
Scaffle: Bug Localization on Millions of Files
Michael Pradel∗

University of Stuttgart
Germany

Vijayaraghavan Murali
Facebook

USA

Rebecca Qian
Facebook

USA

Mateusz Machalica
Facebook

USA

Erik Meijer
Facebook

USA

Satish Chandra
Facebook

USA

ABSTRACT
Despite all efforts to avoid bugs, software sometimes crashes in the
field, leaving crash traces as the only information to localize the
problem. Prior approaches on localizing where to fix the root cause
of a crash do not scale well to ultra-large scale, heterogeneous code
bases that contain millions of code files written in multiple program-
ming languages. This paper presents Scaffle, the first scalable bug
localization technique, which is based on the key insight to divide
the problem into two easier sub-problems. First, a trained machine
learning model predicts which lines of a raw crash trace are most
informative for localizing the bug. Then, these lines are fed to an
information retrieval-based search engine to retrieve file paths in
the code base, predicting which file to change to address the crash.
The approach does not make any assumptions about the format of
a crash trace or the language that produces it. We evaluate Scaffle
with tens of thousands of crash traces produced by a large-scale
industrial code base at Facebook that contains millions of possible
bug locations and that powers tools used by billions of people. The
results show that the approach correctly predicts the file to fix for
40% to 60% (50% to 70%) of all crash traces within the top-1 (top-
5) predictions. Moreover, Scaffle improves over several baseline
approaches, including an existing classification-based approach, a
scalable variant of existing information retrieval-based approaches,
and a set of hand-tuned, industrially deployed heuristics.
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1 INTRODUCTION
When software crashes in the field, often the only information
available to developers are crash traces. Such traces come in various
forms and may include various kinds of hints about the code that
causes the crash, including stack traces, error messages, informa-
tion about the program state just before the crash, and additional
information added by tools that process crash traces. To prevent
future instances of the same crash, developers must identify where
exactly in the code base to fix the underlying problem – a problem
referred to as bug localization.

1.1 Crash-Based Bug Localization at Scale
We focus on localizing bugs at the file-level within ultra-large scale,
heterogeneous code bases, i.e., code bases that contain multiple
millions of code files written in multiple programming languages.
Addressing the file-level bug localization problem at scale can help
with the process of handling field crashes in multiple ways. By pin-
pointing which files are most relevant for a crash, bug localization
helps find the right team or person to address the crash. Finding
the right developer for a given crash is non-trivial in a large organi-
zation, and associating crashes to the wrong developers consumes
valuable time and resources. Once the right developer has been
identified, knowing the buggy file helps the developer to focus on
where to implement a fix of a crash. Moreover, identifying the file
to fix can serve as a first step in automated program repair [14].

Unfortunately, manual bug localization is difficult and time-
consuming. One reason is that crash traces contain lots of noise not
directly related to the bug location. Another reason is that, for very
large-scale code bases, there may be millions of code files to choose
from. The problem is further compounded by the fact that widely
deployed software may lead to such a volume of crashes per day
that is practically impossible to process without appropriate tools.

1.2 Scalability Problems of Prior Work
Prior work has proposed several automatic bug localization tech-
niques, which are extremely inspiring, but not easily applicable
to ultra-large scale, heterogeneous code bases, such as those that
motivate this work. Broadly speaking, one group of prior work is
based on traces of correct and buggy executions [1, 6, 15]. These
approaches assume that a test suite is available where some tests
pass while other tests fail due to the bug. Unfortunately, failing tests
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Table 1: Prior work on bug localization.

Work Evidence Technique Lang. Code Scalability
of bug analysis issue

[18] Bug report Topic
modeling

Java Yes Extracts topics from each
source file.

[33] Stack
trace

IR Java Yes Extracts natural language
words from each source file.

[21] Bug report IR Java Yes Parses and analyzes each
source file.

[25] Set of
stack
traces

Clustering
& learning
to rank

Java,
C/C++

No Queries a learned model
for each pair of crash and
source file.

[9] Bug report Classifier C/C++ No Classifier where each
source file is a separate
class.

[30] Set of
stack
traces

Static
analysis &
heuristics

C/C++ Yes Call graph analysis, control
flow analysis, and slicing
for each source file.

[32] Bug report Learning
to rank

Java Yes Extracts natural language
words from each source file.

[27] Bug report IR Java Yes Analyzes and segments
each source file.

[17] Bug report
and stack
trace

Static anal-
ysis & IR

Java Yes Analysis of control flow and
data flow dependencies.

[13] Bug report Learning &
IR

Java Yes Extracts features from each
source file.

[19] Bug report IR Java Yes Extracts terms from each
source file.

[12] Bug report Multiple
classifiers

Java Yes Analyzes all source files;
queries learned models for
each pair of bug and source
file.

This
work

Raw crash
traces

Learning &
IR

Lang.-
indep.

No None

that reproduce field crashes often are not available, and generating
such tests is a challenging problem on its own [22].

The other group of prior work is based on some evidence of the
bug, such as a stack trace produced by the bug or a natural language
bug report. Table 1 summarizes the most closely related approaches
in this group. Many existing approaches statically analyze each
file in the code base, e.g., to analyze dependencies between code
elements or to extract features of individual files [12, 13, 17–19, 21,
27, 30, 32, 33]. The extracted information can then, e.g., be fed into
an information retrieval (IR) component that compares the words
in a bug report or stack trace with the tokens in code files [13, 17,
19, 21, 27, 33]. Another direction addresses bug localization as a
learning problem, e.g., via a classification model that considers each
file in the code base as a separate class [9].

The main limitation of these previous approaches is the lack of
scalability to ultra-large scale, heterogeneous code bases. Analyzing
each source file in a code base that contains millions of files written
in multiple languages is far from trivial, even with a lightweight
analysis. None of such approaches [12, 13, 17–19, 21, 27, 30, 32, 33]
has been applied at the scale targeted here. To the best of our knowl-
edge, the largest code base used in prior work [12] consists of 71,000
Java files from 45 projects, i.e., two orders of magnitude smaller

than the multi-million code base considered here. The approaches
that do not require any source file analysis suffer from their own
scalability issues. Work that considers each source file as a separate
class for a classifier [9] does not scale well, as we show experimen-
tally in Section 6.5. Other work, which queries a trained model for
each pair of a crash and a source file [25], takes at least a linear
(w.r.t. the number of source files) amount of time for each individual
crash.

Moreover, almost all existing techniques (except [25]) target stack
traces produced by a single programming language, typically Java,
building on parsers, regular expressions, and heuristics specialized
for stack traces in this language. Unfortunately, a single-language
approach is difficult to adopt to crash traces that originate from
several programming languages, come in various different formats,
and may have been processed by a diverse and evolving set of tools.

1.3 Our Work in a Nutshell
This paper presents Scaffle, the first bug localization technique for
crashes caused by code in ultra-large scale, heterogeneous code
bases. To scale Scaffle to code bases with multi-million files, and
tens of thousands of crashes, we use the key insight that the prob-
lem of localizing bugs based on crash traces can be decomposed into
two sub-problems. Figure 1 shows a high-level overview of this de-
composition. Existing bug localization techniques (top) address the
problem through an end-to-end approach that directly compares
the crash trace to files in the code base. Instead, Scaffle (bottom)
decomposes the problem into two sub-problems, each addressed
by a separate component.

The first component of Scaffle addresses the problem of identify-
ing the most relevant lines of a given crash trace. This component,
called the trace-line model, is a machine learning model that reads
all lines of the given trace and assigns a relevance score to each line.
We implement the trace-line model using neural network-based
supervised learning, which learns from past crashes and the bug fix
locations associated with them. The second component of Scaffle
addresses the problem of matching the most relevant lines in a
crash trace with file paths in the code base. We view this problem
as an IR problem where a line of a crash trace serves as a query
over the file paths in the code base. Decomposing the problem is
inspired by the observation that a single line in a crash trace often
provides most hints to localize the buggy file, while the other lines
add various kinds of noise.

Our work breaks with two assumptions made by prior work.
First, the approach does not assume that one can analyze the entire
code base. Instead, Scaffle matches specific lines in a crash trace
with paths in the code base, without ever analyzing the content of
the files stored at these paths. In particular, Scaffle avoids statically
analyzing all files in the code base. Second, the approach does not
assume a specific programming language, and as a result, also does
not assume a specific structure or format of crash traces. Instead of
building, fine-tuning, and constantly evolving specialized parsers
for different trace formats, the model automatically learns to parse
and understand a diverse set of crash traces. As a result of these
design decisions, the approach scales well to very large code bases
that contain code written in multiple languages.
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Figure 1: Overview of Scaffle (bottom) and end-to-endmeth-
ods (top).

We evaluate our work by applying it to tens of thousands of
crash traces produced by a large-scale code base at Facebook, which
contains several millions of files. To the best of our knowledge, our
dataset is an order of magnitude larger than previous evaluations of
crash trace-based bug localization techniques, and we apply Scaffle
to a code base that is at least two orders of magnitude larger than
in any prior work [12].

The empirical results show that decomposing the bug localiza-
tion problem into two sub-problems is key to obtaining an approach
that is effective for a large-scale code base. We find that the model
is effective at predicting those lines in a trace that pinpoint the
buggy file, reaching a mean reciprocal rank of over 0.8. Using this
model, Scaffle correctly predicts a to-be-fixed file for 40% to 60%
(50% to 70%) of all crash traces in the top-1 (top-5) predictions. The
effectiveness is roughly the same across different programming
languages and parts of the code base.

Comparing Scaffle to prior work highlights that end-to-end clas-
sification [9] does not scale well to millions of files, and that a
baseline (relying on no source analysis) end-to-end IR-based bug
localization in the vein of prior work [13, 17, 19, 21, 27, 33] is less
effective than our approach.

In summary, this paper makes the following contributions:
• A scalable, language-independent technique to predict from
raw crash traces which files to change to address a crash.
• The insight that the crash-based bug localization problem
can be decomposed into two simpler problems: identifying
relevant lines in a crash trace and matching those lines with
file paths in the code base.
• A learned model for predicting the most relevant lines of
crash traces. The model is realized as a neural network that
is trained in a supervised manner on past fix locations.
• Empirical evidence from applying our approach in a large-
scale, industrial setting, showing that Scaffle effectively pre-
dicts those parts of the code base to focus on to fix a crash.

2 OVERVIEW AND EXAMPLE
Before describing the details of Scaffle in Sections 3 and 4, this sec-
tion illustrates the main ideas with an example. The inputs given
to Scaffle are a raw crash trace and the set of all file paths in the
code base. By raw crash trace, we mean any kind of structured
or unstructured text that we assume to be separated into lines. In

particular, these traces may contain one or more stack traces, infor-
mation about the application and the underlying system where the
crash occurred, and information about the state of the application.
Figures 2(a) and (b) give two examples of crash traces, one pro-
duced by a crash in Java code and one produced by a crash in PHP
code. We assume a single representative crash trace as the input to
Scaffle, e.g., identified by techniques for clustering and prioritizing
crashes [3–5, 8, 10, 23]. The file paths in the code base each are a
sequence of path segments, e.g., “proj/pkg/someFile.java”.

The first component of Scaffle, the trace-line model, identifies
those lines of a crash trace that are most relevant for localizing the
bug. To obtain this component, we exploit the insight that most
large-scale projects have plenty of historical data about crashes
and about code changes that fix the root cause of crashes. Given
the fix location of a crash, we derive how relevant each line of the
crash trace is for finding the bug location, based on whether the
line contains parts of the file path of the bug location. Scaffle then
learns from this data a machine learning model that summarizes
individual lines of a crash trace and then predicts the relevance of
each of these lines (Section 3). Learning a model, instead of hard-
coding a set of heuristics, addresses the challenge that the format
of crash traces not only varies, but also evolves over time, as new
programming languages and APIs become popular.

For the examples in Figure 2(a) and (b), the right-most column
shows the relevance score that our neural trace-line model predicts
for each line. Intuitively, the lines with highest relevance contain the
most information about file paths likely to be changed to fix the bug.
As illustrated by Figure 2(a), some of the most relevant lines may
be among the first lines of a crash trace, e.g., because it summarizes
the location where an exception was thrown. As illustrated by
Figure 2(b), the most relevant lines may also be somewhere in the
middle of a crash trace. Section 3 describes in detail the trace-line
model that predicts which of the given lines are most relevant.

The second component of Scaffle is an IR-based search for the
most likely bug locations. In IR, a query usually needs to be matched
against a possibly large set of documents. In our case, one of the
most relevant lines of the crash trace is the query, and each file
path in the code base is a document. Specifically, we tokenize all file
paths into segments, and similarly tokenize the words appearing in
the most relevant line. We then feed it as the query into an IR-based
search engine, and return the file paths from the search results as a
ranked list of possibly buggy files. The underlying assumption is
that the most relevant trace line often contains some path segments
of the buggy file, even though it may not refer to the exact path.

For our running example, line 28 of the Java trace in Figure 2(a),
i.e., the most relevant line, will be tokenized into the keywords “at
dostuff dostuffbrowsercontroller exitdomorestuff dostuffbrowser-
controller java” for the query. For this query, a path “projectX/-
packageA/dostuff/DoStuffBrowserController.java” would be con-
sidered more similar to the query than a path “projectX/packageB/-
some/other/path/Logger.java”, and hence will be predicted as the
most likely path. Section 4 describes our approach for matching
trace lines with file paths in detail.
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(a) Example of a Java crash trace.
Nb. Lines of raw crash trace Predicted

relevance
1 android_crash:java.lang.IllegalStateException:dostuff.DoStuffBrowserController.clearBrowserFragment 83%
2 stack_trace: java.lang.RuntimeException: Unable to destroy activity {lala/lala.LoginActivity}: ... 58%
3 at android.app.ActivityThread.performDestroyActivity(ActivityThread.java:3975) 14%
... (dozens of more lines)
23 Caused by: java.lang.IllegalStateException: Activity has been destroyed 12%
24 at android.app.FragmentManagerImpl.enqueueAction(FragmentManager.java:1376) 21%
25 at android.app.BackStackRecord.commitInternal(BackStackRecord.java:745) 12%
26 at android.app.BackStackRecord.commitAllowingStateLoss(BackStackRecord.java:725) 30%
27 at dostuff.DoStuffBrowserController.clearBrowserFragment(DoStuffBrowserController.java:775) 85%
28 at dostuff.DoStuffBrowserController.exitDoMoreStuff(DoStuffBrowserController.java:196) 100%
29 at domorestuff.DoMoreStuffRootView.exitDoMoreStuff(DoMoreStuffRootView.java:554) 87%
... (dozens of more lines)
76 app_upgrade_time: 2018-08-19T17:02:12.000+08:00 5%
77 package_name: lala 1%
78 peak_memory_heap_allocation: 92094532 1%
79 app_backgrounded: false 13%
... (dozens of more lines)

(b) Example of a PHP crash trace.
Nb. Lines of raw crash trace Predicted

relevance
1 [twi01447.08.ftw1.example.com] [Sat Sep 29 13:20:40 2018] ... 9%
2 (Events: <null_response_query_id>) 2%
3 (App Version: 189.0.0.44.93) 0%
4 (NNTraceID: FAiHFWy4Isj) 1%
5 (Sampling ID: A_oSj-oZbo1GJnM8JHKL3o_) 1%
... (dozens of other lines)
31 trace starts at [/var/abc/def/core/runtime/error.php:1021] 35%
32 #0 __log_helper(...) called at [/var/abc/def/core/runtime/error.php:1021] 47%
33 #1 log() called at [/var/abc/def/core/logger/logger.php:1162] 49%
34 #2 NNDefaultLogMessage->log() called at [/var/abc/def/core/logger/logger.php:938] 41%
35 #3 NNLogMessage->process() called at [/var/abc/def/core/logger/logger.php:804] 46%
36 #4 NNLogMessage->warn() called at [/var/abc/def/core/logger/logger.php:791] 65%
37 #5 NNLogMessage->warn_High() called at [/var/abc/def/foo/multifoo/client/base/MultifooClient.php:1518] 82%
38 #6 MultifooClient->genPopulateResults$memoize_impl() called at [/var/abc/def/foo/multifoo/client/base/MultifooClient.php:2248] 82%
39 #7 MultifooClient->genQueryID() called at [/var/abc/def/bar/query/multifoo/MultifooQuery.php:5782] 77%
40 #8 Closure$MultifooQuery::genStuff#9() called at [/var/abc/def/gates/core/Gate.php:390] 68%
... (dozens of other lines)

Figure 2: Examples of Scaffle’s approach to crash-based bug localization (Note: The traces and file paths are made-up but
modeled after real data.)

3 PREDICTING RELEVANT LINES IN RAW
TRACES

This section describes Scaffle’s approach for predicting the most
relevant lines in a given crash trace, which is the first of two steps
for predicting the bug location. Our approach is based on the ob-
servation that for many crash traces, a single line is sufficient to
pinpoint the bug location, while dozens or even hundreds of other
lines are irrelevant. The reason may be, e.g., that the bug location
is on the stack when the crashes happens, and hence occurs in a
single frame of the stack trace, or that the crash trace mentions a
specific term that matches the buggy path.

Scaffle trains a machine learning model to identify the most
relevant lines in a trace. The motivation for choosing a learning-
based approach over, e.g., hard-coding heuristics for a specific trace
format, is two-fold. First, learning from data allows the approach
to cover traces produced by multiple programming languages and
coming in different formats. Second, re-training the model with
recent data allows for easily adapting the approach to evolving
crash traces, e.g., when the popularity of programming languages
and APIs changes over time.

The model addresses the following problem:

Definition 3.1 (Line prediction problem). Given a crash trace t =
(l1, ..., ln ) that consists ofn lines, predict a vector of relevance scores
r = (s1, ..., sn ), such that lines with a higher relevance score contain
more information about the bug location.



Scaffle: Bug Localization on Millions of Files ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Algorithm 1 Gathering training data for the trace-line model.
Input: Trace t , changeset C
Output: Vector r of relevance scores
r ← new vector
for all line l in t do
s_max ← 0
T ← tokenize(l)
for all path p in C do
P ← tokenize(p)

s ←
P ∩T

P
if s > s_max then
s_max = s

Append s_max to r

The remainder of this section presents how to gather data to
train a supervised model that addresses the above problem (Sec-
tion 3.1) and a neural network architecture we use to learn the
model (Section 3.2).

3.1 Obtaining Historical Training Data
We address the line prediction problem through supervised ma-
chine learning, i.e., by learning from crash traces labeled with their
most relevant lines. Scaffle creates this data by gathering pairs of
crashes and fixes in the history of the code base and by computing
a projected ground truth from these pairs. Each data point in the
resulting training data is a pair (t , r ) of a crash trace t and its corre-
sponding vector r of relevance scores. Intuitively, r assigns those
lines the highest relevance that point to (or that at least resemble)
the paths in the code base where the crash was fixed.

To obtain crash-relevance pairs (t , r ), we use crash traces asso-
ciated with code changes that fix the root cause of the crash. For
gathering crash traces and their associated changesets at Facebook,
we perform an approach similar to past work that extracted such
data from open-source repositories [30]. Some crashes are associ-
ated with issues that track progress toward fixing the underlying
bug. Once fixed, the issue refers to the changeset that implements
the fix. We gather pairs of crashes and changesets by combining
both associations.

Given a pair (t , c) of a crash trace t and a changeset c , Scaffle ob-
tains a crash-relevance pair (t , r ) by comparing the paths affected by
c with the lines in t . Algorithm 1 summarizes this step. It performs
a pairwise comparison of each line in the trace and each file path
affected by the changeset, which yields the relevance of the line for
predicting the path. For this comparison, Scaffle tokenizes file paths
into individual path segments and lines into individual words. Our
tokenization function for trace lines does not assume any particular
structure, but simply splits lines at every non-alphabetic character.
Given a tokenized file path and a tokenized line, the algorithm com-
putes the percentage of words in the path that are also contained
in the line. Finally, the best score of a line across all file paths in the
changeset is added to the relevance vector.

For illustration, reconsider the example in Figure 2(a) and sup-
pose that it is part of the data that the trace-line model is learned
from. Line 27 is tokenized into a sequence of words (“at”, “dostuff”,
“DoStuffBrowserController”, “clearBrowserFragment”, “java”, “775”).

Suppose that the changeset consists of a single path “projectX/-
packageA/dostuff/DoStuffBrowserController.java”, which we to-
kenize into (“projectX”, “packageA”, “dostuff”, “DoStuffBrowser-
Controller”, “java”). Because line 27 shares 3 out of 5 words with
the path, the relevance score of the line is set to 3

5 = 60%. Other
lines contain less relevant information. For example, line 24 shares
only the word “java” with the path, and therefore it is assigned a
relevance score of 1

5 = 20%. After computing the relevance score
of each line, the algorithm concatenates all scores into a single
relevance vector.

The algorithm for gathering labeled training data is a simple
heuristic to identify the most relevant lines of a trace. In principle,
the word-based matching of lines against file paths may not find the
optimal relevance scores, and alternative definitions of Algorithm 1
exist. In practice, we find the algorithm to be an efficient way of
producing training data that yields an effective trace-line model.

3.2 Neural Trace-Line Model
Scaffle uses the historical data, extracted as described above, as the
ground truth for training a model that predicts the relevance of
each line in a raw crash trace. In principle, different kinds of models
could be trained for this purpose. We here present a neural network-
based model, since neural networks have been proven to be highly
effective at reasoning about raw input data, without the need to
define and extract features of the input. The model reasons about a
trace as a sequence of lines, each of which is a sequence of words. To
tokenize a trace, we use the same tokenizer in Algorithm 1, which
splits the text at every non-alphabetic character.

Figure 3 gives an overview of the neural network architecture.
The network consists of two bi-directional recurrent neural net-
works (RNNs). The first RNN, called the line-level RNN, summarizes
the words of each line into a continuous vector representation.
The second RNN, called the trace-level RNN, takes a sequence of
line-level vectors and predicts the relevance score of each line. In-
tuitively, this decomposition reflects how a human understands a
trace, i.e., by understanding individual lines and by then reasoning
about the meaning of multiple lines.

The input given to the trace-line model is a sequence of lines
t = (l1, ...ln ), where each line consists of a sequence of words
li = (w1, ...,wk ). To ease the training, we pad lines with fewer
than k words and truncate lines that are longer than k words. By
default, k = 30, which is sufficient to represent 98.4% of all lines
in our dataset without truncating any words. Similarly, we fix the
number of lines per trace to n by padding or truncating traces
that are too short or long, respectively. By default, n = 100, which
is shorter than most raw traces in our dataset, but covers most
information relevant for localizing the buggy file. Each word is
represented as a real-valued vector of length e = 100. To encode
words into vectors, we pre-train Word2vec embeddings [16] on all
traces. Intuitively, the embeddings assign a similar vector to words
that occur in similar contexts.

The input to the line-level RNN is a matrix Rk×e . We use a
bi-directional RNN that summarizes the sequence of words both
in a forward and a backward pass and then concatenates both
summaries into a single vector. The line-level RNN outputs a vector
of length γ = 140, which summarizes the content of the line. Given
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Figure 3: Neural trace-line model.

the continuous vector representation of each line, the trace-level
RNN takes the sequence of lines encoded in a matrix Rl×γ . Similar
to the line-level RNN, the trace-level RNN feeds the given sequence
through a bi-directional RNN followed by a fully-connected layer.
Finally, the model predicts the relevance vector r ∈ Rn .

All parts of the neural trace-line model are trained jointly based
on the ground truth of trace-relevance pairs. The rationale is to
allow the network to find a representation of words and lines that
is most suitable for addressing the line prediction problem.

4 PREDICTING PATHS FROM TRACE LINES
The second sub-problem that Scaffle addresses is to match the most
relevant line of a crash trace, as predicted by the trace-line model,
to file paths in the code base. This sub-problem comes with two
main challenges. One challenge is to scale well to code bases that
contain millions of files. Scaffle partially addresses this challenge
by focusing on a single line of a trace, instead of comparing each
line with the code base. Another challenge is that the most relevant
trace line may not mention the exact file path where the bug is
located. Possible reasons are that a prefix of a file path may be
missing because the crash trace uses a path relative to the crash
location, or that the trace simply does not contain the file name.

Our approach to predict file paths from trace lines addresses
the above challenges by formulating the problem as an informa-
tion retrieval (IR) problem. While IR is usually concerned about
retrieving a few out of many documents for a given query, we aim
at retrieving a few out of many file paths for a given trace line. The
second part of Scaffle addresses the following problem:

Definition 4.1 (Path prediction problem). Given a trace line l and
a set P of file paths in a code base, predict a ranked list (p1,p2, ...)
of file paths, with pi ∈ P , such that l is most likely to refer to the
highest ranked paths.

Inspired by IR techniques that retrieve documents for a given
natural language query, Scaffle represents both the trace line (i.e.,
query) and each file path in the code base (i.e., document) as a set of
words. File paths are tokenized into words by path segments, and
in a similar manner, the trace line is tokenized by punctuation after
stripping line numbers. An IR-based search engine is then run on

the file paths to index the words appearing in them. Scaffle allows
this search engine to be generic – in our evaluation (Section 6),
we used a search tool based on vector space embedding, similar
to [20]. However, any off-the-shelf search tool could be plugged into
the approach. For instance, we also experimented with the Okapi
BM25 function, which is common in elastic search, and found the
difference between the two to be negligible.

When indexing the corpus of file paths, most modern search
engines down-weight words that are prevalent across the cor-
pus, and up-weight words that are more distinctive. For the ex-
ample in Figure 2(a), the query consist of the words “at dostuff
DoStuffBrowserController exitDoMoreStuff DoStuffBrowserCon-
troller java”. Because “java” is a very common word, it gets down-
weighted, while “DoStuffBrowserController” is more distinctive
and hence up-weighted. The IR component used in Scaffle weights
words based on their tf-idf weight.

Once the search engine has indexed the corpus of file paths,
Scaffle queries it with words from the most relevant lines predicted
by the trace-line model. In the end, the result of path prediction is
a list of paths p1,p2, ... returned from the search query, ranked by
IR-based similarity of the paths to the query.

An alternative to our IR-based way of addressing the path pre-
diction problem would be to simply return the best-matching file
based on the number of overlapping tokens. However, this alterna-
tive approach would be misled by commonly occurring terms, such
as underlying framework and library names. An IR-based search
overcomes this problem (and a few others) by weighting terms
up/down depending on their distinctiveness in the corpus.

5 IMPLEMENTATION
We implement the trace-line model in PyTorch using gensim’s
implementation of Word2vec. The Word2vec embedding layer con-
tains 100 dimensions, the line-level RNN consists of two hidden
layers with 70 GRU cells each, and the trace-level RNN has two
layers of 250 GRU cells each. We use the sigmoid function for ac-
tivation and mean-squared error as the loss function. The model
is trained for 50 epochs using the Adam optimizer with a learning
rate of 0.001. The path prediction part of Scaffle is implemented
using the standard tf-idf vectorizer in scikit-learn.
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Figure 4: Number of crash traces in our dataset.

6 EVALUATION
We evaluate Scaffle with tens of thousands of crash traces and a
code base consisting of millions of files in multiple programming
languages. We address the following research questions:
• RQ 1: How effective is Scaffle at predicting bug locations?
• RQ 2: Given a raw trace, how effective is the learned trace-
line model at identifying the most relevant lines?
• RQ 3: Why does Scaffle (sometimes not) work?
• RQ 4: How does Scaffle compare to existing approaches and
to simpler baseline approaches?
• RQ 5: Is Scaffle efficient enough to scale to large code bases?

6.1 Experimental Setup
Our evaluation is based on tens of thousands of field crashes and
their corresponding bug fixes. The data has been selected among
crashes at Facebook over several years and comprises crashes from
a diverse set of products. Field crashes observed in these products
are automatically clustered to avoid inspecting the same problem
multiple times. We use at most one representative of each such
cluster, i.e., crashes in our dataset are unique. The crashes consist
of Android crashes, such as the example in Figure 2(a), iOS crashes,
and crashes in PHP code, such as the example in Figure 2(b), which
contribute 46.8%, 38.7%, and 14.5% to the dataset, respectively. For
each crash, we have a raw crash trace, which we feed into Scaffle
without any preprocessing or parsing, except splitting the trace into
lines. To establish ground truth data for bug localization, we asso-
ciate crashes with bug fixing commits based on an issue tracker-like
system at Facebook. Each bug fix changes one or more files, which
we consider to be the bug location to predict. The minimum, mean,
and maximum number of files changed in a bug-fixing commit is 1,
1.8, and 512, respectively.

Compared to similar setups in the literature [9, 12, 13, 18, 19, 21,
25, 31–33], there are two important differences: First, our dataset
contains data from multiple projects and programming languages,
which results in a more diverse set of crash traces. Second, our
code base contains millions of files, i.e., it is at least two orders of
magnitude larger than the largest previously considered code base.

To evaluate Scaffle in a realistic setup, we simulate using the
approach at different points in time. Figure 4 shows the cumulative

number of crash traces used in the evaluation. At each point in time
t shown on the horizontal axis, we simulate using Scaffle by training
its model based on all data available at t and by predicting the bug
locations for all crash traces that occur between t and t + 50 days.
For the prediction, we gather the set of all files in the code base at
t + 50 days and let the path prediction component of Scaffle predict
which of these files need to be fixed. This setup is realistic, as it
uses only past data to predict future bug locations. A possible, but
less realistic alternative would be to randomly split all available
data into a training and a validation set.

We evaluate Scaffle on two variants of the crash traces in our
dataset: raw traces and stack traces. Raw traces contain the crash
stack, additional telemetry, and information added by other tools
that handle crashes at Facebook. The examples in Figure 2 are raw
traces. Particularly, raw traces contain the output of a heuristic logic
that is used to aggregate crash reports into groups. This output is
then used by engineers to identify the files of the codebase relevant
to the crash, and so it serves as a de facto bug localization method.
The goal here is to evaluate whether in an industrial setting with
additional information as in raw traces, Scaffle can still add value.
We compare Scaffle with the heuristic logic alone in Section 6.5.
Stack traces contain only the crash stack that we extracted from
the raw traces, and are stripped of any other information. In Fig-
ure 2(a) and (b), the extracted stack traces begin at lines 2 and 31,
respectively. The goal here is to evaluate Scaffle in a more “pure”
setting where only crash stacks are available [25, 30, 33].

6.2 RQ 1: End-to-End Effectiveness
To measure how effective Scaffle is at predicting bug locations, we
ask the approach to predict a ranked list of likely buggy files and
then compare these files to those that have actually been changed by
the developers. If the top predicted files include any of the actually
changed files, we consider the prediction to be correct. The rationale
is that pinpointing at least one of the files to modify is helpful in
practice to identify which developer should handle a crash and
which part of the code base the developer should focus on.

Figure 5 shows the percentage of correct predictions among the
top-n predicted files. The plots on the left and right are for top-1
and top-5 predictions, respectively. The plots at the top and bottom
are for raw traces and stack traces, respectively. The results vary
over time because at each time step, a different model gets trained
and because the crashes used for the evaluation vary from one
50-day period to another. The gray lines show baselines that we
discuss in more detail in Section 6.5.

Overall, Scaffle is effective at selecting the bug location from
millions of possible files. The model generally predicts between 40%
and 60% of all bug locations as the top-1 prediction, and between
50% and 70% in the top-5 predictions. The results change over time
for mostly two reasons. First, the composition of crashes in our
dataset changes over time, as illustrated in Figure 4. The relative
percentage of Android crashes decreases, while the percentage of
crashes in iOS and PHP increases. In particular, it is only at some
point in 2016 that the dataset starts to contain PHP crashes.1 Second,
for stack traces the model seems to require a certain number of
training examples to unfold its full power. As evidenced by the steep
1The composition of crashes is not representative for software or crashes at Facebook,
but merely a result of our data gathering process.
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(a) Raw traces, top-1 predictions.
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(b) Raw traces, top-5 predictions.
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(c) Stack traces, top-1 predictions.

20
15

-0
1-

19
20

15
-0

3-
10

20
15

-0
4-

29
20

15
-0

6-
18

20
15

-0
8-

07
20

15
-0

9-
26

20
15

-1
1-

15
20

16
-0

1-
04

20
16

-0
2-

23
20

16
-0

4-
13

20
16

-0
6-

02
20

16
-0

7-
22

20
16

-0
9-

10
20

16
-1

0-
30

20
16

-1
2-

19
20

17
-0

2-
07

20
17

-0
3-

29
20

17
-0

5-
18

20
17

-0
7-

07
20

17
-0

8-
26

20
17

-1
0-

15
20

17
-1

2-
04

20
18

-0
1-

23
20

18
-0

3-
14

20
18

-0
5-

03
20

18
-0

6-
22

20
18

-0
8-

11
20

18
-0

9-
30

20
18

-1
1-

19

Date

0

10

20

30

40

50

60

70

80

C
or

re
ct

ly
 p

re
di

ct
ed

 lo
ca

tio
ns

 (
%

)

Scaffle
First-lines-first
Embedding-based crash-path distance

(d) Stack traces, top-5 predictions.

Figure 5: Top-n accuracy of predicted bug locations. The green line is the Scaffle approach.

increase in accuracy toward the beginning of 2016 in Figure 5(c)
and (d), the model is much more effective once it has seen enough
data.

6.3 RQ 2: Effectiveness of Trace-Line Model
To better understand Scaffle, we evaluate how effective the trace-
line model is at predicting the most relevant lines in a crash trace.
We use two metrics: Hit rate at n (hit@n) and mean reciprocal rank
(MRR). Both metrics are computed w.r.t. the most relevant lines,
as defined in the ground truth computed with Algorithm 1. The
hit@n metric is the percentage of traces where the most-relevant
line is among the top-n lines predicted by the model. For example,
if the most relevant line is predicted as the second-most relevant
line by the model, then this counts as a hit@3 but not as a hit@1.
The MRR metric is computed by taking the predicted rank of the
most relevant line, computing its reciprocal, and then averaging
across all traces. For example, suppose there are only two traces
and that the most relevant line of trace 1 and trace 2 is predicted at
rank 1 and 4, respectively, then the MRR is 1

2 · (
1
1 +

1
4 ) = 0.625.

Figure 6 shows the results for the hit@n metric. Again, the green
lines are for the Scaffle approach; all other lines are baselines dis-
cussed in Section 6.5. Solid lines show hit@1 results, dotted lines
show the corresponding hit@5 results. The results roughly follow

the same patterns as the end-to-end results in Figure 5, confirming
that the effectiveness of the trace-line model is key to the overall
success of Scaffle. Notably, the model achieves a hit@5 rate above
80% for most points in time.

Figure 7 shows the results for the MRR metric. Again, we find
the trace-line models to be highly effective, reaching MRR values
of over 0.8 for raw traces and close to 0.8 for stack traces.

6.4 RQ 3: Why Does Scaffle Work?
To better understand why the approach often is, and sometimes is
not, able to identify the files relevant for fixing a bug, we manually
inspect various traces and their corresponding bug locations. This
inspection leads to the following observations.

Files mentioned in traces. Perhaps unsurprisingly, Scaffle is ef-
fective when the file that needs to be fixed is mentioned in the
crash trace, e.g., because one of the functions in the file appears
in a stack trace mentioned in the trace. In contrast, the approach
cannot predict the correct bug location when the buggy file is not
mentioned anywhere in the trace. The latter case may happen when
the root cause and the manifestation of a bug are in different files.

Partial information about files. Even incomplete mentions of a file
may be sufficient to enable Scaffle to localize it. For example, some
crash traces mention the relevant file name, but not the complete
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(a) Raw traces.
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(b) Stack traces.

Figure 6: Hit rate within the top-n predictions of most rele-
vant lines. The green lines are for the Scaffle approach.

path of the file. The reason may be that file paths on deployment
devices differ from those in the code base or that the crash trace
format does not include complete paths. Scaffle’s IR-based matching
of lines and file paths exploits the fact that some high-entropy
segments of a path, e.g., only the file name, often are sufficient to
uniquely identify a path. In contrast, the approach sometimes fails
to uniquely identify the correct file because multiple files with the
same file name exist in different directories of the code base.

Understanding the structure of traces. The neural trace-line model
has some “understanding” of the structure of raw crash traces. As
illustrated by the examples in Figure 2, it identifies stack traces
within the raw traces by giving lines that are part of stack trace
generally higher relevance scores. Moreover, the model learns to
identify the relevant lines within a stack trace by discarding stack
frames unlikely to point to a bug location. For example, the model
gives a relatively low score to those lines in Figure 2(a) that start
with at android.app, because they refer to methods in the Android
framework, i.e., code unlikely to cause a bug in the application. The
model also learns to handle nested stack traces, such as the one
in Figure 2(a), where one exception causes another. For such stack
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Figure 7: MRR of the trace-line model and a heuristic base-
line. The green lines are for the Scaffle approach.

traces, the model learns to search the most relevant lines in the
inner-most exception, as this exception is the cause of the crash.

Instead of learning to understand raw traces and the stack traces
contained in them, one could manually implement heuristic algo-
rithms for parsing different trace formats. One of our baselines
(Section 6.5) are a set of such heuristics. The main benefit of a
learned model is that it can be obtained automatically and that it
can be easily re-trained when trace formats evolve.

6.5 RQ 4: Comparison with Prior Work and
Baselines

6.5.1 End-to-End Classification. Scaffle breaks down bug localiza-
tion into two phases: predicting the most relevant lines in a crash
trace and retrieving the most relevant files based on these lines.
Prior work, e.g., by Kim et al. [9], proposes to directly predict the
buggy file from a bug report or crash trace. The basic idea is to
extract features of the crash trace, such as words appearing in the
report, and train a classifier on past fixes to predict a set of relevant
files to fix. To improve the precision of their model, they split the
process into two phases: one that predicts if a crash report contains
useful information, and one that actually predicts the file.
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We implement the model described by Kim et al. [9] using a
Naive Bayes and a Random Forest classifier. Unfortunately, the
model suffers from acute scalability problems, and we were unable
to train it on more than 10,000 files before running out of memory.
The reason is the large number of file paths, each of which is a
unique “class” for the classifier. Generally, classifiers scale well with
the number of features, but not with the number of classes. Since
an end-to-end classification approach, such as [9], considers each
file as a class, it does not scale to code bases with millions of files.

6.5.2 End-to-End Information Retrieval. IR-based bug localization
is one of the most prevalent approaches proposed in prior work [13,
17, 19, 21, 27, 33]. We compare Scaffle with a scalable variant of
these approaches that avoids running a source-level analysis of all
files in the code base. This end-to-end, IR-based approach considers
the file paths as documents, similar to Scaffle, and matches them
against the given crash trace. To implement this baseline, we use
the path prediction model in Section 4 to embed file paths into a
tf-idf based vector space. Given a crash trace, the baseline embeds
the entire trace into the same vector space, and reports those file
paths as most relevant for the crash that have the lowest cosine
distance to the embedded crash trace.

The result of this baseline is plotted in Figure 5 (‘Embedding-
based crash-path distance”). The baseline performs poorly com-
pared to Scaffle, especially as the number of crashes and file paths
grow over time. The reason is that the efficiency of IR techniques
relies largely on the quality of the query provided for search. How-
ever, if the query is the entire crash trace, it contains significant
amounts of noise, which adversely affects the accuracy of retrieval.
The comparison with this baseline shows that decomposing the
bug localization problem by first predicting the most relevant line
of a crash trace is key to achieving good overall accuracy.

6.5.3 First Lines First. A simple baseline to identify the most rele-
vant lines in a given stack trace is to assume that the lines in the
stack trace are sorted by descending relevance. This baseline, which
we call first-lines-first, matches an assumption made in prior work
on bug localization [19]. All figures for stack traces show the results
for this baseline as a gray line, i.e., Figure 5(c) and (d), Figure 6(b),
and Figure 7(b). We find the first-lines-first baseline to perform
clearly worse than Scaffle because the root cause of a crash is not
always mentioned in one of the first lines.

6.5.4 Heuristic Logic. As an industrially deployed baseline, we con-
sider a heuristic logic that aggregates crash reports at Facebook. It is
based on a series of manually designed and tuned rules that extract
relevant strings from the crash, such as the exception message, type,
or parts of stack frames. The output is then added to the raw trace
and is used to group together crashes that have the same output
from the logic. Engineers use it to gain hints about files that are
relevant to the crash. To measure whether Scaffle adds any value
on top of the heuristic logic, we consider the heuristic logic as a
stand-alone baseline and show its effectiveness in all figures for raw
traces as a gray line, i.e., in Figure 5(a) and (b), and in Figure 6(a). For
the end-to-end prediction, we find this baseline to be less effective-
ness than Scaffle. In other words, the model learns to override the
suggestions of the heuristic logic by predicting other lines in a raw
trace than the result of the logic as the most relevant. This shows

that even in an industrial setting, Scaffle can be used to augment
any existing localization methods. Another advantage of Scaffle is
to predict a ranked list of likely relevant lines and likely buggy files.
For example, as shown in Figure 6(a), the top-5 predictions have a
higher hit rate than the heuristic baseline.

6.6 RQ 5: Efficiency
To evaluate the efficiency of Scaffle, we distinguish between one-
time efforts and per-trace efforts. The computationally most expen-
sive one-time effort is to train the trace-line model. Depending on
the amount of training data, the training takes up to three hours
on a single machine equipped with a standard GPU. The time to
predict the bug location for a given crash trace is the sum of the
time needed by the two main steps of Scaffle. Querying the model
with a given trace generally takes less than a second. The IR-based
matching of the top-most predicted lines against all file paths in the
code base takes up to several seconds per line. This amount of time
is acceptable in practice because Scaffle can run in the background
and report its suggestions to developers once it is done. Overall, we
conclude that Scaffle is efficient and scalable enough to run in an
industrial deployment, even for large-scale code bases.

7 DISCUSSION
This section discusses some limitations and alternative designs of
the approach. One limitation is that Scaffle predicts only one file
out of possibly many files that cause a crash. On average over all
crashes used in the evaluation, we find that 1.8 files are modified to
fix a crash. That is, finding one of the relevant files covers a large
fraction of all relevant files in practice. Even if multiple files need
to be modified, predicting one of them still provides a good starting
point to find the right team or developer to handle the crash, and
to find the remaining files using other techniques.

The prediction accuracy of Scaffle ranges between 40% and 70%,
which raises the question whether it is high enough to be useful in
practice. While a higher accuracy would certainly be desirable, the
current result can contribute some value. One piece of evidence is
that Scaffle outperforms the heuristic logic that is currently used at
Facebook to help developers handle crashes (Section 6.5.4). Given
that crash-based bug localization is a hard yet practically relevant
problem, we envision future work to further improve the current
result. One promising direction may be to combine a scalable tech-
nique, such as Scaffle, with a more expensive technique that reasons
only about selected subsets of the code base.

Our evaluation learns a single trace-line model across all crash
traces, irrespective of the specific product that has crashed or the
programming language used to write the crashing code. Instead,
one could train a separate model for different subsets of our dataset.
There are at least two reasons why we choose a single-model
approach. One reason is that the crash traces contain language-
independent information added by tools that pre-process traces
at Facebook. By learning a single model across all crashes, the
model can generalize better and learn patterns that hold across
products and languages. Another reason is that the set of products,
programming languages, etc. is constantly evolving. A single model
eliminates the need to build multiple pipelines and is more robust
toward an evolving code base.
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Scaffle is designed with ultra-large scale, heterogeneous code
bases in mind. Smaller software projects may not have any or not
enough information about past crashes available. For such projects,
our approachmay not work well, because training an effective trace-
line model requires a sufficiently large training dataset. For such
smaller projects, the code base may be small enough to analyze each
source file individually, making other existing techniques (Table 1)
a viable alternative.

8 RELATEDWORK
Localizing Bug Locations. The most closely related line of work

also predicts bug locations based on some evidence of a bug, such as
a bug report or a stack trace, as summarized in Table 1. Our work,
shown in the last row, differs by taking raw crash traces as the
input, without making any assumptions about their format. Almost
all other techniques also differ from ours by focusing on a single
programming language and by requiring some form of parsing and
code analysis of all files in the code repository. The work by Wang
et al. [25] is the exception, as it also targets multiple languages
and does not require parsing or analyzing the code. It differs from
Scaffle in multiple ways: First, their approach learns a model that,
given features of a specific file, predicts the probability that the file
contains the bug. This design implies that predicting the buggy file
requires querying the model with all files in the code base, which
does not scale well to code bases with millions of files, such as the
one that motivates our work. Second, their approach assumes that
file names mentioned in a crash trace can always be resolved to
file paths in the code base. We find this assumption to sometimes
be violated, e.g., because the path of a file on a client device differs
from the path in the code base. Third, their approach expects a
set of stack traces as the input, whereas Scaffle works well given
only a single crash trace. Some of the work listed in Table 1 uses
inputs beyond bug reports or crash traces, e.g., by also considering
meta-data from version histories, such as files involved in fixing
past bugs [13, 32]. Scaffle does not require this kind of meta-data,
but could possibly benefit from it.

Localizing Bug-Inducing Changes. A related problem is to lo-
calize which commit is causing a bug. Locus addresses this prob-
lem in an IR-based approach that compares the words associated
with a commit and the words in a bug report [26]. Orca also takes
an IR-based approach and reports deploying a system for a large-
scale, distributed, industrial system [2]. Their focus is on handling
the frequent re-builds of the system through a build provenance
graph. ChangeLocator takes a learning-based approach that ranks
all commits that change at least one method that appears in a stack
trace [29]. Similar to most techniques in Table 1, ChangeLocator
relies on statically analyzing the code base, which Scaffle avoids.

Clustering and Prioritizing Crashes. The potentially large number
of crashes revealed by fuzz-testing or widely deploying software
has motivated work on clustering crashes, e.g., based on similarities
of stack traces [4, 5], on repairs that prevent a crash [23], or other
heuristics [11]. Once crashes are clustered, Castelluccio et al. [3]
propose to help understanding the crash by identifying features
that are unique to a cluster. Another line of work prioritizes crashes,
e.g., based on the distribution of occurrences among users [8] or

based on a prediction of how likely a crash will occur for other
users [10]. All this work is orthogonal to the problem addressed
here, and could be used before localizing the bug location for a
crash with Scaffle.

Other Related Work. Many techniques for automated program
repair [14] rely on localizing where to fix a bug. Scaffle could serve
as a starting point for repair of bugs that manifest through crashes.
The broader problem of bug localization has received significant
attention. We here restrict our discussion to crash-based localiza-
tion and refer to a survey [28] for detailed discussion. The main
difference to coverage-based bug localization [1, 6, 15] is that Scaffle
does not require any coverage information, but only a crash trace
that manifests the bug. Wang et al. [24] study whether IR-based bug
localization for given bug reports simplifies debugging. Our setup
differs by considering machine-generated, raw crash traces instead
of (at least partially) human-written bug reports. Our trace-line
model exploits one of their observations, that “some stack traces
and test cases contain many class names and method names, and
only a small subset of the names are closely related to the bug” [24].
Jonsson et al. [7] address the problem of assigning a bug report to
a developer team. They also focus on large-scale deployment, but
with dozens of teams instead of millions of files to choose from.

9 CONCLUSIONS
This paper presents Scaffle, the first technique for automated, crash-
based bug localization in ultra-large scale, heterogeneous code
bases. The key idea is to decompose the problem into two simpler
sub-problems: (1) Identifying the most relevant lines in a raw crash
trace, which we address through a neural trace-line model, and
(2) Matching these lines with file paths in the code base, which
we address through a scalable, IR-based search. The approach is
language-independent, as it does not assume a specific trace format,
but instead learns from crashes fixed in the past. Our evaluation
applies Scaffle to a code base that is at least two orders of magnitude
larger than any previous work. We find the approach to be effective
at identifying files to fix, despite having to choose among millions
of code files written in several programming languages. Notably,
Scaffle outperforms several non-trivial baselines, including end-to-
end classification, an end-to-end IR-based search, and industrially
used heuristics. Overall, Scaffle provides a practical technique for
pinpointing the files to consider in a large-scale code base, which
helps assigning crashes to the appropriate team or developer, and
may serve as a starting point for automated program repair.
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