
Scaffle: Bug Localization on Millions of Files
Michael Pradel∗

University of Stuttgart
Germany

Vijayaraghavan Murali
Facebook

USA

Rebecca Qian
Facebook

USA

Mateusz Machalica
Facebook

USA

Erik Meijer
Facebook

USA

Satish Chandra
Facebook

USA

ABSTRACT
Despite all efforts to avoid bugs, software sometimes crashes in the
field, leaving crash traces as the only information to localize the
problem. Prior approaches on localizing where to fix the root cause
of a crash do not scale well to ultra-large scale, heterogeneous code
bases that contain millions of code files written in multiple program-
ming languages. This paper presents Scaffle, the first scalable bug
localization technique, which is based on the key insight to divide
the problem into two easier sub-problems. First, a trained machine
learning model predicts which lines of a raw crash trace are most
informative for localizing the bug. Then, these lines are fed to an
information retrieval-based search engine to retrieve file paths in
the code base, predicting which file to change to address the crash.
The approach does not make any assumptions about the format of
a crash trace or the language that produces it. We evaluate Scaffle
with tens of thousands of crash traces produced by a large-scale
industrial code base at Facebook that contains millions of possible
bug locations and that powers tools used by billions of people. The
results show that the approach correctly predicts the file to fix for
40% to 60% (50% to 70%) of all crash traces within the top-1 (top-
5) predictions. Moreover, Scaffle improves over several baseline
approaches, including an existing classification-based approach, a
scalable variant of existing information retrieval-based approaches,
and a set of hand-tuned, industrially deployed heuristics.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software creation and management;

KEYWORDS
Bug localization, software crashes, machine learning
ACM Reference Format:
Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica,
Erik Meijer, and Satish Chandra. 2020. Scaffle: Bug Localization on Millions
of Files. In Proceedings of the 29th ACM SIGSOFT International Symposium on

∗Work mostly performed while on sabbatical at Facebook, Menlo Park.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397356

Software Testing and Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3395363.3397356

1 INTRODUCTION
When software crashes in the field, often the only information
available to developers are crash traces. Such traces come in various
forms and may include various kinds of hints about the code that
causes the crash, including stack traces, error messages, informa-
tion about the program state just before the crash, and additional
information added by tools that process crash traces. To prevent
future instances of the same crash, developers must identify where
exactly in the code base to fix the underlying problem – a problem
referred to as bug localization.

1.1 Crash-Based Bug Localization at Scale
We focus on localizing bugs at the file-level within ultra-large scale,
heterogeneous code bases, i.e., code bases that contain multiple
millions of code files written in multiple programming languages.
Addressing the file-level bug localization problem at scale can help
with the process of handling field crashes in multiple ways. By pin-
pointing which files are most relevant for a crash, bug localization
helps find the right team or person to address the crash. Finding
the right developer for a given crash is non-trivial in a large organi-
zation, and associating crashes to the wrong developers consumes
valuable time and resources. Once the right developer has been
identified, knowing the buggy file helps the developer to focus on
where to implement a fix of a crash. Moreover, identifying the file
to fix can serve as a first step in automated program repair [14].

Unfortunately, manual bug localization is difficult and time-
consuming. One reason is that crash traces contain lots of noise not
directly related to the bug location. Another reason is that, for very
large-scale code bases, there may be millions of code files to choose
from. The problem is further compounded by the fact that widely
deployed software may lead to such a volume of crashes per day
that is practically impossible to process without appropriate tools.

1.2 Scalability Problems of Prior Work
Prior work has proposed several automatic bug localization tech-
niques, which are extremely inspiring, but not easily applicable
to ultra-large scale, heterogeneous code bases, such as those that
motivate this work. Broadly speaking, one group of prior work is
based on traces of correct and buggy executions [1, 6, 15]. These
approaches assume that a test suite is available where some tests
pass while other tests fail due to the bug. Unfortunately, failing tests

https://doi.org/10.1145/3395363.3397356
https://doi.org/10.1145/3395363.3397356

ISSTA '20, July 18�22, 2020, Virtual Event, USA Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, and Satish Chandra

Table 1: Prior work on bug localization.

Work Evidence Technique Lang. Code Scalability
of bug analysisissue

[18] Bugreport Topic
modeling

Java Yes Extracts topics from each
source �le.

[33] Stack
trace

IR Java Yes Extracts natural language
words from each source �le.

[21] Bugreport IR Java Yes Parses and analyzes each
source �le.

[25] Set of
stack
traces

Clustering
& learning
to rank

Java,
C/C++

No Queries a learned model
for each pair of crash and
source �le.

[9] Bugreport Classi�er C/C++ No Classi�er where each
source �le is a separate
class.

[30] Set of
stack
traces

Static
analysis &
heuristics

C/C++ Yes Call graph analysis, control
�ow analysis, and slicing
for each source �le.

[32] Bugreport Learning
to rank

Java Yes Extracts natural language
words from each source �le.

[27] Bugreport IR Java Yes Analyzes and segments
each source �le.

[17] Bugreport
and stack
trace

Static anal-
ysis & IR

Java Yes Analysis of control �ow and
data �ow dependencies.

[13] Bugreport Learning &
IR

Java Yes Extracts features from each
source �le.

[19] Bugreport IR Java Yes Extracts terms from each
source �le.

[12] Bugreport Multiple
classi�ers

Java Yes Analyzes all source �les;
queries learned models for
each pair of bug and source
�le.

This
work

Raw crash
traces

Learning &
IR

Lang.-
indep.

No None

that reproduce �eld crashes often are not available, and generating
such tests is a challenging problem on its own [22].

The other group of prior work is based on some evidence of the
bug, such as a stack trace produced by the bug or a natural language
bug report. Table 1 summarizes the most closely related approaches
in this group. Many existing approaches statically analyze each
�le in the code base, e.g., to analyze dependencies between code
elements or to extract features of individual �les [12, 13, 17� 19, 21,
27, 30, 32, 33]. The extracted information can then, e.g., be fed into
an information retrieval (IR) component that compares the words
in a bug report or stack trace with the tokens in code �les [13, 17,
19, 21, 27, 33]. Another direction addresses bug localization as a
learning problem, e.g., via a classi�cation model that considers each
�le in the code base as a separate class [9].

The main limitation of these previous approaches is thelack of
scalabilityto ultra-large scale, heterogeneous code bases. Analyzing
each source �le in a code base that contains millions of �les written
in multiple languages is far from trivial, even with a lightweight
analysis. None of such approaches [12, 13, 17� 19, 21, 27, 30, 32, 33]
has been applied at the scale targeted here. To the best of our knowl-
edge, the largest code base used in prior work [12] consists of 71,000
Java �les from 45 projects, i.e., two orders of magnitude smaller

than the multi-million code base considered here. The approaches
that do not require any source �le analysis su�er from their own
scalability issues. Work that considers each source �le as a separate
class for a classi�er [9] does not scale well, as we show experimen-
tally in Section 6.5. Other work, which queries a trained model for
each pair of a crash and a source �le [25], takes at least a linear
(w.r.t. the number of source �les) amount of time for each individual
crash.

Moreover, almost all existing techniques (except [25]) target stack
traces produced by a single programming language, typically Java,
building on parsers, regular expressions, and heuristics specialized
for stack traces in this language. Unfortunately, a single-language
approach is di�cult to adopt to crash traces that originate from
several programming languages, come in various di�erent formats,
and may have been processed by a diverse and evolving set of tools.

1.3 Our Work in a Nutshell
This paper presents Sca�e, the �rst bug localization technique for
crashes caused by code in ultra-large scale, heterogeneous code
bases. To scale Sca�e to code bases with multi-million �les, and
tens of thousands of crashes, we use the key insight thatthe prob-
lem of localizing bugs based on crash traces can be decomposed into
two sub-problems. Figure 1 shows a high-level overview of this de-
composition. Existing bug localization techniques (top) address the
problem through an end-to-end approach that directly compares
the crash trace to �les in the code base. Instead, Sca�e (bottom)
decomposes the problem into two sub-problems, each addressed
by a separate component.

The �rst component of Sca�e addresses the problem of identify-
ing the most relevant lines of a given crash trace. This component,
called thetrace-line model, is a machine learning model that reads
all lines of the given trace and assigns a relevance score to each line.
We implement the trace-line model using neural network-based
supervised learning, which learns from past crashes and the bug �x
locations associated with them. The second component of Sca�e
addresses the problem of matching the most relevant lines in a
crash trace with �le paths in the code base. We view this problem
as an IR problem where a line of a crash trace serves as a query
over the �le paths in the code base. Decomposing the problem is
inspired by the observation that a single line in a crash trace often
provides most hints to localize the buggy �le, while the other lines
add various kinds of noise.

Our work breaks with two assumptions made by prior work.
First, the approach does not assume that one can analyze the entire
code base. Instead, Sca�e matches speci�c lines in a crash trace
with paths in the code base, without ever analyzing the content of
the �les stored at these paths. In particular, Sca�e avoids statically
analyzing all �les in the code base. Second, the approach does not
assume a speci�c programming language, and as a result, also does
not assume a speci�c structure or format of crash traces. Instead of
building, �ne-tuning, and constantly evolving specialized parsers
for di�erent trace formats, the model automatically learns to parse
and understand a diverse set of crash traces. As a result of these
design decisions, the approach scales well to very large code bases
that contain code written in multiple languages.

Sca�le: Bug Localization on Millions of Files ISSTA '20, July 18�22, 2020, Virtual Event, USA

Figure 1: Overview of Sca�le (bottom) and end-to-end meth-
ods (top).

We evaluate our work by applying it to tens of thousands of
crash traces produced by a large-scale code base at Facebook, which
contains several millions of �les. To the best of our knowledge, our
dataset is an order of magnitude larger than previous evaluations of
crash trace-based bug localization techniques, and we apply Sca�e
to a code base that is at least two orders of magnitude larger than
in any prior work [12].

The empirical results show that decomposing the bug localiza-
tion problem into two sub-problems is key to obtaining an approach
that is e�ective for a large-scale code base. We �nd that the model
is e�ective at predicting those lines in a trace that pinpoint the
buggy �le, reaching a mean reciprocal rank of over 0.8. Using this
model, Sca�e correctly predicts a to-be-�xed �le for 40% to 60%
(50% to 70%) of all crash traces in the top-1 (top-5) predictions. The
e�ectiveness is roughly the same across di�erent programming
languages and parts of the code base.

Comparing Sca�e to prior work highlights that end-to-end clas-
si�cation [9] does not scale well to millions of �les, and that a
baseline (relying on no source analysis) end-to-end IR-based bug
localization in the vein of prior work [13, 17, 19, 21, 27, 33] is less
e�ective than our approach.

In summary, this paper makes the following contributions:
� A scalable, language-independent technique to predict from

raw crash traces which �les to change to address a crash.
� The insight that the crash-based bug localization problem

can be decomposed into two simpler problems: identifying
relevant lines in a crash trace and matching those lines with
�le paths in the code base.

� A learned model for predicting the most relevant lines of
crash traces. The model is realized as a neural network that
is trained in a supervised manner on past �x locations.

� Empirical evidence from applying our approach in a large-
scale, industrial setting, showing that Sca�e e�ectively pre-
dicts those parts of the code base to focus on to �x a crash.

2 OVERVIEW AND EXAMPLE
Before describing the details of Sca�e in Sections 3 and 4, this sec-
tion illustrates the main ideas with an example. The inputs given
to Sca�e are araw crash traceand the set of all �le paths in the
code base. By raw crash trace, we mean any kind of structured
or unstructured text that we assume to be separated into lines. In

particular, these traces may contain one or more stack traces, infor-
mation about the application and the underlying system where the
crash occurred, and information about the state of the application.
Figures 2(a) and (b) give two examples of crash traces, one pro-
duced by a crash in Java code and one produced by a crash in PHP
code. We assume a single representative crash trace as the input to
Sca�e, e.g., identi�ed by techniques for clustering and prioritizing
crashes [3� 5, 8, 10, 23]. The �le paths in the code base each are a
sequence of path segments, e.g., �proj/pkg/someFile.java�.

The �rst component of Sca�e, the trace-line model, identi�es
those lines of a crash trace that are most relevant for localizing the
bug. To obtain this component, we exploit the insight that most
large-scale projects have plenty of historical data about crashes
and about code changes that �x the root cause of crashes. Given
the �x location of a crash, we derive how relevant each line of the
crash trace is for �nding the bug location, based on whether the
line contains parts of the �le path of the bug location. Sca�e then
learns from this data a machine learning model that summarizes
individual lines of a crash trace and then predicts the relevance of
each of these lines (Section 3). Learning a model, instead of hard-
coding a set of heuristics, addresses the challenge that the format
of crash traces not only varies, but also evolves over time, as new
programming languages and APIs become popular.

For the examples in Figure 2(a) and (b), the right-most column
shows the relevance score that our neural trace-line model predicts
for each line. Intuitively, the lines with highest relevance contain the
most information about �le paths likely to be changed to �x the bug.
As illustrated by Figure 2(a), some of the most relevant lines may
be among the �rst lines of a crash trace, e.g., because it summarizes
the location where an exception was thrown. As illustrated by
Figure 2(b), the most relevant lines may also be somewhere in the
middle of a crash trace. Section 3 describes in detail the trace-line
model that predicts which of the given lines are most relevant.

The second component of Sca�e is an IR-based search for the
most likely bug locations. In IR, a query usually needs to be matched
against a possibly large set of documents. In our case, one of the
most relevant lines of the crash trace is the query, and each �le
path in the code base is a document. Speci�cally, we tokenize all �le
paths into segments, and similarly tokenize the words appearing in
the most relevant line. We then feed it as the query into an IR-based
search engine, and return the �le paths from the search results as a
ranked list of possibly buggy �les. The underlying assumption is
that the most relevant trace line often contains some path segments
of the buggy �le, even though it may not refer to the exact path.

For our running example, line 28 of the Java trace in Figure 2(a),
i.e., the most relevant line, will be tokenized into the keywords �at
dostu� dostu�browsercontroller exitdomorestu� dostu�browser-
controller java� for the query. For this query, a path �projectX/-
packageA/dostu�/DoStu�BrowserController.java� would be con-
sidered more similar to the query than a path �projectX/packageB/-
some/other/path/Logger.java�, and hence will be predicted as the
most likely path. Section 4 describes our approach for matching
trace lines with �le paths in detail.

ISSTA '20, July 18�22, 2020, Virtual Event, USA Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, and Satish Chandra

(a) Example of a Java crash trace.

Nb. Lines of raw crash trace Predicted
relevance

1 android_crash:java.lang.IllegalStateException:dostuff.DoStuffBrowserController.clearBrowserFragment 83%
2 stack_trace: java.lang.RuntimeException: Unable to destroy activity {lala/lala.LoginActivity}: ... 58%
3 at android.app.ActivityThread.performDestroyActivity(ActivityThread.java:3975) 14%
... (dozens of more lines)
23 Caused by: java.lang.IllegalStateException: Activity has been destroyed 12%
24 at android.app.FragmentManagerImpl.enqueueAction(FragmentManager.java:1376) 21%
25 at android.app.BackStackRecord.commitInternal(BackStackRecord.java:745) 12%
26 at android.app.BackStackRecord.commitAllowingStateLoss(BackStackRecord.java:725) 30%
27 at dostuff.DoStuffBrowserController.clearBrowserFragment(DoStuffBrowserController.java:775) 85%
28 at dostuff.DoStuffBrowserController.exitDoMoreStuff(DoStuffBrowserController.java:196) 100%
29 at domorestuff.DoMoreStuffRootView.exitDoMoreStuff(DoMoreStuffRootView.java:554) 87%
... (dozens of more lines)
76 app_upgrade_time: 2018-08-19T17:02:12.000+08:00 5%
77 package_name: lala 1%
78 peak_memory_heap_allocation: 92094532 1%
79 app_backgrounded: false 13%
... (dozens of more lines)

(b) Example of a PHP crash trace.

Nb. Lines of raw crash trace Predicted
relevance

1 [twi01447.08.ftw1.example.com] [Sat Sep 29 13:20:40 2018] ... 9%
2 (Events: <null_response_query_id>) 2%
3 (App Version: 189.0.0.44.93) 0%
4 (NNTraceID: FAiHFWy4Isj) 1%
5 (Sampling ID: A_oSj-oZbo1GJnM8JHKL3o_) 1%
... (dozens of other lines)
31 trace starts at [/var/abc/def/core/runtime/error.php:1021] 35%
32 #0 __log_helper(...) called at [/var/abc/def/core/runtime/error.php:1021] 47%
33 #1 log() called at [/var/abc/def/core/logger/logger.php:1162] 49%
34 #2 NNDefaultLogMessage->log() called at [/var/abc/def/core/logger/logger.php:938] 41%
35 #3 NNLogMessage->process() called at [/var/abc/def/core/logger/logger.php:804] 46%
36 #4 NNLogMessage->warn() called at [/var/abc/def/core/logger/logger.php:791] 65%
37 #5 NNLogMessage->warn_High() called at [/var/abc/def/foo/multifoo/client/base/MultifooClient.php:1518] 82%
38 #6 MultifooClient->genPopulateResults$memoize_impl() called at [/var/abc/def/foo/multifoo/client/base/MultifooClient.php:2248] 82%
39 #7 MultifooClient->genQueryID() called at [/var/abc/def/bar/query/multifoo/MultifooQuery.php:5782] 77%
40 #8 Closure$MultifooQuery::genStuff#9() called at [/var/abc/def/gates/core/Gate.php:390] 68%
... (dozens of other lines)

Figure 2: Examples of Sca�le's approach to crash-based bug localization (Note: The traces and �le paths are made-up but
modeled after real data.)

3 PREDICTING RELEVANT LINES IN RAW
TRACES

This section describes Sca�e's approach for predicting the most
relevant lines in a given crash trace, which is the �rst of two steps
for predicting the bug location. Our approach is based on the ob-
servation that for many crash traces, a single line is su�cient to
pinpoint the bug location, while dozens or even hundreds of other
lines are irrelevant. The reason may be, e.g., that the bug location
is on the stack when the crashes happens, and hence occurs in a
single frame of the stack trace, or that the crash trace mentions a
speci�c term that matches the buggy path.

Sca�e trains a machine learning model to identify the most
relevant lines in a trace. The motivation for choosing a learning-
based approach over, e.g., hard-coding heuristics for a speci�c trace
format, is two-fold. First, learning from data allows the approach
to cover traces produced by multiple programming languages and
coming in di�erent formats. Second, re-training the model with
recent data allows for easily adapting the approach to evolving
crash traces, e.g., when the popularity of programming languages
and APIs changes over time.

The model addresses the following problem:

De�nition 3.1 (Line prediction problem).Given a crash tracet =
¹l1; :::;ln º that consists ofn lines, predict a vector of relevance scores
r = ¹s1; :::;sn º, such that lines with a higher relevance score contain
more information about the bug location.

Sca�le: Bug Localization on Millions of Files ISSTA '20, July 18�22, 2020, Virtual Event, USA

Algorithm 1 Gathering training data for the trace-line model.

Input: Tracet , changesetC
Output: Vectorr of relevance scores

r new vector
for all line l in t do

s_max 0
T tokenize¹l º
for all pathp in C do

P tokenize¹pº

s
P \ T

P
if s > s_max then

s_max = s
Appends_max to r

The remainder of this section presents how to gather data to
train a supervised model that addresses the above problem (Sec-
tion 3.1) and a neural network architecture we use to learn the
model (Section 3.2).

3.1 Obtaining Historical Training Data
We address the line prediction problem through supervised ma-
chine learning, i.e., by learning from crash traces labeled with their
most relevant lines. Sca�e creates this data by gathering pairs of
crashes and �xes in the history of the code base and by computing
a projected ground truth from these pairs. Each data point in the
resulting training data is a pair¹t ; r º of a crash tracet and its corre-
sponding vectorr of relevance scores. Intuitively,r assigns those
lines the highest relevance that point to (or that at least resemble)
the paths in the code base where the crash was �xed.

To obtain crash-relevance pairs¹t ; r º, we use crash traces asso-
ciated with code changes that �x the root cause of the crash. For
gathering crash traces and their associated changesets at Facebook,
we perform an approach similar to past work that extracted such
data from open-source repositories [30]. Some crashes are associ-
ated with issues that track progress toward �xing the underlying
bug. Once �xed, the issue refers to the changeset that implements
the �x. We gather pairs of crashes and changesets by combining
both associations.

Given a pair¹t ;cº of a crash tracet and a changesetc, Sca�e ob-
tains a crash-relevance pair¹t ; r º by comparing the paths a�ected by
c with the lines in t . Algorithm 1 summarizes this step. It performs
a pairwise comparison of each line in the trace and each �le path
a�ected by the changeset, which yields the relevance of the line for
predicting the path. For this comparison, Sca�e tokenizes �le paths
into individual path segments and lines into individual words. Our
tokenization function for trace lines does not assume any particular
structure, but simply splits lines at every non-alphabetic character.
Given a tokenized �le path and a tokenized line, the algorithm com-
putes the percentage of words in the path that are also contained
in the line. Finally, the best score of a line across all �le paths in the
changeset is added to the relevance vector.

For illustration, reconsider the example in Figure 2(a) and sup-
pose that it is part of the data that the trace-line model is learned
from. Line 27 is tokenized into a sequence of words (�at�, �dostu��,
�DoStu�BrowserController�, �clearBrowserFragment�, �java�, �775�).

Suppose that the changeset consists of a single path �projectX/-
packageA/dostu�/DoStu�BrowserController.java�, which we to-
kenize into (�projectX�, �packageA�, �dostu��, �DoStu�Browser-
Controller�, �java�). Because line 27 shares 3 out of 5 words with
the path, the relevance score of the line is set to3

5 = 60%. Other
lines contain less relevant information. For example, line 24 shares
only the word �java� with the path, and therefore it is assigned a
relevance score of15 = 20%. After computing the relevance score
of each line, the algorithm concatenates all scores into a single
relevance vector.

The algorithm for gathering labeled training data is a simple
heuristic to identify the most relevant lines of a trace. In principle,
the word-based matching of lines against �le paths may not �nd the
optimal relevance scores, and alternative de�nitions of Algorithm 1
exist. In practice, we �nd the algorithm to be an e�cient way of
producing training data that yields an e�ective trace-line model.

3.2 Neural Trace-Line Model
Sca�e uses the historical data, extracted as described above, as the
ground truth for training a model that predicts the relevance of
each line in a raw crash trace. In principle, di�erent kinds of models
could be trained for this purpose. We here present a neural network-
based model, since neural networks have been proven to be highly
e�ective at reasoning about raw input data, without the need to
de�ne and extract features of the input. The model reasons about a
trace as a sequence of lines, each of which is a sequence of words. To
tokenize a trace, we use the same tokenizer in Algorithm 1, which
splits the text at every non-alphabetic character.

Figure 3 gives an overview of the neural network architecture.
The network consists of two bi-directional recurrent neural net-
works (RNNs). The �rst RNN, called theline-level RNN, summarizes
the words of each line into a continuous vector representation.
The second RNN, called thetrace-level RNN, takes a sequence of
line-level vectors and predicts the relevance score of each line. In-
tuitively, this decomposition re�ects how a human understands a
trace, i.e., by understanding individual lines and by then reasoning
about the meaning of multiple lines.

The input given to the trace-line model is a sequence of lines
t = ¹l1; :::ln º, where each line consists of a sequence of words
l i = ¹w1; :::;wk º. To ease the training, we pad lines with fewer
thank words and truncate lines that are longer thank words. By
default,k = 30, which is su�cient to represent 98.4% of all lines
in our dataset without truncating any words. Similarly, we �x the
number of lines per trace ton by padding or truncating traces
that are too short or long, respectively. By default,n = 100, which
is shorter than most raw traces in our dataset, but covers most
information relevant for localizing the buggy �le. Each word is
represented as a real-valued vector of lengthe = 100. To encode
words into vectors, we pre-train Word2vec embeddings [16] on all
traces. Intuitively, the embeddings assign a similar vector to words
that occur in similar contexts.

The input to the line-level RNN is a matrixRk � e. We use a
bi-directional RNN that summarizes the sequence of words both
in a forward and a backward pass and then concatenates both
summaries into a single vector. The line-level RNN outputs a vector
of length
 = 140, which summarizes the content of the line. Given

ISSTA '20, July 18�22, 2020, Virtual Event, USA Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, and Satish Chandra

Figure 3: Neural trace-line model.

the continuous vector representation of each line, the trace-level
RNN takes the sequence of lines encoded in a matrixRl �
 . Similar
to the line-level RNN, the trace-level RNN feeds the given sequence
through a bi-directional RNN followed by a fully-connected layer.
Finally, the model predicts the relevance vectorr 2 Rn .

All parts of the neural trace-line model are trained jointly based
on the ground truth of trace-relevance pairs. The rationale is to
allow the network to �nd a representation of words and lines that
is most suitable for addressing the line prediction problem.

4 PREDICTING PATHS FROM TRACE LINES
The second sub-problem that Sca�e addresses is to match the most
relevant line of a crash trace, as predicted by the trace-line model,
to �le paths in the code base. This sub-problem comes with two
main challenges. One challenge is to scale well to code bases that
contain millions of �les. Sca�e partially addresses this challenge
by focusing on a single line of a trace, instead of comparing each
line with the code base. Another challenge is that the most relevant
trace line may not mention the exact �le path where the bug is
located. Possible reasons are that a pre�x of a �le path may be
missing because the crash trace uses a path relative to the crash
location, or that the trace simply does not contain the �le name.

Our approach to predict �le paths from trace lines addresses
the above challenges by formulating the problem as an informa-
tion retrieval (IR) problem. While IR is usually concerned about
retrieving a few out of many documents for a given query, we aim
at retrieving a few out of many �le paths for a given trace line. The
second part of Sca�e addresses the following problem:

De�nition 4.1 (Path prediction problem).Given a trace linel and
a setP of �le paths in a code base, predict a ranked list¹p1;p2; :::º
of �le paths, with pi 2 P, such thatl is most likely to refer to the
highest ranked paths.

Inspired by IR techniques that retrieve documents for a given
natural language query, Sca�e represents both the trace line (i.e.,
query) and each �le path in the code base (i.e., document) as a set of
words. File paths are tokenized into words by path segments, and
in a similar manner, the trace line is tokenized by punctuation after
stripping line numbers. An IR-based search engine is then run on

the �le paths to index the words appearing in them. Sca�e allows
this search engine to be generic � in our evaluation (Section 6),
we used a search tool based on vector space embedding, similar
to [20]. However, any o�-the-shelf search tool could be plugged into
the approach. For instance, we also experimented with the Okapi
BM25 function, which is common in elastic search, and found the
di�erence between the two to be negligible.

When indexing the corpus of �le paths, most modern search
engines down-weight words that are prevalent across the cor-
pus, and up-weight words that are more distinctive. For the ex-
ample in Figure 2(a), the query consist of the words �at dostu�
DoStu�BrowserController exitDoMoreStu� DoStu�BrowserCon-
troller java�. Because �java� is a very common word, it gets down-
weighted, while �DoStu�BrowserController� is more distinctive
and hence up-weighted. The IR component used in Sca�e weights
words based on their tf-idf weight.

Once the search engine has indexed the corpus of �le paths,
Sca�e queries it with words from the most relevant lines predicted
by the trace-line model. In the end, the result of path prediction is
a list of pathsp1;p2; ::: returned from the search query, ranked by
IR-based similarity of the paths to the query.

An alternative to our IR-based way of addressing the path pre-
diction problem would be to simply return the best-matching �le
based on the number of overlapping tokens. However, this alterna-
tive approach would be misled by commonly occurring terms, such
as underlying framework and library names. An IR-based search
overcomes this problem (and a few others) by weighting terms
up/down depending on their distinctiveness in the corpus.

5 IMPLEMENTATION
We implement the trace-line model in PyTorch using gensim's
implementation of Word2vec. The Word2vec embedding layer con-
tains 100 dimensions, the line-level RNN consists of two hidden
layers with 70 GRU cells each, and the trace-level RNN has two
layers of 250 GRU cells each. We use the sigmoid function for ac-
tivation and mean-squared error as the loss function. The model
is trained for 50 epochs using the Adam optimizer with a learning
rate of 0.001. The path prediction part of Sca�e is implemented
using the standard tf-idf vectorizer in scikit-learn.

Sca�le: Bug Localization on Millions of Files ISSTA '20, July 18�22, 2020, Virtual Event, USA

Figure 4: Number of crash traces in our dataset.

6 EVALUATION
We evaluate Sca�e with tens of thousands of crash traces and a
code base consisting of millions of �les in multiple programming
languages. We address the following research questions:

� RQ 1: How e�ective is Sca�e at predicting bug locations?
� RQ 2: Given a raw trace, how e�ective is the learned trace-

line model at identifying the most relevant lines?
� RQ 3: Why does Sca�e (sometimes not) work?
� RQ 4: How does Sca�e compare to existing approaches and

to simpler baseline approaches?
� RQ 5: Is Sca�e e�cient enough to scale to large code bases?

6.1 Experimental Setup
Our evaluation is based on tens of thousands of �eld crashes and
their corresponding bug �xes. The data has been selected among
crashes at Facebook over several years and comprises crashes from
a diverse set of products. Field crashes observed in these products
are automatically clustered to avoid inspecting the same problem
multiple times. We use at most one representative of each such
cluster, i.e., crashes in our dataset are unique. The crashes consist
of Android crashes, such as the example in Figure 2(a), iOS crashes,
and crashes in PHP code, such as the example in Figure 2(b), which
contribute 46.8%, 38.7%, and 14.5% to the dataset, respectively. For
each crash, we have a raw crash trace, which we feed into Sca�e
without any preprocessing or parsing, except splitting the trace into
lines. To establish ground truth data for bug localization, we asso-
ciate crashes with bug �xing commits based on an issue tracker-like
system at Facebook. Each bug �x changes one or more �les, which
we consider to be the bug location to predict. The minimum, mean,
and maximum number of �les changed in a bug-�xing commit is 1,
1.8, and 512, respectively.

Compared to similar setups in the literature [9, 12, 13, 18, 19, 21,
25, 31� 33], there are two important di�erences: First, our dataset
contains data from multiple projects and programming languages,
which results in a more diverse set of crash traces. Second, our
code base contains millions of �les, i.e., it is at least two orders of
magnitude larger than the largest previously considered code base.

To evaluate Sca�e in a realistic setup, we simulate using the
approach at di�erent points in time. Figure 4 shows the cumulative

number of crash traces used in the evaluation. At each point in time
t shown on the horizontal axis, we simulate using Sca�e by training
its model based on all data available att and by predicting the bug
locations for all crash traces that occur betweent andt + 50days.
For the prediction, we gather the set of all �les in the code base at
t + 50daysand let the path prediction component of Sca�e predict
which of these �les need to be �xed. This setup is realistic, as it
uses only past data to predict future bug locations. A possible, but
less realistic alternative would be to randomly split all available
data into a training and a validation set.

We evaluate Sca�e on two variants of the crash traces in our
dataset: raw traces and stack traces.Raw tracescontain the crash
stack, additional telemetry, and information added by other tools
that handle crashes at Facebook. The examples in Figure 2 are raw
traces. Particularly, raw traces contain the output of a heuristic logic
that is used to aggregate crash reports into groups. This output is
then used by engineers to identify the �les of the codebase relevant
to the crash, and so it serves as ade factobug localization method.
The goal here is to evaluate whether in an industrial setting with
additional information as in raw traces, Sca�e can still add value.
We compare Sca�e with the heuristic logic alone in Section 6.5.
Stack tracescontain only the crash stack that we extracted from
the raw traces, and are stripped of any other information. In Fig-
ure 2(a) and (b), the extracted stack traces begin at lines 2 and 31,
respectively. The goal here is to evaluate Sca�e in a more �pure�
setting where only crash stacks are available [25, 30, 33].

6.2 RQ 1: End-to-End E�ectiveness
To measure how e�ective Sca�e is at predicting bug locations, we
ask the approach to predict a ranked list of likely buggy �les and
then compare these �les to those that have actually been changed by
the developers. If the top predicted �les include any of the actually
changed �les, we consider the prediction to be correct. The rationale
is that pinpointing at least one of the �les to modify is helpful in
practice to identify which developer should handle a crash and
which part of the code base the developer should focus on.

Figure 5 shows the percentage of correct predictions among the
top-n predicted �les. The plots on the left and right are for top-1
and top-5 predictions, respectively. The plots at the top and bottom
are for raw traces and stack traces, respectively. The results vary
over time because at each time step, a di�erent model gets trained
and because the crashes used for the evaluation vary from one
50-day period to another. The gray lines show baselines that we
discuss in more detail in Section 6.5.

Overall, Sca�e is e�ective at selecting the bug location from
millions of possible �les. The model generally predicts between 40%
and 60% of all bug locations as the top-1 prediction, and between
50% and 70% in the top-5 predictions. The results change over time
for mostly two reasons. First, the composition of crashes in our
dataset changes over time, as illustrated in Figure 4. The relative
percentage of Android crashes decreases, while the percentage of
crashes in iOS and PHP increases. In particular, it is only at some
point in 2016 that the dataset starts to contain PHP crashes.1 Second,
for stack traces the model seems to require a certain number of
training examples to unfold its full power. As evidenced by the steep
1The composition of crashes is not representative for software or crashes at Facebook,
but merely a result of our data gathering process.

ISSTA '20, July 18�22, 2020, Virtual Event, USA Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, and Satish Chandra

(a) Raw traces, top-1 predictions. (b) Raw traces, top-5 predictions.

(c) Stack traces, top-1 predictions. (d) Stack traces, top-5 predictions.

Figure 5: Top-n accuracy of predicted bug locations. The green line is the Sca�le approach.

increase in accuracy toward the beginning of 2016 in Figure 5(c)
and (d), the model is much more e�ective once it has seen enough
data.

6.3 RQ 2: E�ectiveness of Trace-Line Model
To better understand Sca�e, we evaluate how e�ective the trace-
line model is at predicting the most relevant lines in a crash trace.
We use two metrics: Hit rate at n (hit@n) and mean reciprocal rank
(MRR). Both metrics are computed w.r.t. the most relevant lines,
as de�ned in the ground truth computed with Algorithm 1. The
hit@n metric is the percentage of traces where the most-relevant
line is among the top-n lines predicted by the model. For example,
if the most relevant line is predicted as the second-most relevant
line by the model, then this counts as a hit@3 but not as a hit@1.
The MRR metric is computed by taking the predicted rank of the
most relevant line, computing its reciprocal, and then averaging
across all traces. For example, suppose there are only two traces
and that the most relevant line of trace 1 and trace 2 is predicted at
rank 1 and 4, respectively, then the MRR is1

2 � ¹ 1
1 + 1

4º = 0:625.
Figure 6 shows the results for the hit@n metric. Again, the green

lines are for the Sca�e approach; all other lines are baselines dis-
cussed in Section 6.5. Solid lines show hit@1 results, dotted lines
show the corresponding hit@5 results. The results roughly follow

the same patterns as the end-to-end results in Figure 5, con�rming
that the e�ectiveness of the trace-line model is key to the overall
success of Sca�e. Notably, the model achieves a hit@5 rate above
80% for most points in time.

Figure 7 shows the results for the MRR metric. Again, we �nd
the trace-line models to be highly e�ective, reaching MRR values
of over 0.8 for raw traces and close to 0.8 for stack traces.

6.4 RQ 3: Why Does Sca�le Work?
To better understand why the approach often is, and sometimes is
not, able to identify the �les relevant for �xing a bug, we manually
inspect various traces and their corresponding bug locations. This
inspection leads to the following observations.

Files mentioned in traces.Perhaps unsurprisingly, Sca�e is ef-
fective when the �le that needs to be �xed is mentioned in the
crash trace, e.g., because one of the functions in the �le appears
in a stack trace mentioned in the trace. In contrast, the approach
cannot predict the correct bug location when the buggy �le is not
mentioned anywhere in the trace. The latter case may happen when
the root cause and the manifestation of a bug are in di�erent �les.

Partial information about �les. Even incomplete mentions of a �le
may be su�cient to enable Sca�e to localize it. For example, some
crash traces mention the relevant �le name, but not the complete

Sca�le: Bug Localization on Millions of Files ISSTA '20, July 18�22, 2020, Virtual Event, USA

(a) Raw traces.

(b) Stack traces.

Figure 6: Hit rate within the top-n predictions of most rele-
vant lines. The green lines are for the Sca�le approach.

path of the �le. The reason may be that �le paths on deployment
devices di�er from those in the code base or that the crash trace
format does not include complete paths. Sca�e's IR-based matching
of lines and �le paths exploits the fact that some high-entropy
segments of a path, e.g., only the �le name, often are su�cient to
uniquely identify a path. In contrast, the approach sometimes fails
to uniquely identify the correct �le because multiple �les with the
same �le name exist in di�erent directories of the code base.

Understanding the structure of traces. The neural trace-line model
has some �understanding� of the structure of raw crash traces. As
illustrated by the examples in Figure 2, it identi�es stack traces
within the raw traces by giving lines that are part of stack trace
generally higher relevance scores. Moreover, the model learns to
identify the relevant lines within a stack trace by discarding stack
frames unlikely to point to a bug location. For example, the model
gives a relatively low score to those lines in Figure 2(a) that start
with at android.app , because they refer to methods in the Android
framework, i.e., code unlikely to cause a bug in the application. The
model also learns to handle nested stack traces, such as the one
in Figure 2(a), where one exception causes another. For such stack

(a) Raw traces.

(b) Stack traces.

Figure 7: MRR of the trace-line model and a heuristic base-
line. The green lines are for the Sca�le approach.

traces, the model learns to search the most relevant lines in the
inner-most exception, as this exception is the cause of the crash.

Instead of learning to understand raw traces and the stack traces
contained in them, one could manually implement heuristic algo-
rithms for parsing di�erent trace formats. One of our baselines
(Section 6.5) are a set of such heuristics. The main bene�t of a
learned model is that it can be obtained automatically and that it
can be easily re-trained when trace formats evolve.

6.5 RQ 4: Comparison with Prior Work and
Baselines

6.5.1 End-to-End Classification.Sca�e breaks down bug localiza-
tion into two phases: predicting the most relevant lines in a crash
trace and retrieving the most relevant �les based on these lines.
Prior work, e.g., by Kim et al. [9], proposes to directly predict the
buggy �le from a bug report or crash trace. The basic idea is to
extract features of the crash trace, such as words appearing in the
report, and train a classi�er on past �xes to predict a set of relevant
�les to �x. To improve the precision of their model, they split the
process into two phases: one that predicts if a crash report contains
useful information, and one that actually predicts the �le.

	Abstract
	1 Introduction
	1.1 Crash-Based Bug Localization at Scale
	1.2 Scalability Problems of Prior Work
	1.3 Our Work in a Nutshell

	2 Overview and Example
	3 Predicting Relevant Lines in Raw Traces
	3.1 Obtaining Historical Training Data
	3.2 Neural Trace-Line Model

	4 Predicting Paths from Trace Lines
	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ 1: End-to-End Effectiveness
	6.3 RQ 2: Effectiveness of Trace-Line Model
	6.4 RQ 3: Why Does Scaffle Work?
	6.5 RQ 4: Comparison with Prior Work and Baselines
	6.6 RQ 5: Efficiency

	7 Discussion
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

