
Resource Usage and Optimization Opportunities
in Workflows of GitHub Actions

Islem Bouzenia
University of Stuttgart
Stuttgart, Germany
fi_bouzenia@esi.dz

Michael Pradel
University of Stuttgart
Stuttgart, Germany

michael@binaervarianz.de

ABSTRACT
Continuous integration and continuous delivery (CI/CD) has be-
come a prevalent practice in software development. GitHub Ac-
tions is emerging as a popular platform for implementing CI/CD
pipelines, called workflows, especially because the platform of-
fers 2,000 minutes of computation for free to public repositories
each month. To understand what these resources are used for and
whether CI/CD could be more efficient, this paper presents the
first comprehensive empirical study of resource usage and opti-
mization opportunities of GitHub Action workflows. Our findings
show that CI/CD imposes significant costs, e.g., $504 per year for
an average paid-tier repository. The majority of the used resources
is consumed by testing and building (91.2%), which is triggered
by pull requests (50.7%), pushes (30.9%), and regularly scheduled
workflows (15.5%). While existing optimizations, such as caching
(adopted by 32.9% of paid-tier repositories), demonstrate a positive
impact, they overall remain underutilized. This result underscores
the need for enhanced documentation and tools to guide develop-
ers toward more resource-efficient workflows. Moreover, we show
that relatively simple changes in the platform, such as deactivating
scheduled workflows when repositories are inactive, could result
in reductions of execution time between 1.1% and 31.6% over the
impacted workflows. Overall, we envision our findings to help
improve the resource efficiency of CI/CD pipelines.

CCS CONCEPTS
• Software and its engineering → Development frameworks and
environments; Software libraries and repositories.

ACM Reference Format:
Islem Bouzenia and Michael Pradel. 2024. Resource Usage and Optimization
Opportunities in Workflows of GitHub Actions. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3597503.3623303

1 INTRODUCTION
GitHub Actions is a powerful tool for developers to automate and
streamline their continuous integration and continuous delivery

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3623303

(CI/CD) processes. Since its release in 2019, it has been widely
adopted by the community of developers, with more than 30% of
open-source projects on GitHub utilizing it to automate their CI/CD
workflow [9, 23]. GitHub Actions enables developers to create work-
flows that are triggered by events, such as pushes, pull requests,
and the opening of issues. Developers can customize workflows to
perform a variety of tasks, e.g., building and testing code, deploying
to various environments, and automatically creating releases.

Most workflows execute on virtual machines (VMs) hosted by
GitHub, many of which are offered for free to public projects. The
computational resources offered to a free account include up to
2,000 CPU minutes (33 hours) per month on virtual machines with
7GB of main memory, 14GB of disk storage, and two or three CPU
cores depending on the operating system. We refer to a repository
as free-tier if it uses only freely available resources, and as paid-tier
otherwise. Virtual machines also allow developers to test their code
in a variety of environments and configurations, which improves
the dependability and stability of their software. Thanks to its
integration into the GitHub ecosystem and the offered computing
resources, GitHub Actions has quickly emerged as a dominant
CI/CD platform [15].

This popularity has motivated researchers to study the level of
adoption of GitHub Actions, the repositories that use it, and the
tasks executed therein [7, 9, 23, 39]. These studies are based on
statically analyzing workflow specifications, e.g., to quantify the
workflow scripts, jobs, and corresponding tasks. Other research
focuses on scrutinizing and characterizing the security of GitHub
Actions in comparison to other CI/CD platforms [4, 24].

An important aspect neglected by the existing literature are the
computing resources consumed on the platform. In particular, it
is currently unknown how many computing resources projects
typically consume, what these resources are used for, and what
kinds of optimization opportunities exist. Obtaining insights into
resource usage and optimization opportunities in workflows on
GitHub Actions helps understand their impact on development
costs, and ultimately, contributes toward cheaper and faster CI/CD.

This paper presents the first empirical study that analyzes com-
putational resource usage and optimization opportunities of work-
flows. Our study is based on a dataset of 952 repositories that
performed 1.3 million workflow runs over a period of 30 months,
which is the largest such dataset we are aware of. The study is
driven by three research questions:
RQ1:What amount of resources do workflows use and what
are these resources used for? The average annual cost of running
workflows for a paid-tier repository in our dataset is approximately
$504, with the majority of executed jobs running on the least expen-
sive Linux machines. Pull requests, pushes, and scheduled events

https://doi.org/10.1145/3597503.3623303
https://doi.org/10.1145/3597503.3623303
https://doi.org/10.1145/3597503.3623303

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Islem Bouzenia and Michael Pradel

are the most common triggering events for workflows, accounting
for more than 90.0% of the total VM time. The most frequently
performed tasks are testing and building. While most workflows
complete successfully, 10.0% to 17.4% fail, primarily due to errors
in code during testing or building. These results show the consider-
able costs incurred by CI/CD platforms, which motivates studying
possible optimizations.
RQ2: To what extent do workflows use currently available
optimization mechanisms, and what is their impact on the
consumed resources? We study and analyze both the prevalence
and impact of six mechanisms that could help reduce the cost of
running workflows. The mechanisms range from sophisticated
optimizations, such as caching, which is used by 32.9% of paid-tier
repositories and reduces VM time by 3.4%, to simple configuration
options, such as setting a timeout value for a job, which is used by
14.0% of paid-tier repositories, impacts 4.3% of runs, and reduces
VM time by 8.1%.
RQ3:What further optimization opportunities exist andhow
much could they impact resource usage? In addition to the ex-
isting optimization mechanisms, we investigate four techniques
that currently are not present on GitHub Actions. These optimiza-
tions could impact up to 4.5% of all runs and save up to 3.5% of
total VM time, complementing the existing options studied in RQ2.
These findings show that there still are significant opportunities
for reducing both computational and monetary costs.

The results of this study could interest at least two groups of
people. On the one hand, it will help developers in reducing the time
taken by their CI/CD pipelines, which decreases waiting time and
speeds up the development process. In addition, repositories that
require resources beyond those provided for free by GitHub have
an interest in reducing the monetary costs imposed by workflows.
On the other hand, our results can guide platform providers, such
as GitHub, when reducing their costs, especially the costs imposed
by free-tier repositories.

In summary, this paper presents the following contributions:

(1) The first study of the resource usage of workflows on GitHub
Actions, which differs from prior work that studies static
properties of workflows [7, 9, 23, 39].

(2) A quantitative analysis of existing and potential optimiza-
tions of CI/CD pipelines that shows the (potential) preva-
lence and impact of ten different optimizations.

(3) Actionable insights on how to reduce the computational
resources consumed by workflows, which is relevant for
both developers and platform providers.

(4) A reusable dataset of 1.3 million workflow runs from 952
repositories, which can serve as a basis for further analysis
and novel optimization techniques.

2 BACKGROUND ON GITHUB ACTIONS
GitHub Actions is a platform for automating CI/CD (continuous in-
tegration/continuous deployment) tasks within the GitHub ecosys-
tem. Developers use the platform, e.g., for automatically executing
tests on every new commit or for regularly deploying applications.
The central concept of the platform are workflows, which are ex-
ecutable processes that perform one or more jobs when a specific
trigger event occurs. The jobs within a workflow are either executed

in parallel, sequentially as declared in the workflow, or in an order
constrained by dependencies between jobs. Each job consists of
sequentially executed steps, each representing either a command,
such as executing a bash script, or an action, i.e., reusable code that
implements a common CI/CD-related tasks, e.g., checking out code.
The triggering events that start workflows include pushing to a
repository, creating a new pull requests, and also scheduled events
that happen regularly, similar to a cron job.

Jobs are executed on virtual machines (VMs), where each job is
executed inside its own VM runner. That is, two jobs cannot be
executed in parallel on the same VM. We call each execution of a
job a job run or simply a run. A workflow execution includes at
least one job run. GitHub offers VMs with different versions of
Linux, macOS, and Windows, and also supports self-hosted VMs
on a user’s own infrastructure.

All computations performed on GitHub-hosted VMs are billed
on a per-minute basis. For example, as of March 2023, running a
minute of computation on a standard Linux VM (2 CPUs, 7GB RAM,
14GB disk space) costs $0.008. In addition to CPU time, GitHub also
charges costs for disk space,1 which we do not account for in this
study. GitHub offers free resources to public repositories, e.g., 2,000
free minutes of computation to each unpaid user account. To help
developers manage the CI/CD costs, GitHub Actions offers several
optimization mechanisms, e.g., caching, failing quickly if one out
of a set of related jobs fails, or skipping workflows for particular
trigger events.

3 METHODOLOGY
To answer the research questions listed in Section 1, we gather a
dataset of 1.3 million workflow runs from 952 open-source repos-
itories on GitHub. To the best of our knowledge, this dataset is
the largest of its kind. The following describes our methodology
for gathering the dataset (Section 3.1), a set of metrics to quantify
the resource usage of workflows (Section 3.2), and a name-based
analysis to determine what CI/CD tasks a job performs (Section 3.3)
followed by the methodology for estimating the prevalence and
impact of optimizations (Section 3.4). Figure 1 gives an overview of
our methodology.

3.1 Data Collection
We collect a dataset of workflow runs in three steps. First, we sample
600 repositories from a set of 67K repositories collected by prior
work [9], which have at least one workflow, 100 stars, and 100
commits. To also study less popular projects, we augment the initial
set with 352 further repositories, which we obtain by randomly
sampling 74K repositories with less than 100 stars from a larger
set of 735K repositories [8] and by then keeping only those that
are using workflows. The combined list results in a dataset of 952
repositories. Second, we use the GitHub API to obtain all workflow
runs for each selected repository. The gathered information includes
the date and time of eachworkflow run, the workflow ID, the branch
or commit that triggered the workflow, and other metadata. Third,
we use the GitHub API to gather details about the jobs that were
executed within each workflow run. These data include, e.g., the

1https://docs.github.com/en/billing/managing-billing-for-github-actions/about-
billing-for-github-actions

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

Resource Usage and Optimization Opportunities in Workflows of GitHub Actions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Used in all RQs

Data sources /
Inputs

Methodolgy

RQs

GitHub API 952 repositories

Jobs

Data collection: workflows,
runs, jobs, commits history

(Section 3.1)

Metrics: VM time,
costs

(Section 3.2)

Named-based analysis

(Section 3.3)

1. Resource usage
(Section 4.1)

2. Current optimizations
(Section 4.2)

3. Optimization opportunities
(Section 4.3)

Prevalance and impact
analysis

Section(3.4)

Figure 1: Overview of the methodology we follow to answer the presented research questions.

job ID, the job status (whether it succeeded or failed), the job start
and end times, and other metadata.

Applying ourmethodology, we collect detailed information about
workflow runs of 952 repositories. The repositories contain code
written in 14 different languages with Javascript/Typescript be-
ing the most popular (used in 16.2% of repositories), followed by
Python (14.9%), Java, and Go (6.2% each). In total, there are 1.3
million workflow runs triggered by 20 different trigger events. All
runs have executed between September 2020 and February 2023.
The workflows executed a total of 3.7 million jobs and 34.3 million
steps. As our dataset is the largest of its kind, we make it publicly
available to foster future research.2

3.2 Metrics of Resource Usage
As a basis for characterizing the computational and monetary cost
of executing workflows, we define and compute several metrics.

VM time. To capture the wall-clock time of each executed job, we
compute VM time as the time between the start and the termination
of a job, which equals the time that the VM executing the job has
been up and running for this purpose. Because each VM executes
only a single job at a time, this metric accurately captures the
time that a job consumes. The VM time of a workflow run is the
sum of the VM time of each job triggered within the workflow.
Unless mentioned otherwise, we give VM time in minutes, while
normalizing fractions to 60 seconds, i.e., 3.25 minutes means 3
minutes and 15 seconds.

VM cost. As an estimate of the monetary cost imposed by exe-
cuting workflows, we compute VM cost as the amount of US dollars
charged by GitHub according to its pricing policy. The base price
per VM time is $0.008. As different operating systems and hardware
impose different costs, GitHub multiplies the consumed VM time

2https://doi.org/10.5281/zenodo.8344575

with a factor 𝑓 determined by the kind of VM a job runs on. Follow-
ing current pricing,3 the factor for running jobs on Windows and
macOS machines is 𝑓 = 2 and 𝑓 = 10, respectively. GitHub rounds
the number of minutes up to the nearest whole minute. Given a
VM time of 𝑡 , the VM cost hence is:

VM cost = ⌈𝑡 ∗ 𝑓 ⌉ ∗ 0.008

3.3 Name-Based Analysis of Jobs
To better understand the CI/CD tasks that developers want to per-
form with jobs in a workflow, we categorize jobs based on their
names. As part of the workflow syntax, developers give an iden-
tifier to each job under the attribute “name”. For example, typical
names include “Test”, “Build-image”, and “Release(Ubuntu)”. We
unify names by transforming them into lower case and by removing
details provided in parenthesis. Next, we select the most frequent
names and manually simplify them into a more general name. For
example, the name “build-image” would be simplified into “build”,
which captures the CI/CD task of building the code of a project.
The set of simplified names includes: test, build, deploy, analyze,
lint, linux, release, integrat(ion), sync, and update.

Given the set of common, simplified names of CI/CD tasks, we
try to map each job name into one of the categories. Specifically,
we consider a job to belong to one of the categories if the simplified
name of the category is a substring of the job’s name. For example,
a job named “testlinux” belongs to the “test” category. Names that
do not match any of the common categories, e.g., “graphqlv0.3”, are
left in a separate “other” category. Across our dataset, the name-
based analysis of jobs categorizes 69.3% of all jobs into a category
that is not “other”.

3https://docs.github.com/en/billing/managing-billing-for-github-actions/about-
billing-for-github-actions

https://doi.org/10.5281/zenodo.8344575
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Islem Bouzenia and Michael Pradel

3.4 Prevalence and Impact of Optimizations
GitHub Actions offers several mechanisms that can help optimize
the resource consumption of workflows. We select six such mech-
anisms by going through the documentation of the various con-
figuration options for workflows and by identifying those related
to resource consumption. These studied optimizations are caching,
fail-fast, canceling in-progress runs, skipping workflows, filtering
by target files, and specifying a timeout (more details in Section 4.2).

To study how commonly these optimization-related mechanisms
are used and what impact using them has on the consumed re-
sources, we analyze the commit history of the studied repositories
to identify commits that enable or disable a particular optimization.
Specifically, we identify all commits that edit an already existing
workflow file or create a new file. A workflow file is any file with
a name that ends with “yaml” or “yml”, and that is located under
the folder “.github/workflows”. Following that, we analyze the diff
between the old version of the file (before commit) and the new
version (after commit) to check whether an optimization was added
to or removed from an already existing workflow, or whether a new
workflow was created with an optimization enabled. This check
is implemented through a regular expression specific to each opti-
mization. Finally, we keep all those commits that add or remove an
optimization, and refer to them as optimization-related commits.

To measure the prevalence of an optimization, we compute
its adoption rate as the number of repositories with at least one
optimization-related commit divided by the number of all studied
repositories. To quantify the impact of using an optimization, we
define three metrics. First, we compute the percentage of affected
runs, which indicates how many of all runs of a workflow where
the optimization is enabled are impacted by the optimization. For
optimizations that affect all runs of a workflow, such as caching,
this percentage is 100%. For optimizations that affect only some
runs of workflow, such as specifying a timeout, this percentage is
the number of runs where the optimization changes the VM time,
e.g., because the workflow times out, divided by the number of
workflow runs executed while the optimization is present in the
workflow.

Second, we compute the impact on VM time, which indicates how
the overall VM time consumed by a workflow where an optimiza-
tion is enabled changes due to the optimization. For optimizations
that affect all runs of a workflow, the impact is computed by com-
paring the VM time 𝑡𝑛𝑜_𝑜𝑝𝑡 of a run without the optimization, e.g.,
just before the optimization-related commit, with the VM time 𝑡𝑜𝑝𝑡
of a run with the optimization, e.g., just after the optimization-
related commit. Given these two times, the impact on VM time
is 𝑡𝑜𝑝𝑡−𝑡𝑛𝑜_𝑜𝑝𝑡

𝑡𝑛𝑜_𝑜𝑝𝑡
. For optimizations that affect only some runs of a

workflow, we compare two amounts of VM time. On the one hand,
the time 𝑡𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 consumed by all runs of the workflow where the
optimization is enabled. On the other hand, the time 𝑡𝑠𝑎𝑣𝑒𝑑 of time
saved due to the optimization (described in detail in Section 4.2).
Given these two times, the impact on VM time is − 𝑡𝑠𝑎𝑣𝑒𝑑

𝑡𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑+𝑡𝑠𝑎𝑣𝑒𝑑 .
Third, we calculate the impact on annual cost per repository,

which signifies the influence of enabling an optimization on the
financial burden incurred by a workflow. To this end, we consider
the VM cost 𝑐𝑜𝑝𝑡 (Section 3.2) of runs for a workflow that has an
optimization enabled. Additionally, we evaluate the VM cost 𝑐𝑛𝑜_𝑜𝑝𝑡

that would have been incurred in the absence of the optimization,
which is estimated based on the impact on VM time attributable to
the optimization. The resulting difference, 𝑐𝑜𝑝𝑡 − 𝑐𝑛𝑜_𝑜𝑝𝑡 , is then
divided over the number of years between the first and last executed
run while the optimization is enabled, to get the annual cost delta.

4 RESULTS
4.1 Analysis of Resource Usage (RQ1)
We start off by gaining an understanding of resources consumed
by workflows and what these resources are used for. In particular,
we study the overall resource consumption, what events trigger
resource usages, what CI/CD tasks are associated with the executed
workflows, and how workflows typically terminate.

4.1.1 Overall Resource Usage and Costs. Overall, the 952 studied
repositories use a total of 23.7 million minutes of VM time, with an
average of 1,614 monthly minutes per repository. Each VM runs a
specific operating system with Linux being the most used system,
accounting for 64.6% of all jobs.

75.1% of repositories consume at most 2,000 minutes of VM
time per month, which is within the free-tier limit, whereas the
remaining 24.9% consume more than 2,000 minutes, which we refer
to as paid-tier repositories. The paid-tier repositories consume an
average of 5,914 minutes of VM time per month, while the free-tier
have an average of 87 minutes per month, with an inter-quartile
range of 3,490 and 93minutes, respectively. Furthermore, 9.9 million
runs belong to the paid tier, which represents 75.4% of the total
runs in our dataset and 96.4% of the total VM time.

Looking at the costs, the yearly estimated VM cost of the paid-
tier repositories, excluding the free minutes, is $504 (on average,
inter-quartile range: $282). If repositories would have to pay for
the free minutes as well, then a paid-tier repository would have to
pay an extra $107 and a free-tier repository would have to pay $9,
on average per year.

Finding 1: Running workflows cost a paid-tier repository
around $504 per year, on average. GitHub covers $107 and
$9 of the yearly expenses of paid-tier and free-tier repositories,
respectively.

The key take-away of these findings is that workflows impose
significant costs. While the yearly cost of a single repository seems
manageable, the entire GitHub ecosystem consists of 386 million
repositories, out of which at least 43 million are public.4 Even
though not all these repositories use workflows and our studied
sample of repositories may not be fully representative, there most
likely are many millions of repositories with workflows. As the
costs of workflows are, in parts, covered by GitHub and by the
respective project owners, both actors have a strong interest in
understanding and reducing their respective share of the costs.

4.1.2 Events that Trigger Workflows. A workflow can be initiated
by at least one of 36 distinct events,5 of which 20 are observed
within our dataset. Table 1 presents the list of events that consume

4According to https://github.com/search as of March 2023.
5https://docs.github.com/en/actions/using-workflows/events-that-trigger-
workflows

https://github.com/search
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

Resource Usage and Optimization Opportunities in Workflows of GitHub Actions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Summary of resource usage by triggering event.

Event
Overall (%) Avg. per run

VM time Runs VM time (min) ∗ VM cost ($)
Paid Free Paid Free Paid Free Paid Free

Pull Request 50.7 35.5 38.6 25.3 31.1 (20.1) 3.6 (3.6) 0.36 0.04
Push 30.9 47.8 26.4 28.6 28.4 (19.5) 4.3 (4.2) 0.33 0.05
Schedule 15.5 14.5 26.2 40.3 13.8 (1.3) 0.9 (0.2) 0.17 0.01
PR target 1.2 0.6 4.2 1.4 8.5 (11.9) 1.2 (1.3) 0.08 0.01
Dispatch 0.7 0.5 0.2 0.3 71.9 (24.9) 5.1 (4.4) 0.87 0.06
Workflow run 0.7 0.0 0.7 0.4 23.2 (13.0) 0.1 (0.1) 0.17 <0.01
Release 0.2 0.5 0.1 0.3 40.0 (15.0) 4.2 (5.9) 0.30 0.04
Others 0.1 0.6 3.6 3.4 4.5 (1.4) 0.7 (0.6) 0.04 0.01

∗ mean (inter-quartile range)

most VM time, as well as the proportion of total VM time consumed
and the proportion of the total number of workflow runs. We also
present a comparison between the paid tier and the free tier.

Pull requests, pushes, and scheduled workflows emerge as the
most prevalent triggering events, accounting for 91.3% of the work-
flows of the paid tier and 94.4% for the free tier. Moreover, workflows
initiated by these top three events represent 97.1% and 97.6% of
the total VM time across all workflows of the paid and free tier,
respectively. We also notice that the frequency of pull requests is
higher among paid-tier repositories (38.6%) compared to the free-
tier (25.3%). Furthermore, half of the VM time of the free tier is
consumed by push events, contrary to the paid tier, where half of
the VM time is consumed by pull requests. We attribute this phe-
nomenon to differences in size and popularity: Paid-tier repositories
tend to be larger and more popular, i.e., they have more collabora-
tors, and hence, more activity through pull requests. In our dataset,
the average number of collaborators triggering a workflow in a
paid-tier repository is 22 compared to 12 per free-tier repository.

The average runtime of a workflow varies depending on the
specific triggering event, primarily due to the differing jobs and
tasks executed by each event. Remarkably, the longest running
workflows are workflows triggered by a dispatch event, which
means that the developer triggered the workflow manually either
through the browser interface, GitHub CLI, or GitHub REST API.
Using name-based analysis, we observe that the top tasks executed
in dispatched workflows are build, test, and release.

Depending on the triggering event, paid-tier workflows take
7–100x longer than free-tier workflows. Of course, a larger average
runtime directly correlates with larger monetary costs. For example,
pull requests in paid-tier repositories cost 36 cents, on average,
whereas they cost only 4 cents in free-tier repositories. This finding
motivates paid-tier repositories to optimize their workflows, with
the goal of lowering costs and increasing development efficiency.

Finding 2: 97.1% of the total VM time in our dataset is con-
sumed by the top three triggers: push, pull request, and sched-
uled workflows. Paid-tier repositories have a higher frequency
of pull requests, and they take 7–100x longer to execute a
workflow compared to the free tier.

Table 2: Summary of resource consumption by CI/CD tasks.

Task
Overall (%) Avg. per run

VM time Runs VM time (min) ∗ VM cost ($)
Paid Free Paid Free Paid Free Paid Free

Test 54.6 35.9 51.1 33.8 8.0 (7.2) 1.6 (1.4) 0.10 0.02
Build 36.6 51.8 28.4 52.1 9.6 (8.3) 1.5 (1.2) 0.12 0.02
Release 3.5 1.0 2.4 1.8 10.0 (19.9) 0.8 (0.7) 0.08 0.01
Analyze 1.9 6.8 2.1 3.1 6.6 (5.6) 3.4 (2.4) 0.08 0.04
Lint 1.0 2.5 5.3 4.9 1.8 (1.7) 0.8 (0.5) 0.02 0.00
Linux 0.9 0.4 1.5 0.4 4.5 (1.9) 1.4 (1.6) 0.05 0.02
Update 0.7 0.2 5.7 0.5 1.0 (1.0) 0.7 (1.2) 0.01 0.01
Integration 0.4 0.8 1.2 0.5 2.6 (2.1) 2.4 (1.4) 0.03 0.03
Deploy 0.3 0.5 1.6 2.2 1.2 (1.5) 0.3 (0.2) 0.01 0.00
Sync 0.1 0.1 1.7 0.8 0.2 (0.0) 0.2 (0.1) 0.00 0.00

∗ mean (inter-quartile range)

4.1.3 CI/CD Tasks and their Costs. To understand which CI/CD
tasks account for resource usage, we classify the jobs executed as
part of workflows using the name-based analysis described in Sec-
tion 3.3. Table 2 shows the results. Among the jobs covered by the
name-based analysis, testing and building are the dominant tasks
both in terms of VM time and number of runs. On average, execut-
ing a testing job costs 10 cents, while a building job costs 12 cents.
Releases and analyzing the code are also relatively time-expensive
tasks, but are performed less frequently (less than 3% each).6 Ta-
ble 2 also shows that paid-tier repositories have a higher testing
frequency compared to building, while for free-tier repositories
building is more frequent. One possible explanation is that free-tier
repositories trigger 30.2% of builds in scheduled workflows, which
leads to higher, and potentially unnecessary, frequency of builds.

Finding 3: The most commonly executed CI/CD tasks are
testing and building, which together consume around 90% of
the total VM time among the top 10 studied tasks.

Our findings indicate that testing and building are critical tasks
in workflows, and that optimizing these tasks could result in sig-
nificant reductions of the consumed computing resources. De-
velopers hence can benefit from techniques that optimize CI/CD
pipelines [21, 22]. In addition, developers could use tools to reduce
the size of the test suite, while keeping the same code coverage to
help optimize the testing time [19, 31].

4.1.4 Termination Status of Workflows. We also study the termi-
nation status of workflows, as it may hint at possibilities for op-
timizations. Workflows can terminate with one of the following
conclusions: success, failure, skip, canceled, startup failure, action
required, or stale. Table 3 presents the proportion of workflow runs
and VM time corresponding to each conclusion. While the major-
ity of workflows for both the paid tier (78.8%) and the free tier
(88.9%) succeed, i.e., all jobs and steps complete successfully, a non-
negligible fraction of workflows fails (17.4% and 10%, respectively).
6Our manual inspection shows that the name “Linux” is usually used with tests or
builds when they are meant to be on Linux. For example, a workflow file might have the
name tests.yml, while the jobs names are: Linux, Windows-10, and Mac-OS, referring
to testing on these platforms.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Islem Bouzenia and Michael Pradel

Table 3: Termination status: comparison between free tier
and paid tier.

Status Runs proportion % VM time proportion %

Paid Free Paid Free

Success 78.7 88.9 66.3 81.1
Failure 17.4 10.0 30.9 18.0
Skipped 2.2 0.6 0.0 0.0
Canceled 1.5 0.3 2.7 0.8
Startup failure 0.1 0.1 0.0 0.0
Action required < 0.1 0.1 0.0 0.0
Stale < 0.1 0.0 0.0 0.0

Surprisingly, there appears to be a disparity in success percentages
between free-tier and paid-tier repositories. The difference can be
attributed to the lower complexity of free-tier repositories, which
results in simpler tests and builds with fewer errors. A detailed in-
spection of our data, however, reveals that the free-tier repositories
have a lower frequency of contributions (in the form of push or
pull requests). Furthermore, our findings show that the activated
workflows, at some point of time, in these repositories are primarily
scheduled workflows, which account for a significant proportion
(40.3%) and predominantly end with success due to rare or slow
evolution of the repository.

The table also shows how much VM time is spent on workflows
with a particular termination status. Interestingly, workflows that
end in failure impose a disproportionately high computational cost,
which motivates some of the optimizations studied in RQ2 and RQ3.
A workflow is considered failed even if only a single job within it
fails, resulting in the inclusion of the execution time of successful
jobs in the failure time calculation. Furthermore, certain scenarios
exist where the cancellation of a job leads to the termination of
the workflow as a failure rather than a mere cancellation event.
For instance, when a job exceeds its timeout, it is canceled, but
the corresponding workflow run is classified as failed, thereby
incorporating the canceled job’s time into the overall failure time.
The average VM time for successful jobs is 7.1 minutes, while it is
7.4 minutes for failed jobs, and 19.0 minutes for canceled jobs.

Finding 4:Due to less evolution and repeated successful sched-
uled workflows, free-tier repositories have a higher rate of suc-
cessful workflows. Timed-out jobs cause a spike to the overall
time of failed runs.

Our findings provide empirical motivation for work on predict-
ing job failures and on prioritizing those jobs that are most likely
to fail [21, 30]. Furthermore, optimizing failing scheduled work-
flows, as well as timed-out workflows, emerges as an intriguing
optimization target. For instance, we observed a specific repository
with a scheduled workflow set to execute every 5 minutes, which
has consistently experienced failures over the course of the past
months, amounting to a staggering 12,000 consecutive failures. In
RQ3, we will delve into the discussion of optimization techniques
specifically tailored for addressing failing jobs, such as timed-out
workflows and other types of failures.

4.2 Current Optimizations and their
Effectiveness (RQ2)

The following addresses the questions to what extent workflows use
currently available optimizations, and how these optimizations im-
pact the consumed resources. We study the prevalence and impact
of six optimizations, summarized in Table 4.

4.2.1 Caching. Usually, each job starts with a clean runner image
and then has to download any dependencies and other data as part
of the job’s execution. This process results in increased network
utilization, longer runtime, and higher costs. To avoid repeatedly
creating the same state, workflows can use a caching mechanism,
which allows files to be reused across multiple runners. This op-
timization is provided as an action, which has been continuously
evolving, currently encompassing versions 1 through 3.

Measuring saved time. We compute the time savings achieved by
workflows that use caching by comparing the VM time 𝑡𝑜𝑝𝑡 of every
caching-enabled run to the VM time 𝑡𝑛𝑜_𝑜𝑝𝑡 of another run of the
same workflow. Specifically, 𝑡𝑛𝑜_𝑜𝑝𝑡 is for the closest-in-time run of
the workflow that does not use caching. The difference 𝑡𝑛𝑜_𝑜𝑝𝑡−𝑡𝑜𝑝𝑡
between these two runs represents the saved time. In some cases, the
difference may be negative, indicating that incorporating caching
does not have the intended effect. To isolate the impact of other
changes introduced to the repository, we select changes where only
the cache action is modified, which represents 51.3% of the total
cases.

Prevalence and Impact. 32.9% of paid-tier repositories and 17.8%
of the free-tier use caching at least once in their workflows, which
reduces the execution time by an average of 3.4% and 6.0%, respec-
tively. The saved time leads to a reduction in annual costs by $21.48
for the paid tier.

Take-away. The cache action is easy to use as it only requires
adding one line to the workflow file to call the action. Given its ease
of use and its impact on VM time, we believe that the cache option
should be used more often, especially by paid-tier repositories.

4.2.2 Fail-Fast. This optimization applies to workflows that define
an entire matrix of jobs, which is used, e.g., to run similar jobs on
different operating systems. If fail-fast is enabled, then the platform
will cancel all in-progress and queued jobs in the matrix as soon as
any job in the matrix fails.

Measuring saved time. The saved time is measured by first se-
lecting all those runs with a matrix of jobs where one of the jobs
ended in failure, which causes the other runs to be canceled. We
call the time taken by such a workflow 𝑡𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑 . As a reference
for comparison, we identify for each such run the closest-in-time,
non-failing run of the same workflow, and we call its execution
time 𝑡𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑒𝑑 . The difference 𝑡𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑒𝑑 − 𝑡𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑 between the
two runs is the saved time.

Prevalence and impact. This option is slightly more adopted by
free-tier (83.5%) than paid-tier (75.9%) repositories. The high adop-
tion rate is likely due to the fact that fail-fast is enabled by default.
This option reduces VM time by 1.5% and 2.0% for paid-tier and
free-tier repositories, respectively.

Resource Usage and Optimization Opportunities in Workflows of GitHub Actions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Prevalence and impact of workflows optimizations.

Optimization Default Adoption rate (%) Impacted runs (%) Impact on VM time (%) Annual cost delta / repo ($)

Paid Free Paid Free Paid Free Paid Free
Cache Off 32.9 17.8 100.0 100.0 -3.4 -6.0 -21.48 -0.59
Fail-fast On 75.9 83.5 3.1 4.7 -1.5 -2.0 -2.13 -4.21
Cancel-in-progress Off 10.1 4.6 9.1 1.5 -4.1 -1.9 -55.14 -0.43
Skip workflow – 9.7 4.9 0.1 0.3 <-0.1 -0.4 -2.52 -0.75
Filtering target files Off 20.7 8.7 <0.1 <0.1 <-0.1 <-0.1 -2.20 -0.06
Custom timeout 360 mins 14.0 2.6 4.3 1.7 -8.1 -12.9 -58.33 -1.58

Take-away. Although the fail-fast option is activated in a major-
ity of repositories, its impact on VM time is relatively low, resulting
in a few dollars in annual savings per repository. Nevertheless,
we posit that enabling such an option by default is beneficial, and
GitHub could potentially identify other options to activate by de-
fault. This approach would promote efficiency and encourage de-
velopers to adopt these optimizations.

4.2.3 Cancel-In-Progress. This optimization allows developers to
automatically cancel an in-progress run of a job if a new run of the
same job is triggered in the meanwhile.

Measuring saved time. To quantify the saved time, we consider all
runs of workflows that use the cancel-in-progress option and that
are canceled. Let the VM time of such a run be 𝑡𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑 . Next, for
each such run, we check whether another run of the same workflow
starts within a 5-second interval following the cancellation of the
first run. Let the time taken by the second run be 𝑡𝑛𝑒𝑥𝑡 . Finally, the
time difference 𝑡𝑛𝑒𝑥𝑡 − 𝑡𝑐𝑎𝑛𝑐𝑒𝑙𝑒𝑑 between the newly triggered run
and the canceled run is the saved time.

Prevalence and impact. This optimization is used by 10.1% of
paid-tier repositories and only 4.6% of the free-tier ones. Within
the paid tier, Cancel-in-progress impacts 9.1% of runs, reduces VM
time by 4.1%, and saves $55.14 yearly per repository.

Take-away. This optimization is not widely invoked among the
paid-tier repositories. One explanation is that the vast majority of
these repositories accept pull requests from other developers. Can-
celling an ongoing workflow triggered by a pull request becomes
impractical when subsequent pull requests are submitted, as each
workflow is designed to assess the specific state of the repository
branch associated with the pull request submitter, e.g., via testing.
Additionally, this optimization option solely impacts workflow runs
triggered by push and pull requests, meaning that even if invoked,
it cannot be utilized in 35.0% of the runs.

4.2.4 Skip Workflow. Workflows that are triggered by repository
pushes and pull requests are executed for each of these events. By
adding any of the following strings to a commit message, developers
can skip the execution of all workflows: [skip ci], [ci skip], [no ci],
[skip actions], [actions skip].

Measuring saved time. For commits with a “skip workflow” note,
we estimate the saved time as the VM time of the run closest in
time to the skipped one.

Prevalence and impact. 9.7% of paid-tier repositories have used
this option in at least one of their commit messages. The option to
skip workflows is used in very few commits and thus impacts only
a small number of runs.

Take-away. The infrequent use of this option results in only
limited time savings. One explanation for its sparse usage could
be the lack of awareness surrounding the availability of such an
option. To address this issue, GitHub could implement a prompt
message via their GitHub CLI or GitHub Desktop app, which would
inquire whether users want to trigger workflows upon pushing a
commit. This approach would not only enhance the practicality of
the option but also raise awareness of its existence.

4.2.5 Filtering Target Files. Developers can specify whether a work-
flow runs based on the kind of file edited as part of an event that
triggers the workflow, e.g., the files edited in a commit. The target
file can be specified via a white list or a black list of files.

Measuring saved time. When all of the files changed by a commit
are in the black list of a workflow and none are in the white list, the
workflow is marked as skipped. This information is used to select
skipped workflows during the time interval where path filtering
is used. We consider the saved time as the total VM time of the
run that is temporally closest to the run that was skipped for each
skipped run of the same workflow.

Prevalence and impact. This option is adopted by 20.7% of paid-
tier repositories. However, it leads to only $2.20 of yearly savings.

Take-away. Although this option is used in roughly one-fifth of
paid-tier repositories, the affected runs and their impact on VM time
remain minor. This option only saves time when all files modified
by a commit are filtered out, which happens infrequently. These
results will help developers gain insights on how beneficial this
optimization is overall.

4.2.6 Custom Timeout. Instead of relying on the default timeout
of jobs, which is 360 minutes (6 hours), workflows can explicitly set
a custom timeout. Repositories may use this option to stop work-
flows from running unnecessarily long, which may be particularly
useful to prevent contributors, e.g., via pull requests, to trigger
long-running workflows.

Measuring saved time. The saved time for each timed-out job is
calculated as the difference between the timeout threshold value
and the longest VM time the timed-out job has ever taken. The
reasoning behind this measurement is that if the timeout threshold

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Islem Bouzenia and Michael Pradel

is not used, the job may execute for a longer period of time, and the
maximum VM time a job has ever reached serves as an estimate of
how long that job would run.

Prevalence and impact. 14.0% of the paid-tier repositories use
a custom timeout at some point, which impacts 4.3% of runs and
leads to a decrease of 8.1% in VM time, equivalent to saving $58.33
yearly per repository. While only 2.6% of the free-tier repositories
use this option, it reduces VM time by 12.9%.

Take-away. Setting a timeout for jobs is a powerful option and
should be used more often. However, developers lack direct tools
that help them set the timeout to a value that maximizes their
saving while keeping the risk of interrupting a normally lasting job
low. We hypothesize that artificial intelligence techniques could
be used to predict a near-optimal timeout value for a job based on
the job itself and the history of the repository, which future work
should explore further.

Finding 5: Paid-tier repositories are generally more likely to
adopt optimization mechanisms (except for fail-fast), which
shows the importance of optimizations to those repositories.
The studied mechanisms save up to $60, on average per year
and repository.

4.3 Optimization Opportunities (RQ3)
The following presents four optimization mechanisms designed to
reduce the amount of time and resources consumed by executed
workflows. Currently, these mechanisms are not present in the
proposed form on GitHub Actions, but our results suggest that
they could significantly reduce both computational and financial
costs. Some of the discussed mechanisms resemble optimizations
proposed for regression testing and for other CI/CD platforms (Sec-
tion 7), and we do not claim novelty of the mechanisms. Instead, this
research question quantifies the extent to which the optimization
mechanisms would affect workflows and estimates their impact on
costs. To this end, we estimate the impact of each mechanism had
it been implemented for the workflow runs in our dataset. Table 5
summarizes our main results. We focus mainly on the paid-tier
repositories. Nevertheless, we also report the impact on free-tier
repositories given between parenthesis in each row of the table.

4.3.1 Deactivate Scheduled Workflows After k Consecutive Failures.
This mechanism aims to deactivate any scheduled workflow that,
based on its previous runs, is likely to fail. In our dataset, scheduled
workflows account for 29.8% of all runs and consume 15.4% of total
VM time. Notably, 13% of these scheduled runs result in failure.
Inspecting the sequence of failing scheduled workflows over time
in our dataset reveals that numerous scheduled workflows continue
to execute and fail consecutively before developers intervene. To
address this issue, we propose an optimization mechanism that
deactivates a scheduled workflow after k consecutive failures, and
sends a notification to the developers. The rationale behind this
approach is to prevent further resource wastage until developers
examine and address the cause of the failures.

A hyperparameter of this mechanism is the number k of consec-
utive failures after which the mechanism deactivates the workflow.

With k=3, the optimization impacts 4.5% of the paid-tier runs, and
in particular, it impacts 17.2% of scheduled runs, which saves 3.2%
of the total VM time of all runs and 21.3% of VM time of all sched-
uled runs of the paid tier. The saved time corresponds to yearly
savings of $125.72 per impacted repository, on average. Setting the
parameter k to higher values decreases the proportion of impacted
runs and hence the saved time as shown in Table 6.

4.3.2 Deactivate Scheduled Workflows During Repository Inactivity.
Scheduled workflows usually perform a task related to the current
state of the repository. For example, a scheduled workflow may
build and release the software every day. However, by default a
scheduled workflow continuously runs even if the state of the repos-
itory does not change at all, which wastes resources. To overcome
this issue, we propose an optimization mechanism that prevents a
scheduled workflow from running if there was no activity between
the previous, already executed scheduled run and the scheduled
run that is about to start. Currently, GitHub Actions deactivates
scheduled workflows after six months of inactivity, which may lead
to many unnecessary workflow runs in the meanwhile.

Evaluating this mechanism on our dataset shows that it affects
4.3% of paid-tier runs, and in particular, 16.3% of the scheduled
workflows. Deactivating these workflows while their repositories
do not change leads to a decrease of 1.1% in VM time of scheduled
workflows . The saved time translates to yearly savings of $10.41 per
impacted repository, on average. Unfortunately, some scheduled
workflows write changes into the repository (e.g., change build log)
at the end of the workflow execution, which would appear as an
activity in the repository. An improvement over our heuristic is to
ignore changes made by the scheduled workflow itself.

4.3.3 Run Previously Failed Jobs First. This optimization mecha-
nism addresses workflows that execute multiple jobs, e.g., by run-
ning a test suite on different operating systems. We observe that
when a job in such a workflow fails, the same job sometimes also
fails in the subsequent run of the workflow. The idea of the op-
timization is to reorder jobs within a workflow to prioritize the
execution of previously failed jobs. If a previously failed job fails
again, the reordering will prevent the other, previously succeeding
jobs from being executed a second time, which saves the VM time
they would consume. If, instead, the previously failed job succeeds,
then all other jobs will be run as well, and there will be no saved
VM time.

Implementing this mechanism affects 1% of all runs, and in partic-
ular, 29.8% of failed runs of paid-tier repositories. The optimization
results in a 1.1% reduction in VM time across all runs and in a 31.6%
reduction for failed runs. The saved time translates to yearly savings
of $17.89 per impacted repository, on average. Besides reducing the
computational and monetary cost of workflows, running previously
failed jobs first could also speed up the development process. The
reason is that the developers will potentially see a failure faster,
and hence, can react to it earlier.

4.3.4 Job-Specific Timeouts. Jobs run as part of a workflow may
take longer than expected, and in the worst case, even fail to ter-
minate, e.g., due to an infinite loop or because of waiting for an
external event. By default, the GitHub Actions platform terminates
jobs after a timeout of six hours, which is a generous value given

Resource Usage and Optimization Opportunities in Workflows of GitHub Actions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Prevalence and impact of our suggested optimization techniques in paid tier (free tier).

Optimization heuristic Impacted runs ∗ Time saving ∗ Annual cost delta
per repository in $ ∗

Deactivate scheduled workflows
after k consecutive failures (k=3)

4.5% (<0.1%) of all runs
17.2% (1.0%) of scheduled runs

3.2% (<0.1%) of all runs time
21.3% (4.5%) of scheduled runs time -125.72 (-1.55)

Deactivate scheduled workflows
during repository inactivity

4.3% (0.2%) of all runs
16.3% (0.5%) of scheduled runs

<0.1% (<0.1%) of all runs time
1.1% (<0.1%) of scheduled runs time -10.41 (-7.97)

Run previously failed jobs first 1.0% (0.8%) of all runs
29.8% (7.7%) of failed runs

1.1% (<0.1%) of all runs time
31.6% (45.3%) of failed runs time -17.89 (-0.77)

Project-specific timeouts 0.5% (<0.1%) of all runs 3.5% (2.2%) of all runs time -173.71 (-47.49)
∗ measurement for paid tier (measurement for free tier)

Table 6: Sensitivity of deactivating scheduled workflows to
the parameter k.

k 1 2 5 10 15 20
Impact on VM time (%) -3.8 -3.4 -2.8 -2.3 -1.9 -1.6

that, on average, jobs are running for only 6.3 minutes. Instead,
we assess the impact of imposing a job-specific timeout set to be
sufficient for all runs of a job that finish within the current six-hour
timeout.

Specifically, we consider for each job the maximum time 𝑡𝑚𝑎𝑥

that a non-timed-out run of the job has ever consumed, compute
a timeout value that adds a 10% buffer on top of this value, i.e.,
timeout = 1.1 ∗ 𝑡𝑚𝑎𝑥 , and then assume the job-specific timeout of
each job to be𝑚𝑖𝑛(timeout, 6ℎ). While we determine a suitable job-
specific timeout for the jobs in our dataset after the fact, a practical
implementation of this optimization mechanism could estimate
the timeout based on past runs of a job. To estimate the impact
of the optimization, we consider every run of a job in our dataset
that exceeds the 6-hour default limit. The difference between our
job-specific timeout and the 6-hour default is VM time saved by
the optimization.

Implementing this mechanism would affect only 0.5% of all runs
but would yield a 3.5% reduction in total VM time. The reason for
this relatively large difference is that unnecessarily waiting until
the 6-hour default timeout occurs can easily consume many VM
minutes. On average per repository, the optimization leads to a
yearly cost saving of $173.71.

Finding 6: Estimating the impact of four currently missing
optimization mechanisms shows a savings potential up to 3.5%
of the total VM time observed in our dataset.

In general, our results show that the proposed techniques have
most impact both on the number of runs and on VM time when
applied to paid-tier repositories. By implementing these suggested
mechanisms, developers and the GitHub platform could benefit
from reduced resource consumption, cost savings, and improved
CI/CD pipeline performance. Our empirical results offer guidance
on which mechanisms are the most promising. We believe that
integrating these heuristics into the GitHub Actions ecosystem

would be relatively straightforward due to the simplicity of the
optimizations. Reducing the cost imposed by workflows will help
GitHub to maintain its commitment to providing free resources to
open-source projects, while reducing its costs, and also makes the
platform more attractive to paying users.

5 DISCUSSION
Costs and impact of GitHub Actions. The growing popularity of

GitHub Actions, combined with the computational demands of
CI/CD tasks, results in substantial costs. This is the first study to
quantify these costs, taking into account both their monetary and
temporal aspects. Raising awareness of CI/CD costs is relevant to
both platform providers, e.g., GitHub, which provides significant
resources for free to public repositories, and for developers with
non-free accounts. Our findings can help both to better understand
resource consumption and how to reduce it. Reducing the resources
consumed by CI/CD could also have a positive environmental im-
pact because computation contributes significantly to global carbon
emissions [5, 33].

Efficiency and optimization techniques. Our study performs an
in-depth analysis of the optimization-related configuration options
offered by GitHub that could lead to reduced VM time. The cur-
rently low adoption rate of some optimizations suggests that better
documentation and tool support could guide developers toward
more resource-efficient workflows. For example, activating some
optimizations by default or suggesting the best configuration set
based on the task (test, build, etc.) are promising directions. Such
enhancements could help reduce resource waste and increase soft-
ware development efficiency. In addition, our study quantifies the
impact of these optimizations on VM time, giving developers an
idea about the most effective techniques. It would be interesting to
see similar measurements provided by GitHub on a larger scale.

Motivated by the room for improvement, we suggest and em-
pirically evaluate optimization mechanisms that are currently not
present on GitHub Actions. These mechanisms promise a consid-
erable impact, which could complement existing optimizations. It
would be interesting to study how developers react and use these
techniques in practice.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Islem Bouzenia and Michael Pradel

6 THREATS TO VALIDITY AND LIMITATIONS
Our study is exposed to several factors that could limit the gen-
eralizability and validity of the findings. To begin, our analysis is
based on a dataset of 952 repositories, which is a small subset of
the hundreds of millions of repositories on GitHub. As a result, our
sample may not be representative of all repositories. In addition,
our research is limited to GitHub Actions, which is only one of
many CI/CD platforms. It would be interesting to investigate how
our results about GitHub compares to other platforms. Next, our
monetary cost estimate is based on GitHub’s pricing model, which
most likely includes not only the actual cost but also a margin
of profit. Thus, the cost estimates presented in this study may be
slightly inflated. Moreover, our name-based analysis of jobs and
their corresponding CI/CD tasks may not be completely accurate.
In particular, our methodology leaves the task of 30.7% of jobs un-
classified, which may have an impact on our overall understanding
of resource utilization patterns.

Our results on the benefits of optimizations are estimates, and
hence, may not be fully accurate. For example, reordering jobs, as
proposed when running previously failed jobs first, may not be pos-
sible when jobs dependent on one another. However, our analysis
shows that only 10.3% of workflows implement such dependencies,
and we exclude such workflows. When studying fail-fast usage, we
consider only jobs in a matrix without considering concurrency
groups where fail-fast is also applicable. In our dataset, 3.5% of
workflows use concurrency groups, which we ignore. Finally, in
the context of RQ2, with the exception of caching, estimating the
expected VM time relies on comparing a workflow run with the
temporally closest run, which ignores any changes committed to
the repository between these two runs. However, analyzing the
time difference between consecutive workflow runs in our dataset,
we find that, on average, there is a 0.6% increase in the VM time
(with an interquartile range of 1.0%). While this effect is relatively
small, it remains a potential threat to validity, as the specific value
varies across workflows.

Finally, because the hardware that workflows are executed on
is unknown to us, our study does not account for potential differ-
ences in hardware specifications. Instead, all our results assume
the minimum hardware configuration. This limitation may cause
some variation in our estimates of resource usage and optimization
opportunities. In addition, users also pay for used storage. Unfortu-
nately, the GitHub API currently does not give information about
storage usage, and hence, we cannot study it here.

7 RELATEDWORK
Prevalence of CI/CD. Several studies show the prevalence and im-

portance of CI/CD. For example, Hilton et al. [18] reported already
in 2016 that 70% of the most popular projects and 40% of all GitHub
projects use continuous integration. A study of tests run during CI
at Google shows that on an average day, 800k builds and 150M test
runs are performed [29]. The TravisTorrent dataset includes logs
of millions of Travis CI builds [3], which has enabled studies of the
Travis CI platform, e.g., on build failures [2].

Empirical studies on GitHub Actions and other CI platforms. Since
its inception in 2019, GitHub Actions has been established as a
major CI/CD platform. For example, a recent study reports that 44%

of the studied projects are using GitHub Actions [9]. Other studies
confirm the increasing adoption of GitHub Actions and show how
using the platform affects development, e.g., measured in terms of
merged pull requests [7, 23, 39]. There also are studies on security
issues related to workflows [4, 24]. Our work fundamentally differs
from the existing studies by providing the first in-depth study of
resource usage and optimizations. Beyond GitHub Actions, other
CI platforms have been studied, e.g., CircleCI [13]. Comparing the
resource usage patterns of across different platforms would be
interesting future work.

Bad practices in CI/CD. Some of our results point out suboptimal
practices in using the resources offered along with GitHub Actions,
which relates to prior work on studying [34] and detecting [38]
bad practices in CI/CD. For example, Gallaba and McIntosh [14]
propose automated detection of anti-patterns in Travis CI specifica-
tions, such as misspelled property names and running commands
unrelated to the current CI phase. A study shows that unhealthy CI
practices are relatively common, e.g. infrequent commits, running
test suites despite poor test coverage, and taking long to fix a bro-
ken build [11]. Work by Zampetti et al. [40] reveals bad practices
via developer interviews and mining Stack Overflow, e.g., misman-
agement of branches and incorrect versioning. None of the above
work is on resource usages and bad practices related to them, which
is the contribution of this paper. Vassallo et al. report that many
developers consider slow builds to be problematic [37], which, as
shown in RQ1, is an important contribution to the overall time
required by workflows.

Improving CI/CD. Various techniques for improving CI/CD have
been proposed. One line of work is about predicting the outcome of
a build, which may give developers feedback faster than waiting for
the actual build outcome [16, 35]. A related idea is about predicting
the outcome of builds [6, 20, 22] and test suite executions [30]
in order to skip unnecessary builds. This ideas relates to some of
the optimization opportunities we point out in Section 4.3. We
contribute by quantifying the cost savings that optimizations could
provide.

Studying and optimizing regression testing. As regression testing
accounts for a large part of the overall CI/CD costs (Section 4.1), var-
ious studies and techniques are about optimizing it. Labuschagne
et al. [25] study how many failures are typically detected by regres-
sion testing and what reasons, e.g., flaky tests, cause these failures.
To reduce the time taken by running regression tests, techniques
for test selection and test prioritization [10, 27, 32], for test case
failure prediction [1, 28], and for prioritizing commits for which re-
gression testing should be performed first [26] have been proposed.
Jin and Servant [21] compare different techniques for selecting and
prioritizing tests and builds. All these techniques operate at a more
fine-grained than job-level or workflow-level optimizations, as they
aim at reducing the cost of a specific kind of job, and hence are
orthogonal to the optimizations we study in this work. Kotinos [12]
propose to accelerate CI builds by automatically inferring opportu-
nities for caching and for skipping of builds, based on monitoring of
system calls. Their work agrees with our finding that many projects
could optimize their CI and shows a concrete technique to help
reach this goal.

Resource Usage and Optimization Opportunities in Workflows of GitHub Actions ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Supporting developers in using CI. To help developers in using
CI/CD platforms, Ziftci and Reardon [41] propose a technique for
finding the code change that caused a test failure. Other work helps
by localizating and fixing build errors [36]. Finally, Hilton et al. [17]
report on interviews with developers, which reveal the motivations
for adopting CI systems and barriers developers facein this process.
We envision the findings of our study to motivate future techniques
that help developers in reducing the computational cost of CI.

8 CONCLUSION
This paper presents the first empirical study of resource utiliza-
tion and optimization opportunities within the GitHub Actions
platform, shedding light on the complexities of CI/CD processes
and their associated costs. Our findings highlight the importance
of implementing more efficient workflows and utilizing available
optimization techniques, which reduces costs and helps speed up
the development process. Furthermore, the findings call for im-
proved documentation and tool support to guide developers toward
resource-efficient practices. Overall, our work contributes to the
development of a more sustainable and efficient software develop-
ment ecosystem by identifying existing inefficiencies and proposing
novel optimization heuristics.

DATA AVAILABILITY
Our code and data are available at: https://doi.org/10.5281/zenodo.
8344575

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC,
grant agreement 851895), and by the German Research Foundation
within the ConcSys and DeMoCo projects. We would also like to
thank the reviewers for their valuable feedback that helped improve
the paper.

REFERENCES
[1] Jeff Anderson, Saeed Salem, and Hyunsook Do. 2015. Striving for failure: an

industrial case study about test failure prediction. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 2. IEEE, 49–58.

[2] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In International
Conference on Mining Software Repositories.

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In IEEE/ACM International Conference on Mining Software Repositories.

[4] Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic Secu-
rity Assessment of GitHub Actions Workflows. In Proceedings of the 2022 ACM
Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses.
ACM, Los Angeles CA USA, 37–45. https://doi.org/10.1145/3560835.3564554

[5] Rajkumar Buyya, Anton Beloglazov, and Jemal Abawajy. 2010. Energy-efficient
management of data center resources for cloud computing: A vision, architectural
elements, and open challenges. arXiv preprint arXiv:1006.0308 (2010).

[6] Bihuan Chen, LinLin Chen, Chen Zhang, and Xin Peng. 2020. BuildFast: History-
Aware Build Outcome Prediction for Fast Feedback and Reduced Cost in Contin-
uous Integration. In ASE.

[7] Tingting Chen, Yang Zhang, Shu Chen, Tao Wang, and Yiwen Wu. 2021. Let’s
Supercharge the Workflows: An Empirical Study of GitHub Actions. In 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE, Hainan, China, 01–10. https://doi.org/10.1109/QRS-
C55045.2021.00163

[8] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects
in GitHub for MSR Studies. Technical Report arXiv:2103.04682. arXiv. http:
//arxiv.org/abs/2103.04682 arXiv:2103.04682 [cs] type: article.

[9] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. 2022.
On the Use of GitHub Actions in Software Development Repositories. In 2022 IEEE

International Conference on Software Maintenance and Evolution (ICSME). IEEE,
Limassol, Cyprus, 235–245. https://doi.org/10.1109/ICSME55016.2022.00029

[10] Sebastian G. Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
improving regression testing in continuous integration development environ-
ments. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16
- 22, 2014, Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey
(Eds.). ACM, 235–245. https://doi.org/10.1145/2635868.2635910

[11] Wagner Felidré, Leonardo Furtado, Daniel A da Costa, Bruno Cartaxo, and Gus-
tavo Pinto. 2019. Continuous integration theater. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
1–10.

[12] Keheliya Gallaba, John Ewart, Yves Junqueira, and Shane McIntosh. 2022. Ac-
celerating Continuous Integration by Caching Environments and Inferring
Dependencies. IEEE Trans. Software Eng. 48, 6 (2022), 2040–2052. https:
//doi.org/10.1109/TSE.2020.3048335

[13] Keheliya Gallaba, Maxime Lamothe, and Shane McIntosh. 2022. Lessons from
Eight Years of Operational Data from a Continuous Integration Service: An Ex-
ploratory Case Study of CircleCI. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
1330–1342. https://doi.org/10.1145/3510003.3510211

[14] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous
integration features: An empirical study of projects that (mis) use Travis CI. IEEE
Transactions on Software Engineering 46, 1 (2018), 33–50.

[15] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2022. On the rise and fall of
CI services in GitHub. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, Honolulu, HI, USA, 662–672. https:
//doi.org/10.1109/SANER53432.2022.00084

[16] Ahmed E. Hassan and Ken Zhang. 2006. Using Decision Trees to Predict the
Certification Result of a Build. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE ’06). IEEE Computer Society,
USA, 189–198. https://doi.org/10.1109/ASE.2006.72

[17] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 197–207.

[18] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 426–437.

[19] Hwa-You Hsu and Alessandro Orso. 2009. MINTS: A general framework and tool
for supporting test-suite minimization. In 2009 IEEE 31st international conference
on software engineering. IEEE, 419–429.

[20] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to Building
in Continuous Integration. In ICSE.

[21] Xianhao Jin and Francisco Servant. 2021. What helped, and what did not?
An Evaluation of the Strategies to Improve Continuous Integration. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE).

[22] Xianhao Jin and Francisco Servant. 2022. Which builds are really safe to skip?
Maximizing failure observation for build selection in continuous integration.
Journal of Systems and Software 188 (June 2022), 111292. https://doi.org/10.1016/
j.jss.2022.111292

[23] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and Christoph Treude.
2021. How Do Software Developers Use GitHub Actions to Automate Their
Workflows? (2021). https://doi.org/10.48550/ARXIV.2103.12224

[24] Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, SiddharthMuralee,
Bradley Reaves, Alexandros Kapravelos, and Aravind Machiry. 2022. Charac-
terizing the Security of Github CI Workflows. In 31st USENIX Security Sympo-
sium (USENIX Security 22). USENIX Association, Boston, MA, 2747–2763. https:
//www.usenix.org/conference/usenixsecurity22/presentation/koishybayev

[25] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: A study of Java projects using continuous
integration. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering. 821–830.

[26] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining priori-
tization: continuous prioritization for continuous integration. In Proceedings of
the 40th International Conference on Software Engineering. 688–698.

[27] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. 2016. How does regression test prioritization perform in real-
world software evolution?. In Proceedings of the 38th International Conference on
Software Engineering. 535–546.

[28] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive test selection. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Montreal,
QC, Canada, May 25-31, 2019, Helen Sharp and Mike Whalen (Eds.). IEEE / ACM,
91–100. https://doi.org/10.1109/ICSE-SEIP.2019.00018

[29] Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric Nickell, Rob
Siemborski, and John Micco. 2017. Taming Google-Scale Continuous Testing.

https://doi.org/10.5281/zenodo.8344575
https://doi.org/10.5281/zenodo.8344575
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
http://arxiv.org/abs/2103.04682
http://arxiv.org/abs/2103.04682
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1109/TSE.2020.3048335
https://doi.org/10.1109/TSE.2020.3048335
https://doi.org/10.1145/3510003.3510211
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/ASE.2006.72
https://doi.org/10.1016/j.jss.2022.111292
https://doi.org/10.1016/j.jss.2022.111292
https://doi.org/10.48550/ARXIV.2103.12224
https://www.usenix.org/conference/usenixsecurity22/presentation/koishybayev
https://www.usenix.org/conference/usenixsecurity22/presentation/koishybayev
https://doi.org/10.1109/ICSE-SEIP.2019.00018

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Islem Bouzenia and Michael Pradel

In 39th IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28,
2017. IEEE Computer Society, 233–242. https://doi.org/10.1109/ICSE-SEIP.2017.16

[30] Cong Pan and Michael Pradel. 2021. Continuous test suite failure prediction. In
ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, Denmark, July 11-17, 2021, Cristian Cadar and Xiangyu
Zhang (Eds.). ACM, 553–565. https://doi.org/10.1145/3460319.3464840

[31] Saeed Parsa and Alireza Khalilian. 2010. On the optimization approach towards
test suite minimization. International Journal of Software Engineering and its
applications 4, 1 (2010), 15–28.

[32] David Paterson, José Campos, Rui Abreu, GregoryMKapfhammer, Gordon Fraser,
and Phil McMinn. 2019. An Empirical Study on the Use of Defect Prediction
for Test Case Prioritization. In 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST). IEEE, 346–357.

[33] Chris Preist, Daniel Schien, and Eli Blevis. 2016. Understanding and mitigating
the effects of device and cloud service design decisions on the environmental
footprint of digital infrastructure. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. 1324–1337.

[34] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The seven sins: Security
smells in infrastructure as code scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 164–175.

[35] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. 2017. An Empirical Analysis
of Build Failures in the Continuous Integration Workflows of Java-Based Open-
Source Software. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 345–355.

[36] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine
Manzagol, Charles Sutton, and Edward Aftandilian. 2019. Learning to Fix Build

Errors with Graph2Diff Neural Networks. (2019).
[37] Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano Di Penta.

2019. Automated reporting of anti-patterns and decay in continuous integration.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and
JonWhittle (Eds.). IEEE / ACM, 105–115. https://doi.org/10.1109/ICSE.2019.00028

[38] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C. Gall, and Massi-
miliano Di Penta. 2020. Configuration smells in continuous delivery pipelines:
a linter and a six-month study on GitLab. In ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem De-
vanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 327–337. https:
//doi.org/10.1145/3368089.3409709

[39] Mairieli Wessel, Joseph Vargovich, Marco A. Gerosa, and Christoph Treude.
2022. GitHub Actions: The Impact on the Pull Request Process. (2022). https:
//doi.org/10.48550/ARXIV.2206.14118

[40] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,
Harald Gall, and Massimiliano Di Penta. 2020. An empirical characterization
of bad practices in continuous integration. Empirical Software Engineering 25
(2020), 1095–1135.

[41] Celal Ziftci and Jim Reardon. 2017. Who Broke the Build? Automatically Identify-
ing Changes That Induce Test Failures in Continuous Integration at Google Scale.
In 39th IEEE/ACM International Conference on Software Engineering: Software Engi-
neering in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017.
IEEE Computer Society, 113–122. https://doi.org/10.1109/ICSE-SEIP.2017.13

https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1145/3460319.3464840
https://doi.org/10.1109/ICSE.2019.00028
https://doi.org/10.1145/3368089.3409709
https://doi.org/10.1145/3368089.3409709
https://doi.org/10.48550/ARXIV.2206.14118
https://doi.org/10.48550/ARXIV.2206.14118
https://doi.org/10.1109/ICSE-SEIP.2017.13

	Abstract
	1 Introduction
	2 Background on GitHub Actions
	3 Methodology
	3.1 Data Collection
	3.2 Metrics of Resource Usage
	3.3 Name-Based Analysis of Jobs
	3.4 Prevalence and Impact of Optimizations

	4 Results
	4.1 Analysis of Resource Usage (RQ1)
	4.2 Current Optimizations and their Effectiveness (RQ2)
	4.3 Optimization Opportunities (RQ3)

	5 Discussion
	6 Threats to Validity and Limitations
	7 Related Work
	8 Conclusion
	References

