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Abstract—As quantum computing is becoming increasingly
popular, the underlying quantum computing platforms are grow-
ing both in ability and complexity. Unfortunately, testing these
platforms is challenging due to the relatively small number of ex-
isting quantum programs and because of the oracle problem, i.e.,
a lack of specifications of the expected behavior of programs. This
paper presents MorphQ, the first metamorphic testing approach
for quantum computing platforms. Our two key contributions
are (i) a program generator that creates a large and diverse set
of valid (i.e., non-crashing) quantum programs, and (ii) a set of
program transformations that exploit quantum-specific metamor-
phic relationships to alleviate the oracle problem. Evaluating the
approach by testing the popular Qiskit platform shows that the
approach creates over 8k program pairs within two days, many
of which expose crashes. Inspecting the crashes, we find 13 bugs,
nine of which have already been confirmed. MorphQ widens
the slim portfolio of testing techniques of quantum computing
platforms, helping to create a reliable software stack for this
increasingly important field.

I. INTRODUCTION

Quantum software engineering is seeing an increasing in-
terest from both academia and industry. Quantum computing
platforms, such as Qiskit by IBM, Circ by Google, and Q# by
Microsoft, are for this emerging field what traditional compil-
ers and execution environments are for traditional programs.
Ensuring the correctness of these platforms is crucial, since
bugs in the platforms may undermine advances in algorithms
and hardware. A recent study [1] shows that quantum comput-
ing platforms are still plagued with bugs, many of which are
due to quantum-specific bug patterns not present in traditional
software. The increasing importance of these platforms hence
calls for automated testing techniques targeted at them.

Effectively testing quantum computing platforms currently
faces two important challenges. (C1) First, there currently are
relatively few quantum programs, as the field is emerging
and developers are only beginning to exploit its potential.
From a testing perspective, this means that test inputs are a
scarce resource. (C2) Second, another challenge is the well-
known oracle problem [2], i.e., not having a specification
of the expected behavior triggered by an input. Determining
the expected behavior of a quantum program is particularly
challenging since programs are composed of low-level op-
erations, represented by gates, that translate to sometimes
counterintuitive and highly abstract operations.

This paper presents MorphQ, the first metamorphic test-
ing approach targeted at quantum computing platforms. The
approach addresses challenge C1 by proposing the first au-
tomatic generator of quantum programs. The generator com-
bines template-based and grammar-based code generation to
produce programs that use a diverse set of quantum gates and
options for compiling and executing them. To be effective,
the generator carefully considers quantum-specific constraints,
such as not applying any operation after a measurement gate
because it would destroy the quantum state. By respecting
these constraints, the generator creates programs that are valid
in the sense that they execute without crashing.

MorphQ addresses challenge C2 through a novel set of ten
metamorphic transformations. Following the idea of metamor-
phic testing [3], [4], these transformations change a given
source program into a follow-up program in such a way that
the two programs have an expected output relationship, e.g., to
be semantically equivalent. If the expected output relationship
does not hold, e.g., because the follow-up program crashes or
otherwise changes the behavior, the approach reports a warn-
ing. The metamorphic transformations are quantum-specific.
For example, they change the order of qubits, add null-effect
operations by exploiting the reversible nature of quantum com-
putation, partition a circuit that contains unrelated subcircuits,
or change the set of hardware gates a program is compiled to.

Our evaluation applies MorphQ to the popular Qiskit [5]
quantum computing platform. During a two-day testing period,
the approach generates, executes, and compares over 8k pairs
of quantum programs, many of which expose crashing bugs in
the platform under test. Manually inspecting a subset of the
warnings reported by MorphQ, we find and report 13 bugs,
nine of which have been confirmed by the Qiskit developers
so far. For example, these bugs are caused by incorrectly
implemented optimization passes, missing support for specific
kinds of programs, and mistakes in exporting a program to
QASM, an assembly-like language for quantum programs.

While testing traditional compilers has received significant
attention [6], we are aware of only one prior work, called
QDiff [7], on automatically testing quantum computing plat-
forms. MorphQ conceptually differs in multiple ways. While
QDiff starts from a small set of manually written programs,
MorphQ generates a large and diverse set of quantum pro-
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1 # Create circuit
2 circ = QuantumCircuit(2)
3 circ.h(0) # Hadamard gate
4 circ.cx(0, 1) # Controlled not gate
5 circ.measure_all()
6 # Transpile for simulator
7 simulator = Aer.get_backend(’aer_simulator’)
8 circ = transpile(circ, simulator)
9 # Run and get counts

10 result = simulator.run(circ, shots=1024).result()
11 counts = result.get_counts(circ)
12 # output: {’00’: 530, ’11’: 494}

Fig. 1: Example of a circuit to create entanglement.
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Fig. 2: Visual representation of Figure 1 (left) and example of
measurement result (right).

grams from scratch. Another difference is that QDiff is based
on differential testing that compares executions with different
optimization levels and backends, whereas we are the first to
present metamorphic transformations for quantum programs.
Beyond conceptual contributions, we also empirically show
our approach to complement prior work by finding previously
undetected bugs and by reaching higher code coverage.

In summary, this work makes the following contributions:

• A template-based and grammar-based program generator
that creates valid quantum programs to use for testing
purposes.

• Ten quantum-specific metamorphic relationships to enable
the first metamorphic testing framework for quantum com-
puting platforms.

• Integrating the approach with the popular Qiskit platform
and providing empirical evidence that MorphQ reveals 13
real-world, crashing bugs.

II. BACKGROUND ON QUANTUM COMPUTING

Unlike classical computing, which is based on classical
physics, quantum computing exploits the laws of quantum
mechanics to perform computation. Whereas in classical com-
puting the minimal unit of information is a bit, which is either
0 or 1, in quantum computing the base unit is a qubit, which
can be a superposition of 0 and 1, representing a quantum
state as |ϕ⟩ = α|0⟩+ β|1⟩. This superposition is manipulated
along the computation and eventually, each qubit is measured
into either 0 or 1, with probabilities |α|2 and |β|2, respectively.
Another important property is entanglement, which means that
the results of measuring two or more qubits are correlated.
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Fig. 3: Overview of our approach.

Figure 1 shows a simple quantum program, which creates
an entanglement between two qubits. The program applies a
Hadamard gate to the first qubit (line 3), which creates a
superposition |ϕ⟩ = 1√

2
|0⟩+ 1√

2
|1⟩, and then a controlled not

gate (line 4), which creates the entanglement between the first
and second qubit, leading to the state |ψ⟩ = 1

2 (|00⟩ + |11⟩).
The sequence of gates of a program is called a quantum circuit.

Figure 2, on the left, shows a pictorial representation of the
program. The figure includes two measurement gates, shown
in black, which store the result into a classical register of
two bits. Once the circuit has been defined, it is executed for
some number of shots (line 10 of Figure 1) to account for
the probabilistic nature of quantum programs. The execution
produces a distribution of output bit-strings, shown on the right
of Figure 2. For the example program, the only two outcomes
possible are bit-strings with either both 0 or both 1.

The ability to describe and execute quantum programs is
provided by a quantum computing platform. The above exam-
ple is based on IBM’s popular [7], [8], [9] Qiskit platform [5],
where programs are expressed using a Python API. The plat-
form then compiles and executes the program on a backend,
i.e., either a quantum computer or a simulator. Part of the
compilation is implemented in a transpiler, which optimizes
the circuit and prepares it for the backend. Because different
quantum computers offer different hardware gates, called the
gate set, the platform translates the program to the available
sequences of gates. How a program gets mapped to hardware
is also influenced by the physical connections between qubits,
which are represented in the so-called coupling map in Qiskit.

III. APPROACH

The following presents the MorphQ approach for metamor-
phic testing of quantum computing platforms. We start with an
overview and the overall algorithm (Section III-A), followed
by the three main steps: generating programs (Section III-B),
applying metamorphic transformations (Section III-C), and
comparing the behavior of program executions (Section III-D).
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Algorithm 1: MorphQ Approach
Input: Program generator G

Metamorphic relationships M
Behavior comparison component C

Result: Likely bug-revealing pairs B of programs
1 B ← ∅
2 while time budget tbudget not up do
3 ins ← G.generateProgram(); /*STEP 1*/
4 ntoApply ← random(1, maxM ); /*STEP 2*/
5 inf ← ins;
6 while napplied < ntoApply do
7 m← sample(M);
8 if m.checkPrecondition(inf ) then
9 inf ← m.apply(inf );

10 napplied ← napplied + 1;
11 if m is not semantics-preserving then
12 break;
13 outs, outf ← C.execute(ins, inf ); /*STEP 3*/
14 if C.checkRelation(mlast, outs, outf ) then
15 B ← B ∪ {(ins, inf )};
16 return B

A. Overall Algorithm

Figure 3 gives a high-level overview of MorphQ and its
three main steps. At first, a program generator creates an initial
quantum program, referred as the source program. Then, by
applying a sequence of metamorphic program transformations,
the approach derives a follow-up program that is in a specific
relationship with the source program. Finally, the approach
executes the two programs and checks whether their behaviors
conform to the expected output relationship.

Algorithm 1 describes how MorphQ composes the three
main steps, represented as a program generator G, a set of
metamorphic relationships M , and a component C for com-
paring the behavior two quantum programs. The main loop of
the algorithm continuously generates and checks new pairs of
source and follow-up programs until exceeding a configurable
time budget. After each iteration, both programs are discarded,
making each iteration independent from the previous one
and preventing MorphQ from mutating previously crashed
programs. Finally, the algorithm returns a set B of pairs of
programs that expose unexpected behavior.

As the first step in the main loop of the algorithm, the
program generator G creates a new quantum program ins

using a combination of template-based and grammar-based
code generation (line 3). A “program” here means source
code that defines a quantum circuit and its execution setting,
e.g., the type of backend to use or the transpiler’s settings.
Then, the second step of the algorithm applies a sequence of
transformations sampled from the metamorphic relationships
M to create a follow-up program inf (lines 4 to 12). Each
metamorphic relationship has a precondition under which its
transformation may be applied. Most of the transformations
are designed to be semantics-preserving, in which case the

1 # Section: Prologue
2 <ALL_IMPORTS>
3 # Section: Circuit
4 qr = QuantumRegister(<N_QUBITS>, name=’qr’)
5 cr = ClassicalRegister(<N_QUBITS>, name=’cr’)
6 qc = QuantumCircuit(qr, cr, name=’qc’)
7 <GATE_OPS>
8 # Section: Measurement
9 qc.measure(qr, cr)

10 # Section: Transpilation/compilation
11 qc = transpile(qc,
12 basis_gates=<TARGET_GATE_SET>,
13 optimization_level=<OPT_LEVEL>,
14 coupling_map=<COUPLING_MAP>)
15 # Section: Execution
16 simulator = Aer.get_backend(<BACKEND_NAME>)
17 counts = execute(qc, backend=simulator,
18 shots=<N_SHOTS>).result().get_counts(qc)

Fig. 4: Template to generate quantum programs.

algorithm may continue to apply further transformations. The
approach also includes two transformations that do not pre-
serve the semantics. Once such a transformation gets applied,
the algorithm stops applying further transformations, which
has the benefit that only the last transformation determines the
expected output relationship. Finally, the third step compares
the behavior of the source program ins and the final follow-
up program inf (lines 13 to 15). The outcome of executing
a program may be a crash or non-crashing behavior. In the
latter case, the platform repeatedly executes the circuit and
summarizes the output into a distribution of bit-strings.

B. Program Generation

A naive approach to generating quantum programs might
consider all elements offered by the quantum programming
language, e.g., all APIs offered by Qiskit, and combine them
at random. However, such an approach would yield mostly
invalid programs that crash and do not deeply test the plat-
form. The reason is that quantum programs need to follow a
particular structure and respect various domain-specific con-
straints. The program generator in MorphQ is a combination
of template-based and grammar-based code generation. The
template-based part ensures that the created programs follow
the typical structure of quantum programs. The grammar-
based part is designed to cover a diverse range of possible
programs by randomly combining gates with each other. Both
parts are based on concepts available across different quantum
computing platforms, such as circuits, registers, gates and
executing programs with a specific backend.

Figure 4 shows our template for generating quantum pro-
grams. The placeholder ⟨ALL IMPORTS⟩ gets replaced by the
imports of all the dependencies used in a program. In the
circuit section, the template creates a quantum register and
a classical register, both of size ⟨N QUBITS⟩, and assembles
them into a quantum circuit. The non-terminal ⟨GATE OPS⟩
is expanded using the grammar described in Figure 5, which
yields a sequence of gates that act on the available qubits and
bits. Each instruction acts on a number of qubits between one
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⟨GATE OPS⟩ ::= ⟨INSTR⟩⟨EOL⟩⟨GATE OPS⟩ | ⟨EOL⟩
⟨INSTR⟩ ::= ⟨INSTR 1Q⟩ | ⟨INSTR 2Q⟩ | ... | ⟨INSTR 5Q⟩
⟨INSTR 1Q⟩ ::= qc.append(⟨GATE 1Q⟩,

qregs=[qr[⟨INT⟩]])
⟨INSTR 2Q⟩ ::= qc.append(⟨GATE 2Q⟩,

qregs=[qr[⟨INT⟩],qr[⟨INT⟩])
⟨GATE 1Q⟩ ::= ⟨HGate⟩ | ⟨RZGate⟩ | ...
⟨HGate⟩ ::= HGate()

⟨RZGate⟩ ::= RZGate(⟨FLOAT⟩)
⟨GATE 2Q⟩ ::= ⟨CXGate⟩ | ⟨CRZGate⟩ | ...
⟨CXGate⟩ ::= CXGate()

⟨CRZGate⟩ ::= CRZGate(⟨FLOAT⟩)
⟨EOL⟩ ::= \n

Fig. 5: Subset of the grammar to generate a sequence of gate
operations.

and five, and contains a suitable gate that operates on them.
The indices of the target qubits are selected randomly among
the integers ⟨INT⟩ compatible with the maximum number
⟨N QUBITS⟩ of qubits available. Each gate receives a specific
number of parameters, which the generator chooses among
the floating point numbers ⟨FLOAT⟩. For brevity, Figure 5
shows only an excerpt of the grammar. Moving back to
the template in Figure 4, in the transpilation section the
generator replaces ⟨OPT LEVEL⟩ with an integer from 0 to
3 indicating an optimization level, and ⟨TARGET GATE SET⟩
and ⟨COUPLING MAP⟩ with two None placeholders. Finally, in
the execution section of the program, the generator replaces
⟨BACKEND NAME⟩ with a backend and selects the number
⟨N SHOTS⟩ of shots to use in the execution. For determining
the right number of shots to run the program, we use a sample
estimation technique proposed in prior work [7].

Our implementation of MorphQ targets the Qiskit platform,
which is highly popular and has been studied also by previous
work [10], [9], [1], [11], but we believe our approach could
be easily extended to other quantum computing platforms.
The generator supports a total of 45 gates, i.e., all but three
gates expressible in Qiskit. The 45 supported gates have up to
four parameters and can act on up to five qubits. The missing
three gates are excluded due to deprecation, presence of non-
float parameters, and missing documentation. We limit the
generation to a maximum of 30 consecutive gates to keep the
execution time of programs within reasonable limits.

C. Metamorphic Testing Framework

A key technical contribution of MorphQ is a set of ten
metamorphic relationships. We classify their corresponding
transformations into three categories: circuit transformations,
which modify the circuit; representation transformations,
which change the intermediate representation used to represent
the circuit, and execution transformations, which affect the
execution environment.Table I summarizes all transformations.

TABLE I: Metamorphic relationships and their preconditions.

Category Name Precondition

Circuit
transformation

Change of qubit order -

Inject null-effect operation -
Add quantum register Coupling map not fixed
Inject parameters -
Partitioned execution Non-interacting subsets of

qubits

Representation
transformation

Roundtrip conversion via
QASM

-

Execution
transformation

Change of coupling map No added register

Change of gate set -
Change of optimiz. level -
Change of backend -

Some of them have a precondition, checked at line 8 of Algo-
rithm 1, which ensures that the resulting follow-up program
is indeed expected to result in behavior described by the
output relationship. All transformations in Table I, except for
Change qubit order and Partitioned execution, are semantics-
preserving, and hence, the expected output relationship is
equivalence, i.e., the source program and the follow-up pro-
gram are expected to behave the same. In particular, this output
relationships means that MorphQ reports a warning when
the source program runs without crashing but the follow-up
program produces a crash.

1) Circuit Transformations: These transformations exploit
the properties of the gate model of computation, such as
the entanglement of qubits, the presence of registers and the
properties of reversible computing.

a) Change of qubit order: Inspired by the bug pattern
“incorrect qubit order” [1], this transformation changes the
order of qubits in the quantum register. Specifically, the
transformation maps the qubit indices to new positions and
then adapts the gates accordingly. Referring to the grammar
in Figure 5, the transformation applies a bijective mapping be-
tween the ⟨INT⟩ values of the source and follow-up programs.

For example, consider the source circuit of Figure 6a, which
has a two-qubit gate operating on qubits 1 and 2. Applying
the transformation with the qubit mapping m = {0→ 2; 1→
0; 2 → 1} results in Figure 6b, where the two-qubit gate
now operates on qubits 0 and 1. The final measurement gates
are not affected by the qubit mapping. Instead, the approach
applies a function to all the output bit-strings of the follow-
up program that applies the inverse of m to the order of
measured qubits. In the example, suppose we obtain an output
bit-string 001 by the follow-up program. The approach will
turn it into a bit-string 100, because index 2 in the follow-
up program corresponds to index 0 in the source program.
After re-mapping the measurements, the two resulting output
distributions are expected to be equivalent.

b) Inject null-effect operations: In quantum computing,
any operation or gate, with the exception of the measure-
ment gate, never looses any information, and hence, can be
reverted by a suitable inverse operation. This metamorphic
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Fig. 6: Examples of metamorphic transformations.

1 subcirc = QuantumCircuit(qr, cr, name=’subcirc’)
2 subcirc.append(RXGate(6.12), qargs=[qr[0]], cargs

=[])
3 # ... sequence of additional gates
4 qc.append(subcirc, qargs=qr, cargs=cr)
5 qc.append(subcirc.inverse(), qargs=qr, cargs=cr)

Fig. 7: Example of code inserted by the “inject null-effect
operation” transformation.

transformation exploits reverse computations by inserting into
the main circuit a sub-circuit that performs a sequence of gate
operations followed by its inverse, so that the overall effect is
null. Referring to the grammar in Figure 5, the transformation
injects new code between the gates generated by ⟨GATE OPS⟩.
The inserted sub-circuit may include an arbitrary number of
gates and act on an arbitrary number of available qubits. The
only restriction is that no measurement is introduced, because
otherwise it would destroy the quantum state and change the
result with respect to the source program.

Figure 7 gives an example of injected code. The inverse
is produced via a function called inverse (line 5), which is
offered by most quantum computing platforms and reverses
the effect of a sub-circuit.

c) Add quantum register: Enlarging the set of avail-
able qubits by adding a new and unused quantum register
should not affect the computation on the existing qubits. This
transformation exploits this property by randomly adding new
quantum registers to the circuit of the follow-up program.
Referring to Figure 4, the new register is added right before or
after the measurement section. This transformation cannot be
performed when the coupling map has been specified before
via the Change of coupling map transformation, since the
addition of a register would make the coupling map too small.

d) Inject parameters: Given the recent interest in quan-
tum machine learning, quantum computing platforms offer
abstractions to support the parametrization of quantum cir-
cuits [12]. One of the subfields of quantum machine learning
aims to use quantum circuits and the parameters of their
gates as a quantum version of artificial neural networks [13].
This transformation creates such parameterized circuits by
replacing one or more floating point literals ⟨FLOAT⟩ in
the source program with a corresponding Parameter(’a’)

object. Then, before the transpilation stage, the transformation

binds all the free parameters to the original literal values. In
analogy to traditional programs, this transformation resembles
moving a literal value into a variable.

e) Partitioned execution: Some source programs have
two subsets of qubits such that there is no gate operation that
involves qubits from both subsets. In this case, the source
program performs two independent computations that can
be executed in parallel. This transformation separates the
circuit of such programs into two sub-circuits, executes them
individually, and then post-processes the results to derive the
distribution of the overall program. The output distribution
of the source program has bit-strings of size ⟨N QUBITS⟩,
whereas the result of the follow-up program consists of
two distributions with bit-strings of sizes a and b, where
⟨N QUBITS⟩= a+ b. To reconstruct an output distribution of
size ⟨N QUBITS⟩ also for the follow-up program, the approach
computes the Cartesian product of the output distributions of
the two sub-circuits: Us|ϕ⟩ = Uf1|ϕ⟩1 ⊗ Uf2|ϕ⟩2, where Us

represents the gates of the source program and |ϕ⟩ represents
all qubits, Uf1 and Uf2 correspond to the two sub-circuits,
and |ϕ⟩1 and |ϕ⟩2 are the two subsets of qubits.

Figure 6c shows two partitions derived from the circuit in
Figure 6a, the first partition with a single qubit and an “rx”
gate, and the second with two qubits and the remaining gates.

2) Representation Transformations: The following is a
transformation that acts on the representation of the quantum
program, without affecting its computation or execution envi-
ronment.

a) Roundtrip conversion via QASM: OpenQASM [14],
or short QASM, is the de-facto standard assembly language for
quantum programs. Many quantum computing platforms offer
API calls to convert to and from it, and virtually all circuits
can be expressed in the QASM format. Because correctly
converting to and from QASM is an important prerequisite for
the interoperability of quantum computing platforms, MorphQ
comes with a transformation that exercises these parts of the
platform under test. The transformation converts the quantum
circuit to the QASM format and then parses the QASM
code again to reconstruct the original circuit. To implement
the roundtrip conversion in Qiskit, the transformation uses
these API calls: qc = qc.from qasm str(qc.qasm()).
The approach performs this transformation right before the
execution section in Figure 4.

5



3) Execution Transformations: The third category of trans-
formations is about adapting the execution environment.
Given the currently available quantum hardware, called “noisy
intermediate-scale quantum” (NISQ) devices [15], executing
many generated programs on quantum hardware results in
noise-induced behavioral differences [7]. To avoid false pos-
itives caused by hardware limitations, while still being able
to find bugs in the software stack of quantum computing,
MorphQ focuses on executing programs on simulators.

a) Change of coupling map: This transformation re-
places the placeholder ⟨COUPLING MAP⟩ in the program tem-
plate with a randomly created coupling map. The coupling
map describes the physical connections between qubits as list
of pairs of qubit indices. MorphQ ensures the coupling map to
yield a connected graph of qubits so that no qubit is isolated.
An example of a coupling map for our program in Figure 6a
is [[0,1],[1,2]].

b) Change of gate set: During transpilation, a given
quantum program is converted to be compatible with a specific
target device, which often involves translating the gates to
the natively supported gates. This transformation exercise this
translation step by replacing the ⟨TARGET GATES⟩ in the
program template with a universal gate set, such as the ["rx",
"ry", "rz", "p", "cx"] gates [16]. MorphQ currently
supports three universal gate sets but could be easily extended.

c) Change of optimization level: The final two trans-
formations are inspired by work on compiler testing [17].
One transformation replaces the ⟨OPT LEVEL⟩ in the program
template with another level between 0 and 3, which is not
expected to affect the final output of a program.

d) Change of backend: This transformation replaces the
non-terminal ⟨BACKEND NAME⟩ in the program template with
another available backend. Different simulators typically have
completely different implementations. A single simulator often
offers two variants, running on a CPU and GPU respectively,
which we treat as two separate backends. In total, MorphQ
supports eight different backends.

D. Comparing Execution Behavior

The third and final step of MorphQ is to execute both
the source program and the follow-up program. If the two
programs expose different behaviors, MorphQ adds them to
the set of likely bug-revealing pairs of programs.

We perform this comparison at two levels. The first level
identifies cases where one program runs without any crash,
but the other program crashes, called a crash difference.
Our program generator (Section III-B) is designed to create
source programs that do not crash. However, applying the
metamorphic transformations may trigger some bugs in the
tested platform that manifest through a crash.

The second level compares the measured output bits of
two non-crashing programs. Due to the probabilistic nature
of quantum programming, precisely comparing the output
bit-strings would be misleading. Instead, MorphQ repeatedly
executes each circuit for the specified number of shots and
then compares the two output distributions. We use the

TABLE II: Warnings produced in 48 hours by the MorphQ
approach and using only QDiff’s transformations [7].

MorphQ QDiff Transf.

No. % No. %

Tested program pairs 8,360 100.0 51,271 100.0
↪→ Crashes in source program 0 0.0 0 0.0
↪→ Crashes in follow-up program 1,943 23.2 0 0.0
↪→ Successful executions 6,417 76.8 51,271 100.0

↪→ Distribution differences 56 0.7 528 1.0

Kolmogorov-Smirnov test [18], [19] to assess the statistical
significance of the difference between the two distributions,
as done in previous work [7]. MorphQ reports any pair of
programs with a p-value below 5% as a statistically significant
distribution difference.

IV. IMPLEMENTATION

MorphQ is implemented in Python and tested on the latest
Qiskit 0.19.1 version at the time of performing the evaluation.
The implementation is designed in a modular way with four
main components: (1) the MorphQ core, which is responsible
for the orchestration of the various steps of the approach, (2) a
program generator, which produces valid programs according
to the API of the platform, (3) an extensible set of meta-
morphic transformations, which apply lightweight program
transformations based on the API of the platform, (4) a
component that spots any differences in execution behavior.
MorphQ currently supports Qiskit as a first target platform,
but could be extended to other quantum computing platforms.

V. EVALUATION

Our evaluation focuses on the following research questions:
• RQ1: How many warnings does MorphQ produce?
• RQ2: What real-world bugs does MorphQ find in Qiskit?
• RQ3: How does MorphQ compare to prior work on testing

quantum computing platforms [7].
• RQ4: To what extent do the different metamorphic relations

contribute to the warnings and bugs found?
• RQ5: How efficient is MorphQ and what are the most time-

consuming components?
All experiments are run on a machine with 48 CPU cores

(Intel Xeon Silver, 2.20GHz), two NVIDIA Tesla T4 GPUs
with 16GB memory each, and 252GB of RAM, which is
running Ubuntu 18.04.5.

A. RQ1: Warnings Produced by MorphQ

This research question quantitatively evaluates MorphQ’s
effectiveness at finding unexpected behavior. We run the
approach for a total of 48 hours, as done in previous work [7],
and summarize the results in Table II. Over this period, the
program generator produces a total of 8,360 programs. In
Figure 8, on the left, we report the distribution of the number
of qubits and number of gates in the generated programs,
where a darker color means a higher density of programs.
The right side of the figure shows how many follow-up
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Fig. 8: Characteristics of the programs generated by MorphQ.

programs are generated by applying a specific number of
transformations.

All programs generated by MorphQ execute without crash-
ing, which confirms that our template-based and grammar-
based generation technique is successful at generating valid
quantum programs. Applying metamorphic relations to these
programs leads to a program crash in 23.2% of the cases,
and hence, is reported as a crash difference. Out of the
non-crashing executions, a small percentage of a total of 56
programs exposes a distribution difference.

Answer to RQ1: The program generation successfully creates
only valid quantum programs, and MorphQ is effective in
producing numerous warnings, e.g., by inducing 23.2% of all
follow-up programs to crash.

B. RQ2: Real-World Bugs Found

To evaluate MorphQ’s ability to find real-world bugs, we
inspect a sample of warnings produced over a period of about
30 days.

1) Crash Differences: Because crash-inducing bugs are the
most critical, as they impede developers from running their
programs at all, we focus most of our attention on them.
Before inspecting program pairs with a crash difference, we
semi-automatically cluster the warnings based on their crash
message. To this end, we abstract program-specific references,
such as line numbers, variable names, and file names, and then
assign all warnings with the same abstracted message into
a cluster. For example, “Duplicate declaration for gate ’ryy’,
line 4, fileA” and “Duplicate declaration for gate ’ryy’, line
5, fileB” are assigned to the same cluster. Figure 9 shows the
resulting clustering of warnings.

We then randomly select a few failing follow-up programs
from each cluster for manual inspection. The inspection pro-
cedure consists in manually reversing each transformation in
the follow-up program, one at the time, until we find which
transformation is responsible for the crash.

Then, once detected which transformation or combination of
transformations is responsible, we reduce the gate operations
in the program in a delta debugging [20]-like manner until
we identify the minimal sequence of operations to trigger
the crash. This manual process requires about 15 minutes per
program, and it is feasible since the programs have at most 30
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Fig. 9: Regex-based manual clustering of warnings.

1 qr = QuantumRegister(11, name=’qr’)
2 cr = ClassicalRegister(11, name=’cr’)
3 qc = QuantumCircuit(qr, cr, name=’qc’)
4 subcircuit = QuantumCircuit(qr, cr, name=’subcirc’

)
5 subcircuit.x(3)
6 qc.append(subcircuit, qargs=qr, cargs=cr)
7 qc.x(3)
8 qc = transpile(qc, optimization_level=2)
9 # ValueError: too many subscripts in einsum

Fig. 10: Minimal follow-up program to trigger Bug 2.

operations and four transformations. Further automating the
crash clustering and the minimization is left for future work.

Table III summarizes the results of our manual inspection.
For each warning, we report the reference to the bug report1,
its status, whether it was a new or duplicated bug report, the
crash message, and what metamorphic transformation(s) are
required to trigger the bug. Over the course of this study, we
have filed a total of 13 bug reports in the Qiskit repository. So
far, nine of the reports have been confirmed by the developers
as bugs. The following describes some representative examples
of the inspected warnings.

a) Confirmed Bugs: Bug 2 is detected thanks to two
different metamorphic transformations applied simultaneously,
showing the importance of combining multiple transforma-
tions. The transformations involved are: change of optimiza-
tion level and inject null-effect operations. Figure 10 shows
the minimized follow-up program consisting of a main circuit
with eleven qubits, a subcircuit with ten qubits, and an
optimization pass of level 2. This program triggers a generic
Numpy error message. As confirmed by a Qiskit developer, the
bug is in a specific analysis part of the optimization, called
the CommutationAnalysis. The goal of this analysis is to
find operation nodes that can commute in the direct acyclic
graph representing the program. The problem is that the
implementation of this analysis relies on matrix multiplications
with n qubits × 3 dimensions, which in the case of eleven
qubits is 33, whereas the maximum dimension supported by
Numpy is 32 (numpy.MAXDIM).

1Removed for double-blind review. See supplementary material for
anonymized versions of the bug reports.
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TABLE III: Real-world bugs and warnings found by MorphQ.

ID Report Status Novelty Crash message Metamorphic transformations

1 #7694 confirmed new qargs not in this circuit Change of optimization level, Change of coupling map
2 #7700 confirmed new too many subscripts in einsum (numpy) Change of optimization level, Inject null-effect operations
3 #7750 confirmed new Gate or opaque call to ‘subcircuit’ Roundtrip conversion via QASM, Inject null-effect operations
4 #7749 confirmed duplicate Duplicate declaration for gate ‘rzx’ Roundtrip conversion via QASM
5 #7641 confirmed duplicate Instruction id not found Change of gate set
6 #7326 confirmed duplicate Mismatch between parameter binds Inject parameters
7 #7756 confirmed duplicate Cannot find gate definition for ‘c3sx’ Roundtrip conversion via QASM
8 #7748 fixed new Cannot bind parameters not present in the

circuit
Inject parameters

9 #8224 fixed new QASM gate definition with no operands Change of optimization level, Roundtrip conversion via QASM,
Inject null-effect operations

10 #7769 reported - Cannot find gate definition for ‘rzx’ Roundtrip conversion via QASM, Inject null-effect operations
11 #7771 reported - Duplicate declaration for gate ‘ryy’ Roundtrip conversion via QASM, Inject null-effect operations
12 #7772 reported - Cannot find gate definition for unitary Change of optimization level, Roundtrip conversion via QASM,

Inject null-effect operations
13 #7773 reported - Cannot find gate definition for ‘rcccx’ Roundtrip conversion via QASM, Inject null-effect operations

1 qr = QuantumRegister(2, name=’qr’)
2 cr = ClassicalRegister(2, name=’cr’)
3 qc = QuantumCircuit(qr, cr, name=’qc’)
4 subcircuit = QuantumCircuit(qr, cr, name=’subcirc’

)
5 subcircuit.x(qr[0])
6 qc.append(subcircuit, qargs=qr, cargs=cr)
7 qc = QuantumCircuit.from_qasm_str(qc.qasm())
8 # QasmError: ’subcirc’ uses 4 qubits but is

declared for 2 qubits

Fig. 11: Minimal follow-up program to trigger Bug 3.

Bug 5 is discovered by the transformation Change of gate
set. Whenever the transpiler has to convert a circuit that,
among the other gates, includes an identity gate, then the
transpiler fails. The reason is that the identity gate is treated
as a delay by the scheduler, since an identity gate operation
is equivalent to a no-operation. As a consequence, there is
no translation rule for the identity gate which leads to an
exception in the translation process. The developers confirmed
the bug, which had already been detected independently, and
proposed a patch to fix it.

Bug 3 is triggered by a combination of two transforma-
tions: Roundtrip conversion via QASM and Inject null-effect
operations. Figure 11 shows a minimized circuit that triggers
the bug. It contains a subcircuit with a classical register,
which is then converted to QASM and back to a quantum
circuit. Running this code makes the QASM importer call to
qasm from str produce an error caused by parsing invalid
QASM code. The root cause of the error is actually in
the QASM exporter, which produces the faulty QASM code
shown in Figure 12. A Qiskit developer confirmed this bug by
saying it should have been rejected by the exporter, since it
is not possible to represent sub-circuits with classical registers
in QASM.

b) False Positives: Beyond actual bugs, MorphQ may
also produce false positive warnings because the assumptions
of our metamorphic relations do not hold. We are aware of one
such invalid assumption, which happens during the Change

1 include "qelib1.inc";
2 gate subcircuit q0,q1 { x q0; }
3 qreg qr[2];
4 creg cr[2];
5 subcircuit qr[0],qr[1],cr[0],cr[1];

Fig. 12: Wrong QASM code produced because of Bug 3.

of gate set transformation. The transformation assumes that
any circuit can be transformed into an equivalent circuit that
uses only gates inside one of the universal gate sets. While
this assumption holds in theory, the implementation in Qiskit
uses the A* algorithm to find an equivalent sequence of
gates because exploring all possible sequences is impractical.
Because this search may fail in the computational budget
provided by Qiskit, the follow-up program sometimes crashes
with a “Unable to map source basis to target basis” crash
message, which does not point to a bug in the platform, but
simply a limitation of its implementation.

2) Distribution Differences: Besides crash differences,
MorphQ also warns about differences between the probabil-
ity distributions that result from measurements in an initial
program and a follow-up program. As manually inspecting
differences and understanding their root cause involves signif-
icant human effort, we sample and inspect ten program pairs
reported to have distribution differences. Unfortunately, all the
differences turn out to be benign. In particular, re-running the
programs to see if the divergence is due to randomness or is
reproducible across runs shows the differences to be a result
of randomness.

A closer look at the number of program pairs with distri-
bution differences, e.g., in Table II, shows that this number is
within the range of expected false positives. When statistically
identifying distribution differences, MorphQ uses a 5% thresh-
old on the p-value (Section III-D). That is, observing a false
positive distribution difference for up to 5% of the program
pairs is expected. An effective way to identify distribution
differences that are likely true positives will be interesting
future work, which then can be easily plugged into MorphQ.
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Answer to RQ2: MorphQ has discovered 13 bugs in the latest
version of Qiskit, nine of which have already been confirmed
by the developers.

C. RQ3: Comparison with Prior Work

1) Bugs Found: We compare with QDiff [7], which is the
only other automated technique for testing quantum computing
platforms that we are aware of. As one way of comparing
the two approaches, we compare the bugs found by MorphQ
and those reported in the QDiff paper. During its evaluation
on Qiskit, QDiff has reported distribution differences due to
hardware characteristics, but no software bugs in Qiskit. In
contrast, MorphQ discovers several software bugs in Qiskit
(Table III), none of which have been found by QDiff.

2) Qiskit’s Transformations Re-implemented in MorphQ:
As another way of comparing with QDiff, we re-implement
in the MorphQ framework the seven semantics-preserving
code transformations that QDiff uses to create test programs.
These transformations insert, delete, or change individual
gates in a program. MorphQ applies these transformations to
initial programs created by our program generator, followed
by a transformation that changes the execution environment
by either changing the backend or the optimization level.
The rationale for changing the execution environment is to
mimic the differential testing performed by QDiff. We then
perform the same experiment as in RQ1, i.e., let the MorphQ
framework, with only the QDiff transformations, run for 48
hours.

The right block in Table II shows the warnings reported
in this experiment. Unfortunately, the approach does not
reveal any crashes, but only distribution differences, which
matches the results reported in the QDiff paper. On the upside,
using only QDiff’s transformations causes our framework to
generate more follow-up programs (51,271 vs. 8,360). The
reason is that the follow-up programs produced by MorphQ
have longer execution times.

3) Distribution Differences: Since QDiff is specifically
targeting distribution differences, we also inspect ten reported
distribution differences as done for MorphQ in Section V-B2.
Unfortunately, performing additional re-runs of the programs
that expose distribution differences causes the divergence to
disappear, i.e., all the differences reported by QDiff turn out
to be benign. Similar to the discussion in Section V-B2, the
results match the expected false positive rate of the statistical
test.

4) Coverage of Qiskit Code: As a third way of comparing
with QDiff, we measure the code coverage of the Qiskit plat-
form when being tested (i) with MorphQ and (ii) with MorphQ
using the reimplementation of QDiff’s transformations. We
find that MorphQ reaches higher coverage (8.1% vs. 6.1%)
in the same testing budget of 48 hours, despite executing a
lower number of programs.

5) Diversity of Follow-up Programs: As the effectiveness
of metamorphic testing depends on the ability to generate a
diverse set of follow-up programs, we assess the diversity
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Fig. 13: Percentage of crashing programs containing only a
given transformation (red), the given transformation and one
other transformation (pink), two others (gray), or three others
(black).

of these programs. We perform this assessment both for the
follow-up programs created by MorphQ and by the QDiff
transformations, based on source programs generated in the
same way for both approaches. For each generated follow-up
program, we compute all pairs of consecutive API calls, and
then we compute how many unique pairs there are among
all the programs generated by an approach. We ignore calls
to “append()” since it is a ubiquitous call to append an
instruction. During our 48-hour experiment, the follow-up
programs from QDiff’s transformations have 259 unique API
call pairs, whereas MorphQ’s follow-up programs have 977,
which shows a higher degree of diversity in the follow-up
programs by MorphQ.

Answer to RQ3: Compared to prior work [7], MorphQ reveals
previously undetected, crash-inducing bugs, achieves higher
code coverage of the tested platform, and generates more
diverse follow-up programs.

D. RQ4: Contribution of Metamorphic Transformations

To better understand to what extent the different metamor-
phic transformations in MorphQ contribute to its effectiveness,
we check which transformations are more involved in report-
ing warnings and which are essential to expose the found bugs.

1) Warnings: Figure 13 shows how often each transforma-
tion is involved in producing a crashing follow-up program.
Because crashes may be the result of applying one or more
transformations, the figure shows the percentage of crashing
programs that include only a specific transformation (red), that
transformation combined with one (pink), two (gray), or three
(black) others.

The transformation leading to most crashes is Change of
gate set, some of which are the false positive case discussed
in Section V-B1b. The second most commonly crash-inducing
transformation is Roundtrip QASM conversion, which shows
that QASM exporter and importer is a complex, error-prone
component of the platform under test. Inject null-effect opera-
tions and Inject parameters also induce a sizable set of crashes,
which we attribute to the fact that they exercise recently added
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code. Partitioned execution is not involved in any crashes,
which we attribute both to the fact that is is applied only under
a specific precondition and that it is not semantics-preserving,
i.e., no other transformation gets applied afterwards.

2) Bugs: For each bug found by MorphQ, we manually
reduce the bug-inducing test program to keep only those meta-
morphic transformations that are required to expose the crash,
shown in the last column of Table III. Finding the 13 bugs
is enabled by a total of six metamorphic transformations. The
most prevalent transformation is Roundtrip QASM conversion.
We also find that 8 out of the 13 warnings require at least
two transformations, underlining the importance of combining
them.
Answer to RQ4: Some transformations, e.g., Roundtrip con-
version via QASM and Inject null-effect operations, are par-
ticularly effective at revealing crashes and bugs. Composing
multiple transformations is key to exposing 8 out of 13 bugs.

E. RQ5: Time Cost per Component

The following studies how efficient the different steps of
MorphQ are and which step takes most time. We measure the
time spent in the three main components, namely (i) generating
source programs, (ii) creating follow-up programs via a series
of transformations, and (iii) executing programs on simulators
and compare their behavior. Figure 14 reports the time per
component, on average for a single pair of programs, during
the two-day experiment from RQ1. For comparison, we also
show the results with the QDiff transformations only (see
RQ3). The by far most time-consuming step is to execute the
programs, as executing larger circuits in a simulator running on
classical hardware is known to be slow. In contrast, generating
and transforming programs take only 6.2ms and 30.6ms,
respectively.

Answer to RQ5: Program generation and performing meta-
morphic transformations are efficient, together taking only
36.9ms per program pair, whereas executing the programs on
simulators is the most time-consuming step of the approach.

VI. THREATS TO VALIDITY

There are some threats to the validity of our results and
the conclusions to draw from them. First, the results might
be influenced by the non-deterministic, randomized nature of
the program generator and the selection of transformations.
We mitigate this threat via long-running experiments, which

compensate for any bias in the results one might observe
with only a few generated programs. Second, the number
of warnings gives only a partial view of the effectiveness of
MorphQ due to the presence of duplicates [17]. To mitigate
this threat we cluster warnings and inspect a sample, showing
that there are at least 13 unique bugs. Finally, our experiments
focus on a single target platform and we cannot claim that
our results will generalize beyond it. We believe the approach
could also be applied to other quantum computing platforms
that use a circuit-based computational model, provide similar
programming abstractions, and offer QASM compatibility,
such as Pytket [21] and Cirq [22].

VII. RELATED WORK

a) Quantum computing platforms: A study by Paltenghi
and Pradel [1] identifies ten quantum-specific bug patterns
in quantum computing platforms, such as incorrect qubit or-
der and incorrect intermediate representation, which inspired
some metamorphic transformations of MorphQ. Other studies
report how bugs in Qiskit manifest [9] and discuss challenges
faced by platform developers [23]. These studies motivate
work on testing quantum computing platforms.

Prior to our work, there has been only one other approach
on testing quantum computing platforms [7], which is a
differential testing technique. In contrast to our work, QDiff
does not generate programs from scratch, but starts from six
hand-written programs. Moreover, QDiff performs differential
testing across different backends and optimization levels of
quantum computing platforms, whereas our work is based
on a novel set of metamorphic transformations, only two of
which (change of optimization level and change of backend)
are similar to QDiff. Section V-C empirically shows that
MorphQ reveals bugs missed by QDiff and reaches higher
code coverage.

b) Testing and manipulating quantum programs: Several
approaches for testing quantum programs have been proposed,
including a search-based techniques [24], [25], statistical
assertion checks that try to limit the effects on the actual
computation [26], [27], [28], combinatorial testing [29], and
coverage-based methods [30]. In contrast to our work, these
techniques test specific programs, not the underlying platform.
CutQC [31] breaks a quantum circuit into smaller parts so
that the resulting sub-circuits can be executed on the limited
NISQ devices [15]. Our partitioned execution transformation
also splits a circuit into sub-circuits, but only when the qubits
are not entangled, whereas CutQC handles entanglement by
approximating the output distribution.

c) Testing of probabilistic systems: ProbFuzz [32] is a
testing technique targeted at probabilistic systems, such as
probabilistic modeling libraries. While both those libraries
and quantum computing platforms output probabilistic dis-
tributions, the latter is more deeply connected to hardware
constraints, e.g., via a coupling map and the gate set, which
our approach considers.

d) Testing compilers and other developer tools: The
critical role of compilers for overall software reliability has
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motivated a stream of work on compiler testing. We refer to a
recent survey [17] for a comprehensive overview. Quantum
computing platforms play a similarly critical role in the
quantum computing domain, which motivates our work. Our
program generator relates to work on generating traditional
programs, e.g., via randomized code generation combined with
static and dynamic checks to avoid undefined behavior [33],
code fragment-based fuzzing [34], and systematic program
enumeration [35]. Metamorphic testing [36] has also been
applied in compiler testing, e.g., by deleting and inserting code
in the dead regions of a program [37], [38], and via domain-
specific transformations for graphics shading compilers [39].
Other developer tools, e.g., debuggers, can also be subject
to metamorphic testing [40]. None of the above approaches
addresses the unique challenges of quantum computing plat-
forms, for which MorphQ contributes a novel program gener-
ator and a novel set of metamorphic transformations.

VIII. CONCLUSION

Motivated by the increasing popularity of quantum comput-
ing, paired with the slim portfolio of techniques for testing
its software stack, this paper presents the first metamorphic
testing approach for quantum computing platforms. Our two
key contributions are a program generator that efficiently
creates a diverse set of non-crashing quantum programs, and
a novel set of metamorphic transformations to create pairs of
programs to compare with each other. Our evaluation shows
MorphQ’s effectiveness, e.g., in the form of 13 detected bugs
in Qiskit. We envision our contributions to enable future work
beyond MorphQ. For example, the program generator provides
a starting point for other testing techniques, e.g., coverage-
guided fuzzing, and the metamorphic transformations could be
adapted to other platforms. Overall, the presented work takes
an important step toward further increasing the reliability of
software in this still young field.
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