objects has
delegation semantics, a feature usually known from object-
based languages.

Although our approach is implemented as a library us-
ing existing programming language constructs, it provides
a number of benefits from languages with first-class rela-
tionships. Making the relationships between objects explicit
enhances the structure of software and makes it easier to un-
derstand and maintain. The core classes of an application
become smaller, since interactions with other classes are ex-
tracted into collaborations. Hence, the core objects become
less complex and more likely to reuse. Moreover, our ap-
proach allows for transferring notions from modeling, such
as association classes, to the level of implementation.

As future work we want to apply our library to implement
a larger application. Since our approach embeds seamlessly
into an existing language, it seems to be a good candidate for
such experiments. An open issue to investigate further is how
objects can be safely removed from relationships at runtime.
Finally, inheritance of relationships and its semantics given
in [BW05] should be studied in the context of our approach.

Acknowledgments
Thanks to Antonio Cunei, Martin Odersky, Geoffrey Wash-
burn, and the anonymous reviewers for their comments and
suggestions.

References
[BBvdT07a] Matteo Baldoni, Guido Boella, and Leendert

van der Torre. Interaction between objects
in powerJava. Journal of Object Technology,
6(2), 2007.

[BBvdT07b] Matteo Baldoni, Guido Boella, and Leendert
van der Torre. Relationships meet their
roles in object oriented programming. In
International Symposium on Fundamentals
of Software Engineering (FSEN), pages 440–
448. Springer, 2007.

[BGE07] Stephanie Balzer, Thomas R. Gross, and
Patrick Eugster. A relational model of object
collaborations and its use in reasoning about
relationships. In European Conference on
Object-Oriented Programming (ECOOP ’07),
pages 323–346. Springer, 2007.

[BRSW00] Dirk Bäumer, Dirk Riehle, Wolf Siberski,
and Martina Wulf. Role Object. In Pattern
Languages of Program Design 4, pages 15–
32. Addison-Wesley, 2000.

[BW05] Gavin M. Bierman and Alisdair Wren. First-
class relationships in an object-oriented lan-
guage. In European Conference on Object-
Oriented Programming (ECOOP ’05), pages
262–286. Springer, 2005.

[EMO06] Burak Emir, Sebastian Maneth, and Martin
Odersky. Scalable programming abstractions
for XML services. In Dependable Systems:
Software, Computing, Networks, Research
Results of the DICS Program, pages 103–126.
Springer, 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[Her07] Stephan Herrmann. A precise model for con-
textual roles: The programming language Ob-
jectTeams/Java. Applied Ontology, 2(2):181–
207, 2007.

[HO06] Philipp Haller and Martin Odersky. Event-
based programming without inversion of con-
trol. In Joint Modular Languages Conference.
Springer, 2006.

[Lie86] Henry Lieberman. Using prototypical objects
to implement shared behavior in object-
oriented systems. In Conference on Object-
Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’86), pages 214–
223. ACM, 1986.

[NG95] James Noble and John Grundy. Explicit
relationships in object-oriented development.
In Technology of Object-Oriented Languages
and Systems Conference (TOOLS 18), 1995.

[Nob99] James Noble. Basic relationship patterns.
In Pattern Languages of Program Design 4.
Addison-Wesley, 1999.

[Ode08] Martin Odersky. Scala Language Specifica-
tion, May 2008. Version 2.7.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners.
Programming in Scala, A comprehensive step-
by-step guide. Artima, 2008.

[PN06] David J. Pearce and James Noble. Relation-
ship aspects. In International Conference
on Aspect-Oriented Software Development
(AOSD ’06), pages 75–86. ACM, 2006.

[PO08] Michael Pradel and Martin Odersky. Scala
Roles - A lightweight approach towards
reusable collaborations. In International Con-
ference on Software and Data Technologies
(ICSOFT ’08), 2008.

8 2008/10/6

[Rum87] James E. Rumbaugh. Relations as semantic
constructs in an object-oriented language. In
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOP-
SLA ’87), pages 466–481, 1987.

[RWL96] Trygve Reenskaug, P. Wold, and O. A. Lehne.
Working with Objects, The OOram Software
Engineering Method. Manning, 1996.

[Ste00] Friedrich Steimann. On the representation
of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering,
35(1):83–106, 2000.

[TUI07] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi
Ichiyamah. Objects as actors assuming roles
in the environment. In Software Engineering
for Multi-Agent Systems, pages 185–203.
Springer, 2007.

[US87] David Ungar and Randall B. Smith. Self:
The power of simplicity. SIGPLAN Notices,
22(12):227–242, 1987.

[Øs07] Kasper Østerbye. Design of a class library for
association relationships. In Symposium on
Library-Centric Software Design (LCSD ’07),
2007.

9 2008/10/6

