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ABSTRACT
WebAssembly is a low-level bytecode format that powers appli-
cations and libraries running in browsers, on the server side, and
in standalone runtimes. Call graphs are at the core of many inter-
procedural static analysis and optimization techniques. However,
WebAssembly poses some unique challenges for static call graph
construction. Currently, these challenges are neither well under-
stood, nor is it clear to what extent existing techniques address them.
This paper presents the first systematic study of WebAssembly-
specific challenges for static call graph construction and of the
state-of-the-art in call graph analysis. We identify and classify 12
challenges, encode them into a suite of 24 executable microbench-
marks, and measure their prevalence in real-world binaries. These
challenges reflect idiosyncrasies of WebAssembly, such as indirect
calls via a mutable function table, interactions with the host en-
vironment, and unmanaged linear memory. We show that they
commonly occur across a set of more than 8,000 real-world binaries.
Based on our microbenchmarks and a set of executable real-world
binaries, we then study the soundness and precision of four existing
static analyses. Our findings include that, surprisingly, all of the
existing techniques are unsound, without this being documented
anywhere. We envision our work to provide guidance for improv-
ing static call graph construction for WebAssembly. In particular,
the presented microbenchmarks will enable future work to check
whether an analysis supports challenging language features, and
to quantify its soundness and precision.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
Software testing and debugging.
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1 INTRODUCTION
WebAssembly [13, 27] is a portable, low-level bytecode format that
was introduced in 2017, originally designed for computationally in-
tensive tasks in the browser, e.g., codecs, cryptography, and games.
WebAssembly is typically used as a compilation target, i.e., WebAs-
sembly programs are generally not written by hand, but compiled
from a variety of source languages, including C, C++, Rust, and
Go [29]. Today, WebAssembly is—as envisioned—widely used on
the client-side, but also increasingly popular on the server-side,
both in Node.js [9] and in standalone runtimes, e.g., Wasmtime [3].
Examples of real-world usage of WebAssembly are web applica-
tions such as Figma or web versions of Adobe Photoshop and Auto-
CAD, widely used browser extensions, such as uBlock Origin and
1Password, and popular NPM packages, such as OpenCV.js and
TensorFlow.js. Clearly, WebAssembly is already very successful and
will remain an important program representation for years to come.

As WebAssembly is gaining in popularity, so is statically analyz-
ing WebAssembly binaries. Widely used industry tools for static
analysis and optimization include WABT [12], Binaryen [7], and
Twiggy [11]. In academia, Stievenart et al. present a static informa-
tion flow analysis for detecting security vulnerabilities [47], a static
slicing technique for WebAssembly with applications in reverse en-
gineering, code comprehension, and security [45], and the design of
a general-purpose static analysis framework for WebAssembly [46].

Call graphs are at the core of many inter-procedural static analy-
ses and are also useful in their own right, e.g., for detecting unused
code that can be removed from a binary, called debloating, and for
understanding and reverse engineering binaries, e.g., when analyz-
ing malware. The tools mentioned above all produce a call graph
of a given WebAssembly binary, either explicitly, e.g., depicted
visually, or implicitly during their analysis.

https://doi.org/10.1145/3597926.3598104
https://doi.org/10.1145/3597926.3598104
https://doi.org/10.1145/3597926.3598104
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Unfortunately, statically computing a sound and precise call
graph is challenging. “Sound” here means that the graph contains
all call edges that may occur during an execution, and “precise”
means that the graph contains only those call edges that may occur
during an execution. While computing a sound and precise call
graph is impossible for all programs due to Rice’s theorem, there are
a number of challenges that are specific to certain languages and
program representations. For example, in WebAssembly, indirect
calls retrieve the target function by indexing into a table of (func-
tion) references, so the precision of computed call graphs crucially
depends on the ability to reason precisely about index values and
the state of the table. While challenges of call graph construction
have been studied extensively for other languages, e.g., C [34] and
Java [41, 48], to the best of our knowledge, no systematic study of
the challenges associated with WebAssembly exists. In particular,
it is unclear what assumptions are made by existing analyses and
how those effect the soundness and precision of the resulting call
graphs.

This paper presents the first systematic study of static call graph
construction for WebAssembly. We investigate challenges specific
to WebAssembly, measure their prevalence, and evaluate the call
graphs produced by four existing approaches: Wassail by Stievenart
et al. [46], MetaDCE from the Binaryen tool suite [7], the binary
code size profiler Twiggy [11], and the call graph of LLVM IR that
was lifted fromWebAssembly with WAVM [4]. Our study addresses
the following research questions:

• WhichWebAssembly language constructs pose challenges
for static call graph construction and how commonly are
these constructs used in real-world programs? To answer
this question, we codify 12 challenges grouped into six categories,
and measure their prevalence on more than 8,000 real-world
WebAssembly binaries [29]. (Section 3)

• What assumptions do current call graph analyses make,
and how do these assumptions affect the soundness and
precision of the resulting call graphs? To answer this ques-
tion, we create a set of 24 microbenchmarks designed to exer-
cise specific soundness and precision challenges. For each mi-
crobenchmark, we manually determine the sound and precise
ground-truth call graph and compare it with results of the exist-
ing analyses mentioned above. (Section 4)

• To what extent are existing analyses sound for large, real-
world binaries? To answer this question, we dynamically ana-
lyze a set of ten large, real-worldWebAssembly binaries, compiled
from more than 2 million lines of source code, and compare the
executed functions to the call graphs and reachable functions
determined by the static analyses. (Section 5)

Our study has several noteworthy results. First, we find that
WebAssembly-specific challenges are common across real-world
binaries. For example, 83% of all binaries use indirect calls through
the table section, 64% of all indirect calls are made from function
pointers retrieved from (untyped) memory, and three quarters of
all binaries lack name or debug information to identify special func-
tions, such as allocators. Second, applying existing analyses to our
microbenchmarks reveals that none of the four analyses is sound.
In the best case, an analysis is sound for 22 of 24 microbenchmarks,
in the worst case for only 7 of 24. Precision leaves even more to be

desired, as call graphs are precise for at best 9 of the 24 benchmarks.
Third, we find that the soundness problems in existing call graph
analyses also affect real-world binaries. Three of four analyses con-
sider functions as unreachable, even though these functions are
actually executed in test cases. Several of our microbenchmarks,
and even some of the real-world binaries, also lead to crashes in the
existing analyses tools. For example, a crash in the Twiggy code size
profiler may prevent developers from size-profiling their binaries,
and thus prevent them from reducing binary bloat.

In summary, this paper contributes the following:
• The first systematic categorization ofWebAssembly-specific chal-
lenges of static call graph construction.

• Empirical evidence on how prevalent those challenges are in
real-world binaries.

• A set of microbenchmarks and ground-truth call graphs reflecting
the challenges, which can be used to assess the soundness and
precision of existing and future analyses.

• An evaluation of existing call graph analyses, both on the pre-
viously mentioned set of microbenchmarks and on a set of real-
world programs, in which we observe several sources of unsound-
ness and imprecision.
By enumerating the specific challenges that must be overcome

by call graph analyses, and providing a set of microbenchmarks
and real-world programs that can be used to assess soundness and
precision, our results will help future call graph analyses to avoid
known pitfalls. We make our microbenchmarks, and all code and
results publicly available at:

https://github.com/sola-st/wasm-call-graphs

2 BACKGROUND ONWEBASSEMBLY
We give a short introduction to the WebAssembly language and
ecosystem. For more details, please refer to the website [13], the
initial academic publication [27], and the official language specifica-
tion [5]. WebAssembly is a compact binary representation that was
originally designed for computationally intensive tasks in client-
side web applications. It is in widespread use for various tasks,
such as image processing, games, or programming language im-
plementations [29]. WebAssembly achieves portability by being
hardware-, platform-, and language-independent. It is increasingly
used beyond client-side web applications, e.g., on the server-side
with Node.js [9] and on standalone runtimes, e.g., Wasmtime [3].
In this case, WASI [2] provides a standardized syscall interface,
including file system or network access, akin to POSIX for native
code. WebAssembly serves as a compilation target for higher-level
languages, e.g., with popular compilers from C/C++ [1, 8], Rust [14],
and Go [10]. Unless otherwise specified, this paper refers to WebAs-
sembly 1.0, which is the core language without optional extensions,
and supported by all major browsers and standalone runtimes.

Figure 1 shows a simplified WebAssembly program compiled
from C. A WebAssembly module contains a set of functions, where
each function takes a list of values as parameters and produces a list
of results. The body of a function consists of a sequence of instruc-
tions. WebAssembly is a stack-based language, where instructions
pop arguments values from an implicit evaluation stack and push
computed results back onto this stack. Instructions may also refer
to local variables, global variables, and they may load values from

https://github.com/sola-st/wasm-call-graphs
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1 int square(int x) { return x * x; }
2 size_t strlen(const char *s) { ... }

compiled with Emscripten or Clang to:

1 (module ;; Functions/instructions are statically typed.
2 (func (;0;) (param i32) (result i32) ;; square()
3 local.get 0 ;; Push the 0th local (the parameter)
4 local.get 0 ;; onto the evaluation stack, twice.
5 i32.mul ;; Pop 2 arguments, multiply, push result.
6 ) ;; Implicit return of the value(s) on the stack.
7 (func (;1;) (param i32) (result i32) ... )
8 ... )

Figure 1: Example of C code compiled to WebAssembly.

and store values into linear memory, which is a contiguous, mutable
array of raw bytes. A WebAssembly module may also have a func-
tion table, or short table. Indirect function calls, e.g., originating
from dynamically dispatched method calls in a high-level language,
are accommodated using a call_indirect instruction that takes
an index into the function table as an argument.

WebAssembly is a statically typed language, but version 1.0
supports only four low-level types: 32 and 64-bit integers (i32/i64),
and 32 and 64-bit floating point values (f32/f64). Any other types
present in higher-level languages, e.g., objects, arrays, pointers and
references, must be expressed in terms of these four basic types, in
combination with table lookups and accesses to linear memory.

Each WebAssembly module has associated imports and exports.
Each import is a pair (𝑚, 𝑒) that is required for instantiating the
module. Here,𝑚 is the name of another module and 𝑒 is the name of
an entity (function, table, memory, or global) within𝑚. A module’s
exports define entities that become accessible from the outside once
the module has been instantiated. The instantiation of a module
checks that the provided imports match the declared types and
performs initializations. After instantiation, all exported functions
from a module can be invoked.

Given the original browser use case, WebAssembly code is de-
signed to interoperate with a host environment. To this end, WebAs-
sembly’s import mechanism does dual duty as a foreign function
interface by allowing the import of host functions. In the browser,
those are JavaScript functions, and in standalone WASI runtimes,
they may be implemented in native code.

3 CHALLENGES AND THEIR PREVALENCE
This section presents our classification of challenges for static call
graph construction in WebAssembly (Section 3.1) and their preva-
lence in real-world binaries in Section 3.2. In total, we identify 12
WebAssembly-specific challenges, as summarized in Figure 2.

We identified and classified the challenges based on three initial
investigations. First, we started with manual inspection of real-
world binaries. Second, we came across challenges while running
existing analysis tools and inspecting the analyses’ source code to
see why they crashed or were unsound. Finally, we systematically
went through the official WebAssembly specification and checked
for each type of section in the binary and each kind of instruction
whether it could have an effect on call graph analysis. For classifying
the collected challenges into categories, we iterated and discussed

Program representation:
CFunctionIndices No function names, only indices.
CProgramStructure Low-level program structure, static linkage.

Indirect calls and table section:
CTableIndirection Double indirection in indirect calls requires

knowledge about table contents.
CTableIndexValue Table index values (function pointers) are

hard to identify and determine statically.
CTableInitialState Table initialization may depend on host code.
CTableMutation Table may be mutated by host code.

Types:
CLowLevelTypes Types are low-level and imprecise.

Host environment:
CHostCallbacks Outgoing edges of imported functions.
CEntryPoints No standard entry point(s).

Memory:
CMemoryMgmt No built-in memory management.
CMemoryMutable Linear memory is writable everywhere.

Source languages:
CMultiPL Binaries are compiled from different source

languages, there is no standard library.

Figure 2: Overview of theWebAssembly-specific challenges.

among the authors. While this gives no formal guarantee that no
further challenges (e.g., specific to certain source programming
languages) will be uncovered in the future, we are confident that all
sections and instructions of WebAssembly are considered. In partic-
ular, there are only two call instructions in WebAssembly 1.0 (call
and call_indirect), which we both discuss, and our challenges
touch on each binary section kind in the 1.0 specification.1

When identifying challenges unique to WebAssembly, we also
compare the language against other program representations, such
as source code of high-level languages (e.g., Java), native machine
code, and against other bytecode formats (e.g., JVM bytecode).

3.1 Challenges
3.1.1 Program Representation. Unlike in source code or JVM byte-
code, functions in WebAssembly are not identified by names but
with integer indices (CFunctionIndices). For example, a direct call
to the twenty-fourth function is just call 23 in the binary. The
index does not convey any semantics or intuition about the func-
tion, making it difficult to identify special-purpose functions, e.g.,
memcpy. Binaries may contain debug information, but as we will
show, few in the wild do.

A related challenge is WebAssembly’s low-level program struc-
ture (CProgramStructure). All functions are laid out in a single flat
index space, without any structure to express source-level concepts
such as scopes or classes. Unlike in source code or JVM bytecode,
it is not known, for example, whether a function is a method, and
of which class. WebAssembly code is also statically linked, such

1https://www.w3.org/TR/wasm-core-1/#modules%E2%91%A0

https://www.w3.org/TR/wasm-core-1/#modules%E2%91%A0


ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Daniel Lehmann, Michelle Thalakottur, Frank Tip, and Michael Pradel

Table Functions

...
<argument>
call_indirect

0
1
2 (N/A)

3
... ...

Table
index

(func (;0;) ...)

(func (;1;) ...)

(func (;2;) ...)

...

Function
reference

Instructions
1 2

Figure 3: Illustrating the double indirection via the table.

1 (module
2 (func (;0;)
3 instruction sequence producing an i32 index . . .
4 ;; Calls the function at the given table index;
5 ;; the function must have type [] -> [i32].
6 call_indirect (type (param) (result i32))
7 ... ;; Rest of the function...
8 )
9 ;; Other functions in the binary:
10 (func (;1;) (param) (result i32) ... )
11 (func (;2;) (param i32) (result i32) ... )
12 (func (;3;) (param) (result i32) ... )
13 ;; Table section: contains function references,
14 (table funcref)
15 ;; initialized with 2 entries starting at offset 0.
16 (elem (i32.const 0) func 1 2) ;; f3 is not in table.
17 )

(a) WebAssembly bytecode.

f0 f1 f2 f3

/ Not type-compatible

/Not in table

(b) Simplified call graph. The dashed edges can be removed because
f2 is not type-compatible with the call instruction in f0 and because
f3 is not present in the table (assuming the table is immutable).

Figure 4: Example of indirect calls in WebAssembly.

that functions from different libraries (including, e.g., the C stan-
dard library) cannot be easily distinguished. Consider the binary
in Figure 4a as an example. It has four functions, but no nesting or
higher-level organization, and no source language concepts, such
as scopes, classes, or namespaces.

3.1.2 Indirect Calls and Table Section. Besides regular direct calls,
WebAssembly has indirect calls, where the call target is determined
at runtime. Those implement function pointers, virtual calls, and
other forms of dynamic dispatch. WebAssembly 1.0 has only a sin-
gle instruction for this purpose, call_indirect. As shown in the
example of Figure 4, the call_indirect instruction pops an i32
value from the evaluation stack, uses this value to retrieve a function
reference from the table section, and then invokes the function. This
lookup scheme introduces a double indirection (CTableIndirection),
as illustrated in Figure 3. To determine an indirect call’s potential
targets, an analysis thus needs to reason about two things: First,
the index value, and second, the table contents.

Determining the index value of an indirect call is a challenge in
its own right (CTableIndexValue) since index values are of type i32,
i.e., indistinguishable from other pointers or regular numbers, and

1 (module
2 (import "host" "imported" (func (;0;)))
3 (func (;1;)
4 call 0 ;; Does func 0 call exported function(s)?
5 )
6 (func (;2;) (export "exported1") ... )
7 (func (;3;) (export "exported2") ... )
8 )

(a) WebAssembly bytecode.

f0"imported" f1 f2 "exported1" f3 "exported2"

Host code?

(b) Simplified call graph for (a). The presence of the blue dashed
edges depends on (assumptions about) the host code of f0.

Figure 5: Example of imported and exported functions.

they can be manipulated like any integer. This differs from higher-
level representations, where function pointers can be identified
by type, and even from native code, where code pointers can be
identified because they point into a code memory range.

We identify two further challenges specific to determining the
state of the table. The first is about the initial state of the table
(CTableInitialState). A table is initialized via the elem section (line 16
of Figure 4a), which copies a list of function references at a spe-
cific offset into the table during module instantiation. The offset
itself may be an imported global variable, hence an analysis would
require to analyze also the host code (which may be in JavaScript
or even native code). Alternatively, the whole table itself may be
imported from the host, posing the same difficulty. To make matters
worse, tables may be mutated at any point in time (CTableMutation).
While this is not possible withinWebAssembly 1.0 itself, the host en-
vironment can do so, e.g., in browsers using the JavaScript function
WebAssembly.Table.set().

3.1.3 Types. WebAssembly’s four low-level types are of limited
help for constructing call graphs (CLowLevelTypes). On the upside,
the call_indirect instruction statically encodes the type of the
target function (line 6 in Figure 4a), which constrains the set of
call targets at least somewhat (Figure 4b). However, many source-
level types are compiled to the same low-level WebAssembly type.
Figure 1 illustrates that all three C types size_t, const char *, and
int get compiled to the same WebAssembly type i32. Thus, even
though indirect call targets are restricted by type, many functions
are type-compatible with each other. The absence of richer types
implies that type-based call graph algorithms, e.g., RTA or XTA [19,
50] as used for Java, are not applicable to WebAssembly.

3.1.4 Host Environment. WebAssembly binaries execute within a
host environment (e.g., the JavaScript environment of a browser),
so each WebAssembly binary is only a partial program. Determin-
ing its entry points is one challenge (CEntryPoints). Some binaries
have designated start functions, but other functions may be en-
try points as well. Another challenge is that functions imported
into WebAssembly may call any function reachable from the host
(CHostCallbacks). E.g., in Figure 5, function f0 could be a host func-
tion that is implemented in JavaScript and which calls either of f2
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Affected binaries
Property Challenge(s)

Percentage Nb.

1 74% 6,239 Has no function name section CFunctionIndices
2 95% 8,014 Has no .debug section CFunctionIndices
3 83% 6,961 At least one indirect call CTableIndirection

4 22% 1,846 Table is imported or exported
CTableInitialState,
CTableMutation,
CHostCallbacks

5 12% 1,084 Element offset from variable CTableInitialState
6 92% 7,680 At least one imported function CHostCallbacks
7 97% 8,144 No explicit start function CEntryPoints
8 87% 7,339 No explicit WASI start function CEntryPoints
9 95% 7,993 At least one store instruction CMemoryMutable

Figure 6: Measurements on binaries in the WasmBench
dataset, and to which challenges they relate.

or f3. By analyzing the binary alone, an analysis has no way of
precisely determining whether such calls are possible.

3.1.5 Memory. Two challenges are associated with WebAssem-
bly’s notion of linear memory. First, WebAssembly does not provide
any garbage collection or other high-level memory management
(CMemoryMgmt), so memory must be managed by functions com-
piled into the binary itself. As a result, malloc and free are just
regular functions in the binary, and call graph algorithms that rea-
son about allocation sites or types of objects [19] are not easily
applicable. Second, WebAssembly differs from native code in that
all linear memory is writable everywhere (CMemoryMutable); even
data that typically do not change during execution, e.g., vtables and
static data, are potentially mutable.

3.1.6 Source Languages. WebAssembly binaries are compiled from
a variety of different source languages, including C, C++, Rust,
Go, and AssemblyScript [29]. Analyses that make assumptions
about the source language, e.g., the presence of vtables in binaries
compiled from C++, are therefore only applicable to a subset of all
binaries (CMultiPL). On a related note, there is no single standard
library, for which one could special-case call graph construction.

Insight. WebAssembly’s idiosyncratic features (e.g., indirect calls,
tables, low-level types, and mutable linear memory) pose many
challenges for call graph analysis. These challenges differ from
high-level source code, native machine code, and other bytecode.
Implication. The unique challenges motivate work on future call
graph analyses tailored specifically to WebAssembly.

3.2 Prevalence of Challenges in the Wild
To assess whether the identified challenges appear in practice, we
measure their prevalence on a large set of real-world binaries.

3.2.1 Dataset and Setup. We base our analysis on the WasmBench
dataset [29], which contains 8,461 binaries collected from web-
sites, browser extensions, NPM, and GitHub repositories. Our study
considers all 8,392 binaries that can be successfully parsed as Web-
Assembly 1.0 without any extensions. We statically analyze this
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Figure 7: Distribution of indirect calls in the binaries.

dataset to quantify how many binaries or functions are poten-
tially affected by the identified challenges, except for challenges
that are general properties of the language, CProgramStructure and
CMemoryMgmt, and thus always applicable.

3.2.2 Results. Figures 6, 7, and 8 depict the results. Figure 6 shows
how many binaries are affected by certain properties and which
challenges they relate to. From the first two rows, we see that
CFunctionIndices applies to most binaries in the wild. 74% of all bi-
naries have no name section and thus lack names for their functions.
Full debug information is absent from 95% of the binaries. Hence, in
most binaries, no textual or source information is associated with
functions that could help identify them.

Rows 3 to 5 are related to indirect calls and the function table.
First, we see that 83% of all binaries contain at least one indirect call,
and hence are affected by CTableIndirection. We also see that 22%
of all binaries have either an imported or exported table. In such
cases, the host either initializes the table (CTableInitialState), or can
mutate it during runtime (CTableMutation), so the state of the table
cannot be determined from the binary alone. Moreover, the fact
that all functions in an imported or exported table are reachable
from the host may necessitate call graph edges that originate from
imported functions (CHostCallbacks). In further 12% of binaries, the
table itself is not imported, but it is initialized with an element
section whose offset is an imported variable, again necessitating
analysis of the host code.

Rows 6 to 8 relate to entry points and host callbacks. We see
that 92% of all binaries import at least one function (not shown: on
average, 18% of all functions are imported), indicating that analyz-
ing or modeling host code is crucial. In terms of entry points, we
see that only a small fraction of binaries specify an explicit entry
point, either via theWebAssembly start section (3%) or via WASI’s
_start function (13%). Selecting sound and precise entry points for
an inter-procedural analysis thus remains a challenge for more than
84% of the binaries. Not shown but also related to CHostCallbacks
is that, on average, 22% functions are exported and 16% are present
in an element section. All such functions are reachable from the
host and could potentially be called from imported functions.

Rows 7 and 8 of Figure 6 are concerned with linear memory.
Almost all (95%) of all binaries contain at least one store instruction
and make use of memory, requiring pointer analysis for precision
and suffering from WebAssembly’s always writable memory.
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Distribution Count Description

0% 9.6k Constant table index (i32.const 𝑛)

Data-flow related: Index instructions involve...
49% 2.1M local variable (local.get/tee 𝑙 )
45% 1.9M function parameter (local.get/tee 𝑝)

0% 16k function result (call 𝑓 / call_indirect)

Memory-related: Index instructions involve...
64% 2.7M at least one load, whose address...

2% 96k is a constant (i32.const 𝑛)
9% 364k involves local variable (local.get/tee 𝑙 )

13% 533k involves parameter (local.get/tee 𝑝)
14% 586k involves another load (i32.load)

58% 2.4M involves some (pointer) arithmetic

Other:
86% 3.5M Index involves some arithmetic (see text)

Figure 8: Breakdown of CTableIndexValue by instructions.

Finally, we refer to Hilbig et al. [29] for their analysis of the
source languages of WebAssembly binaries (CMultiPL). They find
that there is a wide range of source languages, with 57% of binaries
compiled from C/C++, 14% from Rust, 3% from AssemblyScript, 2%
from Go, and a long tail of other languages. E.g., if one were to
handle only C and C++ binaries, more than 40% of WebAssembly
binaries in the wild would remain unsupported.

Insight. The identified challenges impact many (between 12%
and 97%) of the 8,392 binaries under consideration.

We dive more deeply into indirect calls in Figures 7 and 8, as
statically approximating runtime dispatch poses a major challenge
to call graph analysis. Figure 7 shows a histogram of the fraction
of indirect calls (in terms of all calls) over all binaries. On average,
indirect calls constitute 4.9% (mean) and 2% (median) of all calls. In
total, the dataset contains 4.2 million indirect calls.

At this point, the reader may wonder if some indirect calls may
be handled specially to increase precision of a call graph analysis.
In Figure 8, we analyze the sequences of instructions preceding
call_indirects in the dataset. Those instructions determine the
index value (CTableIndexValue) and hence (together with the table)
which function(s) may be called. The first row makes clear that
more than 99% of index values are not constant and thus not easily
determined. Instead, the next three rows show that many index
values require some form of data-flow analysis. In WebAssembly,
the local.get and local.tee instructions do double duty to re-
fer to both function parameters and local variables. We take the
type signature of the current function into account to distinguish
between references to parameters and local variables. The first row
shows that tracking data-flow through local variables is crucial, as
49% of index values flow out from an access of a local variable. 45%
of index values require even inter-procedural data-flow analysis,
since they are read from the current function parameters or, to a
much lesser degree, the return value of another function.

In many cases, the index into the function table for indirect calls
is itself retrieved from memory first. The next six rows thus analyze

the kinds of memory accesses in the instructions that compute the
table index value. 64% of the instruction sequences that compute
an index value contain a memory load and hence require some
form of pointer analysis. We distinguish between different cases of
increasing difficulty. In the simplest case, the address of the load
is itself a constant (e.g., globally allocated function pointers). This
is however only the case for 2% of all indirect calls. Instead, in
many cases the address involves a local variable (9%), a function
parameter (13%), or another load (14%). Double indirect loads are
common, e.g., for C++ virtual method calls, where the first load
retrieves the vtable of an object and the second the function pointer
inside that vtable. In 58% of all indirect calls, the address given to
a load also involves some arithmetic operation, likely for pointer
arithmetic, e.g., when accessing array elements or struct fields.

If one considers arithmetic operations in all instruction sequences
for table index values, they appear 86% of the time. The most com-
mon arithmetic operations in table index expressions are i32.add
(20% of all instructions), i32.and (11%), i32.shl/i32.shr_u (0.5%),
and i32.sub (0.1%). Clearly, addition and bitmasking are the most
important arithmetic operations to handle in index calculations.

Insight. Index values for indirect calls are frequently not constant,
but instead involve intra- and inter-procedural data-flow, memory
loads, and arithmetic operations, such as addition and bitmasking.
Implication. To ensure precision, a static call graph analysis
for WebAssembly should track data-flow and perform pointer
analysis.

4 EVALUATION ON MICROBENCHMARKS
Given the unique challenges inWebAssembly, how do existing static
analyses compute call graphs, and how sound and precise are they?
To answer that, we introduce a set of microbenchmarks (Section 4.1)
specifically crafted to expose the challenges, and then evaluate four
existing call graph analyses (Section 4.2) against them. Every chal-
lenge is covered by at least one microbenchmark, but one challenge
may be exposed by multiple benchmarks. E.g., CTableIndirection
applies to all programs with at least one indirect call. The results
are summarized in Table 1 and detailed in Section 4.3. We make our
microbenchmarks, results, and automated scripts to evaluate future
analyses on them publicly available in the supplemental material.

4.1 Microbenchmarks
Table 1 gives an overview of our 24 microbenchmarks, with a short
description for each and which challenges it relates to. Each mi-
crobenchmark has four components:
1. The WebAssembly binary. All but one are written directly in the
bytecode text format. To be useful for debugging, the binaries
are small and aim to test isolated challenges.

2. The set of entry points, i.e., functions that are assumed to be
reachable and initially called. Benchmarks 4 and 5 give no explicit
entry points, to test whether the analysis is aware of language-
intrinsic entry points. Analyses for which no entry points can
be given should conservatively regard all functions that are
reachable from the host as entry points.

3. The ground-truth call graph, which we construct manually from
the program for all possible inputs. It is a directed, possibly cyclic
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Table 1: Overview of the microbenchmarks and results of different call graph analyses on them. |𝐹all | is the total number of
functions in the binary. |𝐹r | is the number of functions reachable from the given entry point(s). |𝐸 | is the number of edges in
the call graph. S and P indicate that an analysis is sound and precise, respectively, compared to the ground truth.

# Description Challenges Ground Truth Wassail WAVM+LLVM MetaDCE Twiggy
|𝐹all | |𝐹r | |𝐸 | |𝐹r | |𝐸 | S P |𝐹r | |𝐸 | S P |𝐹r | S P |𝐹r | S P

1 Simple direct call 3 2 1 2 1 ✓ ✓ 2 1 ✓ ✓ 2 ✓ ✓ 2 ✓ ✓

2 Transitive direct call 5 3 3 3 3 ✓ ✓ 3 3 ✓ ✓ 3 ✓ ✓ 3 ✓ ✓

3 Direct call to imported function 3 2 1 2 1 ✓ ✓ 2 1 ✓ ✓ 2 ✓ ✓ 2 ✓ ✓

4 Implicit entry point: Wasm start section CEntryPoints 2 0 1 0 1 ✓ ✓ 0 1 ✓ ✓ 0 ✓ ✓ Crash
5 Implicit entry point: WASI start function CEntryPoints 3 2 1 2 1 ✓ ✓ 2 1 ✓ ✓ 0 ✗ ✗ 2 ✓ ✓

6 Imported host code calls exported function CHostCallbacks 7 6 3 6 3 ✓ ✓ 6 3 ✓ ✓ 2 ✗ ✗ 6 ✓ ✓

7 Functions in exported table are reachable CHostCallbacks,
CTableIndirection

5 3 3 2 2 ✗ ✗ 2 2 ✗ ✗ 1 ✗ ✗ 3 ✓ ✓

8 Functions in imported table are reachable CHostCallbacks,
CTableIndirection

5 3 3 2 2 ✗ ✗ 2 2 ✗ ✗ 3 ✓ ✓ 2 ✗ ✗

9 Table is mutated by host CTableMutation,
CTableIndirection

4 3 1 3 1 ✓ ✗ 3 0 ✓ ✗ 1 ✗ ✗ 3 ✓ ✓

10 Table init. offset is imported from host CTableInitialState,
CTableIndirection

3 2 1 Crash 1 0 ✗ ✗ Crash 3 ✓ ✗

11 Memory init. offset is imported from host CTableIndirection 3 2 1 3 2 ✓ ✗ 1 0 ✗ ✗ Crash 3 ✓ ✗

12 Functions must be in table for indirect call CTableIndirection 3 2 1 2 1 ✓ ✓ 1 0 ✗ ✗ 2 ✓ ✓ 2 ✓ ✓

13 Types can constrain indirect call targets CLowLevelTypes,
CTableIndirection

3 2 1 2 1 ✓ ✓ 1 0 ✗ ✗ 3 ✓ ✗ 3 ✓ ✗

14 Constant table index value CTableIndexValue,
CTableIndirection

3 2 1 3 2 ✓ ✗ 1 0 ✗ ✗ 3 ✓ ✗ 3 ✓ ✗

15 Index value data-flow through local variable as above 3 2 1 3 2 ✓ ✗ 1 0 ✗ ✗ 3 ✓ ✗ 3 ✓ ✗

16 Masked index value as above 4 3 2 4 3 ✓ ✗ 2 1 ✗ ✗ 4 ✓ ✗ 4 ✓ ✗

17 Inter-procedural index value, parameter as above 4 3 2 4 3 ✓ ✗ 2 1 ✗ ✗ 4 ✓ ✗ 4 ✓ ✗

18 Inter-procedural index value, function result as above 4 3 2 4 3 ✓ ✗ 2 1 ✗ ✗ 4 ✓ ✗ 4 ✓ ✗

19 Index from memory, constant address as above 3 2 1 3 2 ✓ ✗ 1 0 ✗ ✗ 3 ✓ ✗ 3 ✓ ✗

20 Index from memory, address inter-procedural, pa-
rameter

as above 4 3 2 4 3 ✓ ✗ 2 1 ✗ ✗ 4 ✓ ✗ 4 ✓ ✗

21 Index from memory, address inter-procedural, re-
sult

as above 4 3 2 4 3 ✓ ✗ 2 1 ✗ ✗ 4 ✓ ✗ 4 ✓ ✗

22 Index from memory, double indirect load as above 3 2 1 3 2 ✓ ✗ 1 0 ✗ ✗ 3 ✓ ✗ 3 ✓ ✗

23 Index from memory, memory is mutable CMemoryMutable,
CTableIndirection

3 2 1 3 2 ✓ ✗ 1 0 ✗ ✗ 3 ✓ ✗ 3 ✓ ✗

24 C++ virtual calls from unrelated classes CMultiPL,
CLowLevelTypes,
CMemoryMutable,
CTableIndirection

23 23 20 23 24 ✓ ✗ 19 16 ✗ ✗ 23 ✓ ✓ 23 ✓ ✓

Total 107 80 56 87 68 21 8 60 35 7 6 77 18 7 92 22 9

graph (𝐹all, 𝐸), where 𝐹all is the set of all functions and 𝐸 is the
set of edges between them.

4. The set of reachable functions 𝐹r, i.e., which functions could po-
tentially execute given any possible program input. We also
construct this manually and confirm the functions are reachable
by running the program on appropriate inputs.

Components 1 and 2 are inputs to a call graph analysis, whereas
components 3 and 4 serve as a ground truth we compare the anal-
yses against. Some analyses only report a call graph, not a set of
reachable functions. For those analyses, we obtain the reachable
functions by traversing the graph, starting from the entry points.
Other analyses only produce the set of reachable functions and no
call graph; in such cases, we compare the sets of reachable functions.

For testing precision, all but the last benchmark contain at least one
non-reachable function that an analysis should identify as such.

The first three benchmarks contain simple direct calls and should
pose no challenge. Benchmarks 4 to 8 test whether an analysis cor-
rectly determines implicit entry points and which functions are
reachable from the host. All benchmarks from 7 on contain at least
one indirect call and hence involve CTableIndirection (omitted from
the table for brevity). Benchmarks 6 to 11 contain JavaScript host
code that, if analyzed, can improve the precision of the call graph. In
contrast, the call graph of benchmarks 12 to 23 can be determined
precisely from only the binary. They deal with increasingly more
complex expressions for the table index passed to an indirect call
(CTableIndexValue). Benchmarks 12 to 14 all have a constant index
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value, whereas later ones require tracking of data-flow through
locals and functions, and from benchmark 19 on also through mem-
ory. The last benchmark is compiled from a small C++ program
with Emscripten, the most popular compiler targeting WebAssem-
bly. The program contains two unrelated class hierarchies and two
virtual calls. Knowledge about the source semantics could help an
analysis to improve the precision of the targets of the virtual calls.

4.2 Existing Call Graph Analyses
We evaluate the call graph analyses implemented in four tools: Was-
sail [46], MetaDCE (from the Binaryen tool suite) [7], Twiggy [11],
and WAVM in combination with an LLVM call graph analysis [4, 8].

Wassail is a research static analysis toolkit for WebAssembly
binaries. It can produce an explicit call graph for a given binary, e.g.,
as a .dot file. MetaDCE and Twiggy statically analyze a given binary
for the purpose of optimization, in particular binary debloating.
MetaDCE takes as input a binary and a list of reachability roots (i.e.,
entry points). It then computes a reachability graph and removes
all unreachable functions. Twiggy is a code size profiler that also
constructs a reachability graph. It reports which parts of the binary
are reachable from the outside, and how much space could be saved
by removing them. MetaDCE and Twiggy do not explicitly produce
a call graph, unlike Wassail, so we compare them in terms of the
set of reachable functions 𝐹r only.

Another approach for extracting a call graph from a WebAssem-
bly binary is to lift it to a common intermediate representation,
such as LLVM IR, for which an existing call graph analysis can
be reused. The aWsm compiler [6] lifts WebAssembly to LLVM IR
and C code. Unfortunately, it does not support all WebAssembly
features yet and crashes on a majority of real-world binaries, when-
ever a table is either exported or the number of entries in the table
are greater than 1,024. Because of this, we do not consider it in
our study. WAVM is another compiler that lifts WebAssembly to
LLVM IR, to subsequently generate machine code with near native
performance. We invoke WAVM to produce LLVM IR from a given
WebAssembly binary and then extract a call graph from the IR via
LLVM’s opt tool with the –dot-callgraph option.

4.3 Experimental Setup and Results
For each microbenchmark, we compare the call graph (for Wassail
and WAVM+LLVM) and the set of reachable functions (for all four
analyses) against our manually determined ground truth. If any call
graph edge or reachable function is missing from the output, an
analysis is unsound (✗ in the S column). If the analysis reports edges
or reachable functions that can never be executed, the analysis is
imprecise (✗ in the P column).

We will consider soundness first, as an unsound analysis can
be very problematic for downstream applications. For example, in
debloating, an unsound call graph will cause functions to be re-
moved that are actually executed. Surprisingly, none of the existing
analyses is fully sound. Wassail is unsound on benchmarks 7 and 8,
because it misses that functions in an exported or imported table
are reachable from the host, even if the functions are not exported
themselves. WAVM+LLVM is unsound for the same reason, as is
MetaDCE for benchmark 7 and Twiggy for benchmark 8. MetaDCE
fails to identify the implicit WASI entry point on benchmark 5,

and in benchmark 6 it assumes that an imported function can call
any exported function and does not make the exported functions
transitively reachable. MetaDCE is also unsound in benchmark 9,
because it does not consider that host code can mutate an exported
table and thus change the referenced functions at runtime.

Insight. One common source of unsoundness is WebAssembly’s
interaction with the host environment, e.g., which affects what
functions are reachable and whether the table may be mutated.

Additionally,WAVM+LLVM is unsound on all benchmarks from 11
onwards. This is because the LLVM call graph analysis cannot han-
dle any of the indirect calls that were generated by WAVM from
WebAssembly’s call_indirect instruction.

Insight. Even though it is possible to lift WebAssembly to LLVM
IR for compilation, this step loses crucial information for analysis.
Implication. Static analysis should likely be performed directly
on the WebAssembly bytecode.

Besides unsoundness, Wassail, MetaDCE, and Twiggy also crash
for some benchmarks, even though the binaries are standards-
compliant. Wassail (MetaDCE) crash on benchmark 10 (10 and
11), where the table (memory) initialization offset is imported from
the host. Twiggy crashes in the presence of a WebAssembly start
section in benchmark 4. Such as crash may prevent developers from
size-profiling their binaries, and thus prevent them from reducing
binary bloat. The Twiggy authors have confirmed our crashes and
are working on fixing them.

Insight. Our microbenchmarks uncover several sources of un-
soundness and even causes existing call graph analyses to crash.
Implication. Future analyses should test against our benchmarks
to avoid common mistakes.

Finally, our benchmarks also uncover different sources of im-
precision. All existing analyses fail to take data-flow into account
(through locals and inter-procedurally) and lack pointer analysis to
precisely determine the targets of indirect calls in benchmarks 14
to 23, which leads to lackluster overall precision of all analyses.
Wassail is the only one that constrains call targets of indirect calls
by their type signature, which gives it a precise result for bench-
mark 13. MetaDCE and Twiggy choose a particularly conservative
and thus imprecise approach to analyzing the table section in gen-
eral. They mark every function as reachable that is present in an
elem section. They neither use the index value nor type of indirect
calls to further constrain the targets of indirect calls.

Insight. All existing analyses are imprecise, and in some cases
ignore information that is available in the binary.
Implication. Future analyses should (i) use types to constrain
indirect call targets, (ii) track data-flow and memory, and (iii)
analyze host code to improve precision.

5 EVALUATION ON REAL-WORLD BINARIES
Here, we investigate whether existing call graph analyses are sound
when applied to real-world WebAssembly binaries. We collect bina-
ries and test inputs from real-world projects (Section 5.1) to obtain
sets of dynamically executed functions, which we then compare
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Table 2: Overview of the real-world programs.

Name Source LoC Binary Size
in KB

Number
of Tests

Function Cov.
of the Tests

sql.js C 165,491 1,100 2 31.05–31.86%
opencv C++ 973,964 7,000 4 5.85–6.31%
rsa Rust 20,849 369 1 35.13%
blake Rust 20,345 35 2 21.25–26.25%
libmagic C++ 17,238 290 2 31.69%
graphviz C++ 857,121 929 2 31.02–39.72%
source-map Rust 1809 48 2 20.00-40.00%
shiki C/C++ 86,316 467 3 40.67–49.28%
font-editor C/C++ 39,417 727 3 4.66–35.45%
opusscript C/C++ 53,898 276 3 49.70–50.30%

against the reachable functions as reported by the static analyses.
The results are summarized in Table 2 and detailed in Section 5.3.

5.1 Real-World Binaries
Unfortunately, it is impractical to manually produce ground truth
call graphs for large binaries with thousands of functions. Therefore,
we collect the dynamically reachable functions during execution as
a baseline for soundness (but not for precision, as we cannot know
which inputs might make further functions reachable).

TheWasmBench dataset we use in Section 3.2 is ill-suited for this
task. It contains only binaries and metadata, but neither host code
nor test cases to execute the binaries. We thus collect ten real-world
binaries ourselves. As WebAssembly is most popular in JavaScript
host environments, we collect them from NPM with these criteria:
(i) The package must contain WebAssembly code without language
extensions. We query the NPM registry with the keywords wasm
and WebAssembly and manually inspect the resulting packages. (ii)
We select the most popular packages, for which NPM provides
an explicit ranking. (iii) We require packages with test cases or
(for libraries) with client code exercising the library, which we
find through manual inspection. (iv) We select binaries that were
compiled from different source languages and toolchains.

The binaries are shown in Table 2. All of them are widely used,
often originally native libraries that were compiled toWebAssembly.
SQL.js is the well-known SQLite database; OpenCV and Graphviz
the eponymous C++ libraries; two Rust projects implement the RSA
and Blake cryptographic primitives; libmagic is known from the
file UNIX utility to determine file types; source-map is a library
from Mozilla for source mapping in Node.js and web applications;
Shiki is a syntax highlighter that uses the oniguruma regex library;
Fonteditor contains a library for the woff2 font format; OpusScript
is a port of the common Opus audio codec. We exercise each bi-
nary with several test cases, either taken from the repositories or
implemented ourselves following the documentation. Each test per-
forms a larger task, e.g. for SQL.js, loading a database, querying and
modifying several tables, and saving it again. The rightmost col-
umn shows how many functions of the binary are exercised in the
tests. As we can see from the OpenCV example, very large projects
are compiled to WebAssembly, but only a small fraction of their
functions may be used in downstream applications. This motivates
binary debloating, which in turn requires call graph analysis.

5.2 Experimental Setup
We evaluate the same analyses as in Section 4.2. Since MetaDCE
requires a list of entry points as input, we take all exported functions
that are executed by at least one of the test cases, as determined by
dynamic analysis. In this experiment, we focus on sets of reachable
functions, so for Wassail and WAVM+LLVM, we obtain those by
traversing the call graph, starting from the dynamic entry points.
MetaDCE and Twiggy directly return unreachable functions.

We obtain the set of dynamically executed functions with the
Wasabi framework [32], which instruments each binary with a
small dynamic analysis. Besides for the entry points, we use this
data to determine all executed functions for each test case. The
union of the executed functions for all test cases of a binary is 𝐹dyn.

As in the previous section, 𝐹all is the set of all functions in a
binary. For each static analysis, we report the size of the set of
functions that it deems reachable, |𝐹r |. Conversely, we also report
the set of functions that can be removed from the binary according
to the analysis as 𝐹del = 𝐹all − 𝐹r. Ideally, this should be as large as
possible. However, at the same time, no function should be removed
that is actually used, as this would introduce unsoundness. We
quantify unsoundness with the set 𝐹unsound = 𝐹dyn − 𝐹r.

5.3 Results
In Table 3, we see to what extent the soundness and precision
limitations of the analyses affect real-world binaries. At a high
level, we see that three out of four analyses are not sound, as they
(propose to) remove functions that are actually executed. While
MetaDCE does not incorrectly remove functions, it crashes on the
largest real-world program, so clearly no analysis is perfect.

Both Wassail and Twiggy assume that the call graph analysis of
a WebAssembly binary is done separately from the host code that
it interacts with. In contrast, MetaDCE takes as an input a set of
initially reachable nodes in the call graph. While for this evaluation,
we have not analyzed the corresponding host code, a call graph of
host code can be passed to MetaDCE, which would be useful when
performing dead-code elimination on a WebAssembly binary.

We see unsoundness in all the analyses on the opencv library.
MetaDCE crasheswhen analyzing opencvwhich is because it makes
the assumption that the element and data sections of the WebAs-
sembly binary are initialized with a constant. All other analyses are
unsound because they make the assumption that functions in an
exported table are not reachable by the host. However, in the case
of opencv, the binary exports its table and the tests call functions
that are present in the table, even though they are not exported
themselves. Wassail also shows unsoundness in the case of graphviz
and opusscript. This is because the host code in graphviz calls func-
tions from the exported table. WAVM+LLVM is unsound for all but
two real-world programs. We see a high number of functions being
reported as unreachable that are in fact reachable, because the opt
tool does not evaluate indirect calls, as discussed in Section 4.3.

Besides soundness, we also see that Twiggy and MetaDCE are
more conservative with removing functions, then Wassail. This
could be because MetaDCE and Twiggy mark all functions in ele-
ment sections as reachable, as discussed in Section 4.3.
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Table 3: Evaluation of the soundness of existing call graph analyses on real-world programs. We report the number of incor-
rectly (𝐹unsound = 𝐹dyn − 𝐹r) and correctly removed functions (𝐹del = 𝐹all − 𝐹r). Unsoundness is highlighted.

Library |𝐹all | |𝐹dyn |
Wassail WAVM+LLVM MetaDCE Twiggy

|𝐹r | |𝐹unsound | |𝐹del | |𝐹r | |𝐹unsound | |𝐹del | |𝐹r | |𝐹unsound | |𝐹del | |𝐹r | |𝐹unsound | |𝐹del |

sql.js 1261 390 1257 0 (0%) 4 (0%) 633 124 (32%) 628 (50%) 1261 0 (0%) 0 (0%) 1261 0 (0%) 0 (0%)
opencv 10909 684 Timeout 822 477 (70%) 10087 (92%) Crash 822 477 (70%) 10087 (92%)
rsa 785 273 777 0 (0%) 8 (1%) 564 3 (1%) 221 (28%) 785 0 (0%) 0 (0%) 785 0 (0%) 0 (0%)
blake 81 21 76 0 (0%) 5 (6%) 57 0 (0%) 24 (30%) 81 0 (0%) 0 (0%) 81 0 (0%) 0 (0%)
libmagic 736 218 716 0 (0%) 20 (3%) 88 152 (70%) 648 (88%) 736 0 (0%) 0 (0%) 736 0 (0%) 0 (0%)
graphviz 2018 790 2006 12 (2%) 12 (1%) 569 355 (45%) 1449 (72%) 2018 0 (0%) 0 (0%) 2018 0 (0%) 0 (0%)
source-map 46 19 38 0 (0%) 8 (17%) 38 0 (0%) 8 (17%) 46 0 (0%) 0 (0%) 46 0 (0%) 0 (0%)
shiki 213 105 213 0 (0%) 0 (0%) 154 18 (17%) 59 (28%) 213 0 (0%) 0 (0%) 213 0 (0%) 0 (0%)
fonteditor 1118 381 1118 0 (0%) 0 (0%) 345 306 (81%) 773 (69%) Crash 345 306 (81%) 773 (69%)
opusscript 356 169 49 126 (75%) 307 (86%) 49 126 (75%) 307 (86%) 356 0 (0%) 0 (0%) 356 0 (0%) 0 (0%)

Insight. The unsoundness of current static call graph analyses
manifests itself in real-world binaries, which may cause incorrect
optimizations and other problems in downstream applications.
Different tools face different shortcomings. E.g., because WAVM
builds on LLVM, it loses vital information from the original byte-
code and thus is unfit for sound call graph analysis. MetaDCE
and Binaryen suffer less from unsoundness but also remove many
fewer functions, i.e., they are more sound at the cost of precision.

6 THREATS TO VALIDITY
The results and conclusions of this study are subject to potential
threats to validity, which we have tried to mitigate in the following
ways: First, not all of the studied analyses explicitly construct call
graphs. However, all target closely related tasks, such as obtaining
sets of reachable functions. As a common denominator across all
analyses, we compare them based on the set of reachable functions,
which still relies on their ability to construct accurate call graphs.

Second, to extract the call graphs and reachable functions com-
puted by the existing analyses, we process the outputs produced by
the studied tools. We carefully check our code to accurately extract
the results of the analyses, but cannot fully exclude the possibility
of accidentally misrepresenting their abilities.

Third, our set of microbenchmarks is designed to cover particu-
larly challenging language features. The effectiveness of an analysis
on these microbenchmarks may not translate proportionally to real-
world binaries, as not all challenges are equally prevalent in practice.
For that reason, we did evaluate the analyses additionally on a set
of real-world binaries.

Fourth, to assess the soundness of static call graphs in real-world
programs, we use dynamic call graph analysis driven by test in-
puts. Any bias in those inputs, e.g., favoring particular language
features, may impact the results of our study on real-world binaries.
Except for OpenCV, the union of our tests however exercises a large
fraction of the binaries, at least one third to half of all functions.

Finally, all results are limited to WebAssembly, and do not allow
for drawing conclusions about other languages.

7 RELATEDWORK
WebAssembly in general. Since the initial publication that intro-

duced the language [27], WebAssembly has received significant
interest by researchers. For example, there is work on formalizing
and improving the WebAssembly type system [53], studying its
performance in comparison to native binaries [30], and understand-
ing its security implications [31]. WasmBench offers thousands of
real-world WebAssembly binaries, which are used to study their
usage in the wild [29].

Program analysis of WebAssembly. In addition to the call graph
analyses studied in this paper, various program analyses for Web-
Assembly have been proposed. Static analyses include slicing [45],
predicting higher-level types [33], an outline of a static analysis
library [46], a vulnerability detector [21], and a code transformation
technique that tries to hide malicious JavaScript code by translat-
ing parts of it to WebAssembly [42]. Concurrently with our work,
Paccamiccio et al. propose a static call graph analysis based on
symbolic execution and slicing [37] and Brandl et al. introduce a
static analysis framework for WebAssembly based on an abstract
interpreter [20]. As the implementation of Paccamiccio et al. was
not available when we conducted our evaluation and the work of
Brandl et al. was published concurrently, we include neither in
our study. On the dynamic analysis side, there is work on taint
tracking [24, 49] and fuzzing [28]. Wasabi [32] offers a general
framework for implementing dynamic analyses. Given the rela-
tively young age of the language, we expect to see many more
analyses in the future, and accurate static call graphs could serve
as a basis for them.

Call graph construction. Due to the fundamental nature of call
graphs as a building block for many downstream program analy-
ses, various algorithms for statically constructing call graphs exist.
RTA [19] and XTA [50] target object-oriented languages. Other algo-
rithms specifically target Java libraries and different usage scenarios
of them [40], analyze Python code [44], adapt existing call graph
algorithms to Scala [17], or address the related problem of call chain
analysis, i.e., whether specific call stacks are feasible [43]. Motivated
by the inevitable imprecision of sound call graph analysis, Utture
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et al. propose a learning-based pruning of static call graphs [52].
When analyzing JavaScript-based web applications, static call graph
construction often is unsound-by-design [23]. Nielsen et al. target
server-side JavaScript with a modular analysis of individual pack-
ages [36]. To support multi-language web applications, a static
analysis of server-side PHP code approximates the call graph of
client-side JavaScript code generated by PHP [35]. Besides static
analyses, dynamic call graph construction also poses some chal-
lenges, e.g., due to the interaction of applications with complex
frameworks [55].

Studies of call graph analyses. Several studies empirically com-
pare different call graph analyses with each other. Murphy et al.
compare nine analyses for C [34]. Grove et al. study the precision
and cost of algorithms for object-oriented languages [26] and de-
scribe different algorithms in a unified framework [25]. Studies by
Reif et al. [41] and Sui et al. [48] compare analyses for Java. Another
study targets different languages on the JVM [16]. Chakraborty et
al. propose to identify the root causes of missing call graph edges
via dynamic analysis [22]. To the best of our knowledge, this paper
is the first comprehensive study of call graph analyses for WebAs-
sembly, including an analysis of its unique challenges and a novel
benchmark based on them.

Applications of call graphs. Static call graphs are a basic ingredi-
ent of various inter-procedural analyses. Examples include static
debloating, e.g., of C/C++ [38, 39], binary shared libraries [15] and
JavaScript [51], fault localization based on stack traces [54], and
static taint analysis, e.g., of Android apps [18]. We envision our
work to help improve call graph analyses for WebAssembly, which
will ultimately benefit downstream inter-procedural analyses.

8 CONCLUSIONS AND RECOMMENDATIONS
As WebAssembly is becoming increasingly important, the language
is a highly relevant target for static analysis. One of the most fun-
damental static analyses is call graph construction, which serves as
a building block for many inter-procedural analyses and provides
value on its own, e.g., for binary debloating. This paper presents
the first systematic study of challenges for constructing call graphs
in WebAssembly, how prevalent those challenges are in real-world
binaries, and how those challenges are handled by current static
analyses. Surprisingly, we find that all studied analyses are un-
sound and suffer from imprecision. These limitations are caused by
WebAssembly-specific challenges, such as indirect calls controlled
via a mutable function table, interactions between WebAssembly
and its host environment, and unmanaged linear memory. We also
show that the issues are not just limited to corner cases, but affect
large, real-world binaries. To help improve future analyses, we also
provide a set of executable microbenchmarks to test for specific
challenges.

Our work has several implications and recommendations for
future call graph analyses. First, we recommend operating on the
level of WebAssembly bytecode, not an intermediate representation
such as LLVM IR, in order to not lose information that is crucial for
precision. Second, readily available information from the binary
should be taken into account by call graph analyses, such as the type
information in indirect calls, which could constrain possible call
targets. Third, the precision of the call graph relies critically on the

ability of the analyses to reason about local and inter-procedural
data flow, and on pointer analysis, which currently no analysis
incorporates. Finally, future analyses could further improve preci-
sion by going beyond just the binary, e.g., taking into account the
host code of an application, or the source language semantics from
which it was compiled. One challenge for the latter idea will be that
not every source-level function is represented as one WebAssembly
function, e.g., due to inlining and other optimizations.
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