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ABSTRACT
When working on techniques to address the wide-spread problem
of software bugs, one often faces the need for a large number of
realistic bugs in real-world programs. Such bugs can either help
evaluate an approach, e.g., in form of a bug benchmark or a suite
of program mutations, or even help build the technique, e.g., in
learning-based bug detection. Because gathering a large number of
real bugs is difficult, a common approach is to rely on automatically
seeded bugs. Prior work seeds bugs based on syntactic transforma-
tion patterns, which often results in unrealistic bugs and typically
cannot introduce new, application-specific code tokens. This paper
presents SemSeed, a technique for automatically seeding bugs in
a semantics-aware way. The key idea is to imitate how a given
real-world bug would look like in other programs by semantically
adapting the bug pattern to the local context. To reason about the
semantics of pieces of code, our approach builds on learned to-
ken embeddings that encode the semantic similarities of identifiers
and literals. Our evaluation with real-world JavaScript software
shows that the approach effectively reproduces real bugs and clearly
outperforms a semantics-unaware approach. The seeded bugs are
useful as training data for learning-based bug detection, where
they significantly improve the bug detection ability. Moreover, we
show that SemSeed-created bugs complement existing mutation
testing operators, and that our approach is efficient enough to seed
hundreds of thousands of bugs within an hour.

CCS CONCEPTS
• Software and its engineering→ Software creation and manage-
ment; Software testing and debugging; • Computing method-
ologies→Machine learning;
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1 INTRODUCTION
Bugs are one of the key challenges in software development, and
various techniques have been proposed for bug detection, bug fix-
ing, and bug prevention. A common problem faced when working
on bug-related techniques is the need for large amounts of known,
realistic bugs. Such bugs can serve multiple purposes. One of them
is to provide a benchmark for evaluating and comparing bug-related
tools. For example, static bug detectors and fuzz testing tools are
evaluated against sets of known bugs [10, 15, 20], and bugs cre-
ated via mutations are useful for evaluating the effectiveness of
test suites [22]. Unfortunately, real bugs are scarce and without
precise knowledge about where exactly a bug is, assessing whether
a problem reported by a tool is indeed a bug, requires manual effort.
As a result, many tool evaluations are limited to a small number
(typically, a few dozens) of bugs, e.g., bugs manually gathered from
open-source projects [25, 54].

Another purpose of known bugs is to help build a bug-related
technique. For example, learning-based bug detectors [36, 37, 49],
defect prediction models [63], and repair tools [5, 35] rely on bugs to
learn from. These techniques require large amounts of training data,
typically in the form of code known to contain a (specific kind of)
bug. Since obtaining large amounts of bugs is non-trivial, current
techniques either focus on bugs created through simple code trans-
formations [49], on noisy datasets that, e.g., approximate buggy
code as any code changed in the next version of a program [63], on
manually curated bug datasets [25, 54], or on code changes that are
heuristically linked with bug reports [36].

This paper presents SemSeed, which addresses the need for large
amounts of known, realistic bugs through a semantics-aware bug
seeding technique. The key idea is to generalize a bug observed in
the past and to seed variants of the bug at other code locations, ei-
ther in the same or another program. To reason about the semantics
of code, we exploit token embeddings [8, 62], a learned representa-
tion of code elements, such as identifier names and literals. To the
best of our knowledge, we are the first to use learned embeddings
for bug seeding.

SemSeed addresses three important challenges, which, as shown
below, are not sufficiently considered in previouswork. (C1—Where)
Where in a target program to seed bugs that resemble a given bug-to-
imitate? We address this challenge by checking which locations in
the target program semantically fit the bug-to-imitate. (C2—How)
How to adapt the bug-to-imitate to the target program? SemSeed
addresses this challenge by semantically adapting identifiers and
literals to the target location. (C3—Unbound tokens) How to handle
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Table 1: Comparison with other bug seeding techniques.

Approach Kinds of
bugs

Target
locations
(C1)

Adaptation
to target
location (C2)

Unbound
tokens
(C3)

Mutation opera-
tors [24, 43]

Few, manu-
ally defined

Everywhere Syntactic Not
supported

Inferred mutat.
operators [9]

Many,
inferred

Everywhere Syntactic Not
supported

Neural machine
translation [61]

Many,
inferred

Implicit by
model

Implicit by
model

Not
supported

Bug
synthesis [15, 53]

Memory up-
dates

Hard to trig-
ger paths

N/A N/A

This work Many,
inferred

Based on se-
mantic fit

Semantic Supported

tokens in the buggy code that do not occur in the correct code, e.g.,
when the buggy code refers to an application-specific identifier
name or literal? We address this challenge, called unbound tokens,
through semantic analogy queries in the token embedding space
that find a token that resembles the bug-to-imitate but fits the bug
seeding location.

Table 1 summarizes and contrasts SemSeed with other work on
automatically seeding bugs. First, mutation testing [24, 43] seeds
bugs based on pre-defined code transformations. However, muta-
tion operators cover only a small set of the syntactic transforma-
tions that occur in thewild and only sometimes represent real-world
bugs [19]. Second, some work infers mutation operators from past
bug fixes [9]. Both pre-defined and inferred mutation operators are
applied in a purely syntactic way, without considering whether a
code transformation semantically fits a code location (C1) or how
to adapt the transformation to the location (C2). Third, neural mod-
els can learn from past bug fixes how to inject bugs [61]. Such
approaches implicitly select target locations for seeding bugs and
adapt the seeding to these target locations, but the details are hid-
den within the neural network. Finally, work aimed at evaluating
fuzz testing tools [15, 53] seeds bugs along execution paths that are
non-trivial to trigger. Even though these bugs may appear realistic
from an execution perspective, they are easy to detect statically,
making the approach unfit for evaluating or training static bug
detectors. None of the above approaches addresses the problem
of unbound tokens (C3), which our evaluation shows to prevent
existing work from seeding the majority of bugs that appear in the
wild.

We evaluate SemSeed by learning from real-world bugs and
by seeding hundreds of thousands of new bugs. The evaluation
focuses on JavaScript, because it has become one of themost popular
languages and is used in various domains, but the approach is
not specific to this language. The results show that SemSeed is
effective at creating realistic bugs, that the seeded bugs complement
bugs created with traditional mutation operators [43], and that our
implementation can seed hundreds of thousands of bugs within an
hour. Using the seeded bugs as training data for a learning-based
bug detector [49] significantly improves the bug detection ability
compared to the state of the art.

Abstraction into bug
seeding pattern

...
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === 'x64')
...

...
hasFailed = item.errCode === -1;
if (hasFailed && process.arch !== 'x86')
...

Semantic matching

Apply pattern

Concrete bug fix

Bug seeding pattern

Target program

Program with realistic, seeded bug

Candidate
seeding locations

1

2

3

...
id1.id2 === lit1
...

...
id1.id2 !== lit2
...

...
if (process.platform === 'darwin')
...

...
if (process.platform !== 'win32')
...

Figure 1: Overview of the approach and running example.

In summary, this paper makes the following contributions:
● We are the first to use learned token embeddings for bug
seeding.
● We present a semantics-aware technique to decide where to
seed a bug, how to adapt a given bug-to-imitate to the target
location, and how to handle unbound tokens.
● We present an efficient algorithm for semantic bug seeding,
which chooses from thousands of candidate bugs the seman-
tically most suitable within about 0.01 seconds, on average.
● We show empirical evidence that SemSeed seeds realistic
bugs, outperforms a purely syntactic bug seeding technique,
complements traditional mutation operators, and yields bugs
useful for training more effective bug detection models.

Our implementation and all data to reproduce our results are
publicly available:

https://github.com/sola-st/SemSeed/

2 OVERVIEW
This section illustrates the key ideas of our approach with an ex-
ample. At a high level, SemSeed consists of three main steps: ab-
straction, semantic matching, and pattern application. Given a set
of concrete bug fixes, e.g., gathered from version histories, the first
step abstracts away project-specific details, such as the identifier
names. This abstraction step results in bug seeding patterns that
describe how to syntactically transform a piece of code to introduce
a new bug.

The top part of Figure 1 shows one concrete bug fix that the
approach takes as an input. The middle part of the figure shows
the corresponding bug seeding pattern. The concrete identifiers,
e.g., process and platform are abstracted based on their syntactic
category, e.g., into id1 and id2. Intuitively, the bug pattern could
be described as “wrong comparison with wrong literal”.
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The second step of the approach matches the inferred bug seed-
ing patterns with a given target program, addressing challenge C1.
A naive baseline approach would apply a pattern at every syntacti-
cally matching location. For our example target program in Figure 1,
the “wrong comparison with wrong literal” pattern could be applied
at every binary expression that compares some id1.id2with some
lit1 using ===. However, such a purely syntactic approach will
lead to a large number of unrealistic bugs.

A key idea of SemSeed is to not apply patterns at every syntacti-
cally matching code location, but only at locations that are semanti-
cally similar to the locations where a pattern was derived from. For
the example in Figure 1, SemSeed’s semantic matching component
may select the code location process.arch === ’x64’ because
it also is about checking whether some platform matches a string
descriptor of a platform. The challenge in finding such a location
is that the semantic similarity may not be obvious to a program
analysis that is unaware of domain knowledge. For our example,
the approach needs to understand that the identifiers platform
and architecture refer to similar concepts, and that the literals
"darwin" and "x64" both describe platforms.

The third and final step of SemSeed applies bug seeding patterns
at the candidate seeding locations identified by the second step,
addressing challenges C2 and C3. The key idea is to adapt the
syntactic bug seeding pattern to the selected location in the target
program. Specifically, the approach instantiates the pattern with
identifiers and literals that are semantically similar to a location
where the pattern was derived from (C2), and it finds suitable tokens
for identifiers not present in the original target program (C3). As
a result, the approach semantically generalizes the given concrete
bugs to other code locations, which yields fewer, but more realistic
seeded bugs than syntactic bug seeding. To determine how similar
two code locations are, we rely on neurally learned embeddings
of identifier names and literals, which have been used for other
program analysis tasks in the past [3, 41, 46, 49], but to the best of
our knowledge have not yet been used for bug seeding.

To seed a bug at the selected location, SemSeed transforms the
code as shown at the bottom part (target program) of the figure.
This transformation not only instantiates the bug seeding pattern,
but it also picks a suitable platform descriptor, "x86". The approach
picks this literal based on identifiers and literals used in the vicinity
of the bug seeding location, mimicking a mistake a developer might
also make. As a result, the seeded bug resembles the original bug
that the pattern was derived from, while adapting it to the local
context.

3 APPROACH
This section presents the three steps of our SemSeed approach in
detail. At first, Section 3.1 describes how to extract bug seeding
patterns from concrete bug fixes in version histories. Then, Sec-
tion 3.2 presents how our approach semantically matches these bug
seeding patterns against previously unseen code to find candidate
locations for seeding new bugs. Finally, Section 3.3 describes how to
apply a bug seeding pattern to a given code location by semantically
adapting a specific bug-to-imitate.

3.1 Abstraction into Bug Seeding Patterns
The first step of SemSeed analyzes bug-fixing code changes in the
version histories of popular code repositories to generalize them
into bug seeding patterns. The basic idea is that reverting and
generalizing a code change that fixes a bug will yield a pattern that
we can then use to introduce this kind of bug into other code.

3.1.1 Selecting Bug-Fixing Commits. To gather examples of bug-
fixing code changes, we mine the commit histories of code repos-
itories. For a given repository, SemSeed filters all commits based
on four criteria, which are designed to identify simple, bug-fixing
commits. First, we select only those commits where the commit
message contains any one of the words “bug”, “fix”, “error”, “issue”,
“problem”, and “correct”, which we assume to indicate that the com-
mit is fixing a bug. Second, we select only those commits that have
a single parent commit, to avoid merged commits. Third, we select
commits where the number of changed files is one and where the
changed file is written in the target programming language, i.e.,
JavaScript in this paper. Finally, our fourth criterion is to omit com-
mits where the number of changed lines is higher than one. Both
the third and the fourth criterion help with omitting commits that
fix more than a single bug or that intermingle a bug fix with other
code changes. Prior work shows single-line bugs to be relevant and
frequent in practice [16, 28, 51].

Since identifying bug-fixing code changes is a non-trivial prob-
lem, our four filters are designed to rather exclude some bug-fixing
commits than to include many other commits. Of course, there is
no guarantee that the commits obtained using these four filters
are bug-fixing code changes. Manual inspection by previous re-
search [61] of commits mined with a similar approach has shown
97% of their commits to be bug-fixing.

3.1.2 Extracting Concrete Changes From Commits. Given a set of
bug-fixing code commits, SemSeed next extracts code changes into
a format suitable for the remainder of the approach. Due to our
filtering of commits, each commit changes exactly one line of code.
One option would be to consider the entire changed line, which
may, however, include parts unrelated to the bug fix. Including such
“noise” would make it harder to identify recurring patterns and to
find suitable locations for seeding bugs based on these patterns. An-
other option would be to consider only those tokens of the line that
have been modified, which may, however, miss surrounding tokens
important to capture the context of the change. Including some
contextual information helps SemSeed identify the most suitable
locations for seeding bugs with a given pattern.

To extract the changed tokens along with some context, SemSeed
uses the AST of the old and the new file to find a subsequence of the
changed line’s tokens that forms a complete syntactic entity, i.e., a
complete subtree of an AST. Focusing on complete syntactic entities,
instead, e.g., on all tokens in a changed line, increases the chance
to find recurring patterns. To this end, the approach converts both
the buggy and the correct file into ASTs and maps each AST node
to its corresponding range of line numbers in the file. Next, the
approach prunes all AST nodes that do not comprise any changed
line. From the remaining nodes of a file, SemSeed selects the subtree
that encompasses the maximum number of source code tokens in
the changed line, and then emits the sequence of tokens rooted at
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this node. The result is two sequences of tokens, for the buggy and
correct files, respectively:

Definition 1. A concrete bug fix (𝐶𝑏𝑢𝑔,𝐶𝑐𝑜𝑟𝑟 ) is a pair of sequences
of tokens, where the sequence 𝐶𝑏𝑢𝑔 = (︀𝑡

𝑏
1 , ..., 𝑡

𝑏
𝑚⌋︀ corresponds to

a subtree in the AST of the buggy file, and the sequence 𝐶𝑐𝑜𝑟𝑟 =
(︀𝑡
𝑐
1 , ..., 𝑡

𝑐
𝑛⌋︀ corresponds to a subtree in the AST of the corrected file.

For example, consider the concrete bug fix in Figure 1. Analyzing
the modified line in the buggy file (shown in red, on the top-left),
SemSeed selects the AST subtree that represents the

process.platform !== ’win32’
expression and hence yields the tokens in this expression. For the
correct file (shown in green, on the top-right), the analysis yields
the tokens in:

process.platform === ’darwin’
Even though both extracted token sequences correspond to the
same kind of AST subtree in this example, the sequences may
correspond to different syntactic entities in general.

3.1.3 From Concrete Fixes to Bug Seeding Patterns. To enable Sem-
Seed to seed new bugs based on the extracted concrete bug fixes,
the approach generalizes bug fixes into bug seeding patterns. Dur-
ing this step, we abstract identifier tokens and literal tokens. The
rationale is that these kinds of tokens often are application-specific
and hence must be adapted to a specific bug seeding location.

Definition 2. A bug seeding pattern (𝑃𝑐𝑜𝑟𝑟 , 𝑃𝑏𝑢𝑔) is a pair of se-
quences of tokens, where a token is either 𝑖𝑑𝑘 or 𝑙𝑖𝑡𝑘 (for some
𝑘 ∈ N), or a non-identifier and non-literal token of the target pro-
gramming language.

Our approach for abstracting a concrete bug fix into a bug seed-
ing pattern starts from the token sequence in the correct part of
the change, i.e., 𝐶𝑐𝑜𝑟𝑟 . The algorithm traverses all tokens in the
concrete bug fix and abstracts all identifiers and literals into place-
holders 𝑖𝑑𝑖 and 𝑙𝑖𝑡 𝑗 , where 𝑖 and 𝑗 are incremented whenever a
new identifier or literal occurs. To consistently abstract tokens that
occur multiple times, the algorithm maintains for each concrete
bug fix a map𝑀 from concrete to abstract tokens [59]. Finally, we
discard concrete bug fixes that have more than 40 tokens and that
occur only once, , which discards about 15% of all bug seeding
patterns. The threshold of 40 tokens was selected after manually
inspecting various bug fixes and avoids learning obscure patterns
unlikely to apply anywhere else.

For our running example, the middle part of Figure 1 shows
the bug seeding pattern. The algorithm abstracts the identifiers
process and platform into 𝑖𝑑1 and 𝑖𝑑2, respectively, and the liter-
als ’win32’ and ’darwin’ into 𝑙𝑖𝑡1 and 𝑙𝑖𝑡2, respectively.

3.2 Matching Bug Seeding Patterns against
Code

Based on the inferred bug seeding patterns, the second step of Sem-
Seed is to find code locations for seeding the bug defined by the
pattern into a target program. The approach matches the correct
part of a pattern against token sequences extracted from the target
program. We call the matching token sequences candidate seeding
locations. One key contribution of SemSeed is to determine candi-
date seeding locations not only by syntactically matching a pattern

against the target program, but also by semantically reasoning
about the similarity of the involved identifiers and literals.

3.2.1 Extracting Token Sequences from Target Program. Given a
target program where SemSeed should seed bugs, the approach
extracts various token sequences to match against the inferred bug
seeding patterns. Similar to the pattern extraction step, SemSeed
starts by parsing the target program into an AST and then extracts
sequences of tokens that correspond to subtrees of the AST. Given
a node and its corresponding token sequence 𝐶 = (︀𝑡1, . . . , 𝑡𝑛⌋︀, the
approach applies the same abstraction algorithm as in Section 3.1.3
to get the abstracted token sequence 𝐶𝑎𝑏𝑠𝑡𝑟 .

For example, consider the target program in Figure 1. The ap-
proach extracts multiple AST subtrees and corresponding token
sequences. Two of the extracted subtrees represent binary expres-
sions, and the corresponding token sequences are:

[item, ., errCode, ===, -1]
[process, ., arch, ===, ’x64’]

For both sequences, abstracting identifiers and literals results in
the following abstracted token sequence:

[id1, ., id2, ===, lit1].

3.2.2 Syntactic Matching. Given a set of token sequences extracted
from the target program, SemSeed matches each abstracted token
sequence against each bug seeding pattern. For a sequence 𝐶𝑎𝑏𝑠𝑡𝑟
and a pattern (𝑃𝑐𝑜𝑟𝑟 , 𝑃𝑏𝑢𝑔), the approach checks whether 𝐶𝑎𝑏𝑠𝑡𝑟
matches 𝑃𝑐𝑜𝑟𝑟 , i.e., the correct part of the pattern. As a first step,
SemSeed performs a simple syntactic matching, where 𝐶𝑎𝑏𝑠𝑡𝑟 and
(𝑃𝑐𝑜𝑟𝑟 , 𝑃𝑏𝑢𝑔) match if 𝐶𝑎𝑏𝑠𝑡𝑟 is equal to 𝑃𝑐𝑜𝑟𝑟 . Note that the syn-
tactic matching is similar to a corresponding step in previous work
on seeding bugs with inferred mutation operators [9].

For our example, the two token sequences abstracted into
[id1, ., id2, ===, lit1]

are both equal to the correct part of the bug seeding pattern from
Section 3.1. Hence, both binary expressions in the target program
are retained as candidate seeding locations.

3.2.3 Semantic Matching. Syntactically matching bug seeding pat-
terns against a target program yields a large number of candidate
seeding locations. Unfortunately, seeding bugs at all these loca-
tions would result in many seeded bugs that do not semantically
resemble the concrete bugs that SemSeed is learning from. For ex-
ample, applying the bug seeding pattern of our running example
both to item.errCode === -1 and to process.arch === ’x64’
would yield two seeded bugs. However, only the second seeded
bug would be semantically similar to the concrete bug that the
pattern was learned from: The bug is about incorrectly checking
the name of a platform against a string that describes a platform,
process.platform === ’darwin’, and a similar bug could oc-
cur in the process.arch === ’x64’ expression. In contrast, the
other possible candidate seeding location item.errCode === -1
matches the original bug only syntactically, but not semantically.

To ensure that SemSeed seeds realistic bugs, the approach fo-
cuses on bugs that semantically resemble a given concrete bug fix.
Checking whether two code locations are semantically similar is a
hard problem, which we address by borrowing ideas from machine
learning-based natural language processing. An important research
problem in that field is to identify semantically similar words, such
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Algorithm 1 Semantically match a token sequence against a bug
seeding pattern.

Input: Token sequence 𝐶 and concrete bug fix (𝐶𝑏𝑢𝑔,𝐶𝑐𝑜𝑟𝑟 )
Output: True if 𝐶 is a semantic match, False otherwise
1: (︀𝑡1, . . . , 𝑡𝑛⌋︀← 𝐶 ▷ Tokens of target location
2: (︀𝑡 ′1, . . . , 𝑡

′

𝑛⌋︀← 𝐶𝑐𝑜𝑟𝑟 ▷ Tokens where real bug occurred
3: 𝑆 ← (︀⌋︀
4: for 𝑖 = 1 to 𝑛 do
5: if 𝑘𝑖𝑛𝑑(𝑡𝑖) ∈ {𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟, 𝐿𝑖𝑡𝑒𝑟𝑎𝑙} then
6: 𝑣 ← 𝑒𝑚𝑏(𝑡𝑖)

7: 𝑣
′
← 𝑒𝑚𝑏(𝑡

′

𝑖 )

8: Append 𝑠𝑖𝑚𝑖𝑙(𝑣, 𝑣
′
) to 𝑆

9: return 𝑎𝑣𝑔(𝑆) >= matching threshold𝑚

as “chicken” and “fowl”. A state-of-the-art approach to address this
problem is word embeddings learned from a corpus of text, e.g.,
using Word2vec [42] or FastText [8]. An embedding maps each
word into a real-valued vector so that semantically similar words
have similar vectors. For example, the word vectors of “chicken”
and “fowl” will be close to each other in the embedding space. To
determine how similar two word vectors 𝑣 ,𝑤 are in an embedding
space, we compute their cosine similarity: 𝑠𝑖𝑚𝑖𝑙(𝑣,𝑤) = 𝑣⋅𝑤

∏︁𝑣∏︁∏︁𝑤∏︁

SemSeed computes embeddings of source code tokens and uses
them to reason about the semantic similarity of tokens. As the
embedding technique, we build on FastText [8], which we choose
for two reasons. First, FastText does not suffer from the out-of-
vocabulary problem [29], because it reasons about the n-grams
in a token instead of relying on a fixed-size vocabulary. Second,
FastText has been shown to more accurately represent the semantic
similarities of code tokens than other popular embeddings [62].

Algorithm 1 summarizes how SemSeed checks whether a given
token sequence semantically matches a bug seeding pattern. The
approach semantically compares the concrete tokens 𝐶𝑐𝑜𝑟𝑟 where
the bug described by the pattern has occurred with the tokens 𝐶
in the target program. The algorithm computes for each identifier
and literal token in 𝐶 its semantic similarity to the corresponding
token in 𝐶𝑐𝑜𝑟𝑟 . If the average similarity for all tokens in 𝐶 exceeds
a threshold𝑚, which we call the matching threshold, then the algo-
rithm returns 𝑇𝑟𝑢𝑒 , and SemSeed marks 𝐶 as a candidate seeding
location. Averaging the similarity across embeddings of individual
tokens is inspired by work on representing natural language sen-
tences and documents [4, 33] and captures how well a bug would
fit a target location. For bug seeding patterns derived from multiple
concrete bug fixes, the approach invokes the algorithm multiple
times, and considers 𝐶 a candidate seeding location if 𝐶 resembles
at least one of the concrete bug fixes. Our evaluation studies the
impact of the matching threshold𝑚 in practice.

For the example, SemSeed invokes Algorithm 1 for the two syn-
tactically matching code locations. The first invocation, where 𝐶
contains the tokens in item.errCode === -1, is likely to return
False (depending on the matching threshold) because the compared
tokens, e.g., item vs. process, or ’darwin’ vs. -1, are dissimilar.
In contrast, the second invocation is likely to return True because
the tokens in process.arch === ’x64’ have a high pairwise sim-
ilarity with the tokens in process.platform === ’darwin’.

3.3 Applying Bug Seeding Patterns
The third and final step of SemSeed is to apply bug seeding patterns
at the bug seeding locations in the target program.

3.3.1 Unbound Tokens. The main challenge in this step is tokens
that appear in the buggy part but not in the correct part of the
pattern, which we call unbound tokens. For example, recall the bug
seeding pattern in Figure 1, and in particular, the ’lit2’ token
in the buggy code. When applying the pattern to a program, this
token is unbound, i.e., it is unclear what concrete token to insert
instead of ’lit2’. Prior work on automatically seeding bugs based
on inferred bug patterns [9, 61] ignores the problem of unbound
tokens, and hence can apply only bug seeding patterns without any
such tokens. However, as we show in our evaluation, the majority
of all bug seeding patterns contains unbound tokens, i.e., ignoring
them would ignore many bug seeding opportunities.

Before presenting our approach for applying bug seeding pat-
terns with unbound tokens, we consider a few alternatives. Suppose
we want to apply a bug seeding pattern (𝑃𝑐𝑜𝑟𝑟 , 𝑃𝑏𝑢𝑔), which was
inferred from a concrete bug fix (𝐶𝑏𝑢𝑔,𝐶𝑐𝑜𝑟𝑟 ) and has an unbound
token 𝑡?. The question is which concrete token to use instead of 𝑡?
when concretizing 𝑃𝑏𝑢𝑔 in the target program.

One option would be to replace 𝑡? with the concrete token it is
bound to in𝐶𝑏𝑢𝑔 . However, this tokenmay not be a natural fit for the
target program. For example, when 𝑡? is an identifier, then simply
replacing it with the corresponding identifier from 𝐶𝑏𝑢𝑔 is likely
to result in an undefined variable, resulting in a rather unrealistic
bug. Another option would be to replace 𝑡? with a random token
sampled from the vocabulary of all tokens, which again is likely
to result in an unrealistic bug. A third option would be to sample
a token from all tokens in the same file or same function as the
bug seeding location. While this approach increases the chance of
resulting in realistic code, it is still likely to yield a token that does
not fully fit the context of the bug seeding location, e.g., because it
uses a variable of a wrong type.

3.3.2 Binding Tokens via AnalogyQueries. To address the challenge
of binding an unbound token in a way that fits the bug seeding
location, and hence ultimately, create a realistic bug, we again take
inspiration from natural language processing. Given a learned word
embedding, word analogy tasks intend to answer similarity ques-
tions involving two or more pairs of words. For example, one may
ask the analogy questionWhat word is to “France” what “Tokyo” is to
“Japan”?, which is likely to yield the answer “Paris” [42]. Adapting
this idea to unbound tokens, SemSeed uses the bound tokens of a
bug seeding pattern to resolve any unbound tokens in the same
pattern.

Figure 2 illustrates our analogy-based technique for binding
unbound tokens using the example in Figure 1. Given the bug
seeding pattern, the token lit2 is unbound. In contrast, process
and arch are bound, because id1 and id2 occur both in the correct
and the buggy part of the pattern. SemSeed searches for a suitable
token for lit2 by asking three analogy questions:

● What token is to ’x64’ what ’win32’ is to ’darwin’? This
analogy is represented by the two upward arrows in Figure 2.
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Embedding space:

platform

'win32'

process

'x86'

arch

'x64''darwin'

Figure 2: Example of analogy queries to bind unbound to-
kens.

Algorithm 2 Apply bug seeding pattern to candidate token se-
quence
Input: A candidate token sequence 𝐶 , a concrete bug fix
(𝐶bug,𝐶corr) and its corresponding bug seeding pattern
(𝑃corr , 𝑃bug), a set 𝑇 of identifier and literal tokens.

Output: Tokens 𝐶seed of seeded bug
1: 𝐶seed ← (︀⌋︀

2: for 𝑖 ← 1 to length(𝐶bug) do
3: if kind(𝐶bug(︀𝑖⌋︀) ∉ {Identifier, Literal} then
4: Append 𝐶bug(︀𝑖⌋︀ to 𝐶seed ▷ Copy token
5: else if 𝑃bug(︀𝑖⌋︀ bound to 𝑡bound then
6: Append 𝑡bound to 𝐶seed ▷ Use bound token
7: else
8: 𝑉tgt ← ∅ ▷ Bind token via analogy queries
9: for 𝑡abstr ∈ 𝑃corr do
10: 𝑡orig ← token that 𝑡abstr is bound to in 𝐶bug
11: 𝑡seed ← token that 𝑡abstr is bound to in 𝐶
12: 𝑣tgt ← emb(𝑡seed) + emb(𝐶bug(︀𝑖⌋︀) − emb(𝑡orig)
13: Add 𝑣tgt to 𝑉tgt
14: 𝑡? ← argmax

𝑡∈𝑇

simil(emb(𝑡), avg(𝑉tgt))

15: Append 𝑡? to 𝐶seed

● What token is to arch what ’win32’ is to platform? This
analogy is represented by the two downward-left arrows in
Figure 2.
● What token is to process what ’win32’ is to process? This
analogy is represented by the downward-right arrow in Fig-
ure 2, where a single arrow is sufficient because process
occurs both in the imitated bug and the target program.

The token embedding answers these questions by returning the
three blue points in the vector space (we explain below how exactly
these points are computed). Intuitively, these points provide three
target locations around which to search a suitable token for the
unbound token. SemSeed combines the these target locations into
a single target location by averaging the three blue points into the
pink point shown in the figure. SemSeed retrieves a suitable token
for lit2 by searching the nearest neighbor of the target location,
as indicated by the gray sphere in Figure 2. The nearest neighbor in
our example is the literal token ’x86’, and hence SemSeed seeds a
bug using this token.

3.3.3 Algorithm. After providing an intuition of the approach, Al-
gorithm 2 presents in detail how SemSeed applies a bug seeding
pattern. The algorithm takes three inputs. First, a candidate token se-
quence𝐶 , identified as described in Section 3.2, which the algorithm
will mutate to seed a bug. Second, a concrete bug fix (𝐶bug,𝐶corr)

and its corresponding bug seeding pattern (𝑃corr , 𝑃bug). The al-
gorithm will seed a new bug by imitating the given bug and by
semantically adapting it to the context of the candidate token se-
quence. Third, a set𝑇 of literal and identifier tokens from which the
algorithm selects tokens to use for unbound tokens. For example,
this set may consist of all identifiers and literals in the file where
the bug is seeded or the 𝑛 most common tokens in a corpus of code.
Our evaluation compares different ways of computing the set 𝑇 .

The main loop of the algorithm goes through all tokens in the
bug-to-imitate 𝐶bug , and iteratively builds a new sequence 𝐶seed
of buggy tokens. For each token to generate, the algorithm distin-
guished three cases. The first case (line 3) handles tokens that are
neither identifiers nor literals, but standard tokens of the program-
ming language, such as operators or parentheses. Each such token
is directly copied from the bug-to-imitate into 𝐶seed . The second
case (line 5) handles bound identifier and literal tokens, i.e., tokens
that appear in the candidate token sequence. The algorithm uses
the concrete token 𝑡bound from the candidate token sequence and
appends it to 𝐶seed . For our running example, the first two cases
handle the tokens process, ., arch, and !==. These cases are suffi-
cient to handle bug seeding patterns without any unbound tokens,
where it suffices to rearrange the tokens in the candidate token
sequence into the buggy token sequence. In contrast, unbound to-
kens, such as lit2 in our example, require including a new token
into the sequence 𝐶seed .

The third case (line 7 in Algorithm 2) handles unbound tokens
by computing a set 𝑉tgt of target points in the vector space of the
token embedding. For each abstract token 𝑡abstr that appears in
the correct part 𝑃corr of the bug seeding pattern, the algorithm
computes a target point based on the concrete tokens 𝑡orig and 𝑡seed
that 𝑡abstr is bound to in the bug-to-imitate and the candidate to-
ken sequence, respectively. The target point is computed at line 12,
which implements an analogy query. The query starts from the
embedding of 𝑡seed and adapts it by adding the vector that leads
from the embedding of 𝑡orig to the corresponding token 𝐶bug(︀𝑖⌋︀ in
the bug-to-imitate. For our running example, the algorithm com-
putes three target locations (which correspond to the three analogy
questions from above):

𝑉𝑡𝑔𝑡 = {𝑒𝑚𝑏(’x64’) + 𝑒𝑚𝑏(’win32’) − 𝑒𝑚𝑏(’darwin’),
𝑒𝑚𝑏(arch) + 𝑒𝑚𝑏(’win32’) − 𝑒𝑚𝑏(platform),
𝑒𝑚𝑏(process) + 𝑒𝑚𝑏(’win32’) − 𝑒𝑚𝑏(process)}

That is, the algorithm finds the difference between the vectors
of ’darwin’ and ’win32’ and adds it to the vector of ’x64’, and
similar for the other two queries. The resulting three target locations
are the blue points in Figure 2.

Given the set 𝑉tgt , the algorithm queries 𝑇 for the token whose
embedding is most similar to the average of all target points. Intu-
itively, this token is the available token that is semantically closest
to the token observed in the bug-to-imitate. Once retrieved, the
algorithm adds the token to the sequence 𝐶seed of result tokens.
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Our implementation uses a variant of Algorithm 2, which binds un-
bound tokens not only with the available token that is most similar
to the average of the target points, but to consider the 𝑘 nearest
neighbors of the average. For a given candidate token sequence and
bug-to-imitate, this variant seeds not only one but 𝑘 bugs.

To avoid breaking the syntactic correctness of target programs,
SemSeed checks for each seeded bug whether it yields syntactically
correct code by parsing the complete file after seeding the bug. For
example, a bug seeding pattern where the correct part is

[id1, =, lit1]
and the buggy part is

[var, id1, =, lit2]
may deem a candidate location like var num = 0 for seeding bug.
/* * * Created on 15-June-2021 * @author Jibesh Patra * */ The
seeded bug may result in code such as var var num = 1, which
is syntactically incorrect. In practice, we find that 97% of all seeded
bugs are syntactically correct and filter out the remaining ones.

4 IMPLEMENTATION
We implement SemSeed as an end-to-end bug seeding tool with
JavaScript as the target programming language. We use the API
provided byGitHub to get a list of themost popular JavaScript repos-
itories that we clone locally. After the initial filtering of commits
based on the commit message etc., the correct and buggy JavaScript
files are obtained using built-in commands in git. The static analy-
sis on the JavaScript programs to extract nodes, the corresponding
tokens, the kind of tokens etc., has been implemented using esprima.
To obtain token embeddings, we pre-train FastText [8] on token
sequences extracted from a corpus of 150K JavaScript [50] files. As
mentioned at the end of the introduction, our implementation is
publicly available to foster future work.

5 EVALUATION
We evaluate SemSeed based on bug fixes extracted from the ver-
sion histories of 100 popular JavaScript projects. The evaluation
addresses the following research questions:
● RQ1: How effective is SemSeed in reproducing real-world
bugs?
● RQ2: How does SemSeed compare to a semantics-unaware
variant of the approach?
● RQ3: What is the impact of the configuration parameters of
the approach?
● RQ4: How useful are the seeded bugs for training a learning-
based bug detector?
● RQ5: How do the seeded bugs compare to bugs created with
traditional mutation operators?
● RQ6: How efficient is SemSeed in seeding bugs?

5.1 Experimental Setup
We gather bug-fixing commits from the version histories of the
100 JavaScript projects that have most stars on GitHub. For each
repository, we extract all commits and filter them as explained in
Section 3.1.1, resulting in 3,600 concrete bug fixes. We split the bugs
into 2,880 guiding bugs, used to extract bug seeding patterns and as
concrete bugs-to-imitate, and 720 held-out bugs. The split is date-
based, using older commits as guiding bugs and newer commits as

held-out bugs, so we can evaluate whether imitating bugs from the
past creates bugs that have occurred later on. Extracting bug seeding
patterns from the guiding bugs yields 2,201 bug seeding patterns.
The frequency of the patterns follows a long tail distribution, which
shows that real-world bugs are diverse, and that extracting bug
seeding patterns from a large dataset is worthwhile.

The approach depends on three configuration parameters that
control how many and which bugs get seeded: the matching thresh-
old 𝑚, the set 𝑇 of tokens to choose unbound tokens from, and
the number 𝑘 of bugs to seed per code location. As a default, we
use𝑚 = 0.2, 𝑘 = 10, and 𝑇 as all tokens in the file where the bug
gets seeded plus the 1,000 most frequent tokens across all files with
guiding bugs. RQ3 further evaluates the impact of these parameters.

5.2 RQ1: Effectiveness in Reproducing
Real-World Bugs

We evaluate SemSeed’s ability to seed realistic bugs by comparing
the seeded bugswith the held-out bugs. There are two preconditions
for SemSeed to be able to reproduce a specific bug. First, the bug
seeding pattern of the bug must occur across the guiding set and
the held-out set. Due to the long-tail distribution of bug seeding
patterns, many of the patterns occur only once, and we focus on the
151 concrete bugs that have a pattern in the intersection of guiding
bugs and held-out bugs. Second, for bugs that involve tokens not
present in the correct code, i.e., unbound tokens, the unbound token
must be in the set 𝑇 of tokens the approach chooses from when
applying a bug seeding pattern. For our default configuration of 𝑇 ,
53 out of the 151 bugs that fulfill the first precondition also fulfill
the second precondition. We use this set of 53 held-out bugs as the
target bugs, and compute how many of them SemSeed reproduces,
i.e., the seeded bug is exactly the same as the original bug.

Given the files in which the 53 target bugs should be seeded, the
semantic matching identifies all 53 locations as a target location. 16
of the target bugs are rearrangements of existing tokens, i.e., similar
to the inferred mutation operators of prior work [9]. Seeding these
bugs is straightforward and SemSeed reproduces all of them. The
remaining 37 involve unbound tokens, and SemSeed’s algorithm
for binding these tokens is successful for all but six of the bugs.
Overall, the approach reproduces 47 out of the 53 target bugs.

Table 2 shows three examples of successfully reproduced real-
world bugs. For each example, we show the correct and buggy vari-
ant of both the bug-to-imitate and the seeded bug. The first example
is a bug without unbound tokens, but which requires rearranging
existing tokens only. The second example is a bug with an unbound
identifier token, where the following analogy queries help to select
the identifier stdout:What token is to parent what official is to
catalog? What token is to stderr what official is to complete?
What token is to on what official is to getReleaseVersion? Fi-
nally, seeding the third bug requires binding two unbound tokens,
which SemSeed again successfully finds by searching for tokens
similar to the tokens in the buggy code, e.g., finding timeout as a
token similar to connectionTimeout.

SemSeed reproduces 47 out of 53 bugs that are in scope for the
approach.
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Table 2: Examples of reproduced real-world bugs.

Correct code Buggy code

Bug to imitate: Commit b776e2b7 of jQuery
var opt = speed &&

typeof speed === "object"
var opt =

typeof speed === "object"

Seeded bug: Commit b94532c2 of Chart.js
if ( style &&

typeof style === 'object') {
if (typeof style === 'object') {

Bug to imitate: Commit ad708ca5 of Meteor
catalog. complete .

getReleaseVersion
catalog. official .

getReleaseVersion

Seeded bug: Commit bd74fb4c of Node.js
parent. stderr .on('data',

function() { ... });
parent. stdout .on('data',

function() { ... });

Bug to imitate: Commit 1027871e of webpack
optimization: {

chunkIds : "named"
}

optimization: {
namedChunks : true

}

Seeded bug: Commit 28f346e8 of freeCodeCamp
db: {

connectionTimeout : 15000
}

db: {
timeout : 10000

}

5.3 RQ2: Comparison with Semantics-Unaware
Bug Seeding

SemSeed relies on the semantic information embedded in identifiers
and literals in two ways: (i) to select the locations for imitating a
given bug, and (ii) to bind unbound tokens. To show the impor-
tance of these ideas, we compare our approach against a semantics-
unaware variant of SemSeed, which (i) applies a bug pattern at
every syntactically matching location, and (ii) binds unbound to-
kens by randomly picking from all tokens in the set𝑇 . This baseline
approach reproduces only 16 out of the 53 target bugs from RQ1.
All of these 16 bugs do not have any unbound tokens. For bugs that
need unbound token, we repeat the experiment for ten times with
different seed values and randomly select a token from 𝑇 . In none
of the ten repetitions does the random selection pick the correct
token required to seed a bug. The reason why randomly binding
unbound tokens is ineffective is that picking the right token by
chance from 𝑇 is unlikely. In our default configuration, 𝑇 contains
more than 1,000 tokens, and even when 𝑇 consists only of tokens
that appear in the same function, there typically are several dozens
of identifiers and literals to choose from.

To further illustrate the importance of handling unbound tokens,
Table 3 lists some bug seeding patterns that SemSeed finds, along

Table 3: Ten most frequent and five randomly selected bug
seeding patterns. Unbound tokens are highlighted .

Correct Buggy Nb.

id1 : lit1 id1 : lit2 99
lit1 : lit2 lit1 : lit3 71
id1.id2(lit1); id1.id2( lit2 ); 40
var id1 = lit1; var id1 = lit2 ; 33
id1 : lit1 id2 : lit1 18
id1 = lit1 id1 = lit2 18
throw new id1(lit1); throw new id1( lit2 ); 17
id1.id2 = lit1 ; id1.id2 = lit2 ; 13
id1(lit1) ; id1( lit2 ); 13
return lit1; return lit2 ; 11

id1 = lit1 in id2 id1 = !!id2. id3 1
id1.id2(lit1 + id3).id4); id1.id2(lit1 + id3); 2
id1.id2(id3[id4.id5]); id1.id2(id4.id5) 2
var id1 = id2.id3(id4); var id1 = id2.id3; 1
var id1 = id2.id1; var id1=id2. id3 ; 5
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Figure 3: Influence of matching threshold𝑚 on seeded bugs.

with their frequency in our dataset. All of the five most common
bug seeding patterns (top-5 shown in table) and 62% of all bug
seeding patterns contains at least one unbound token. Prior work
on bug seeding based on past bug fixes does not handle unbound
tokens [9, 61], and hence, could not benefit from these patterns.

A semantics-unaware variant of SemSeed reproduces only 16 out
of 53 target bugs, and not handling unbound tokens misses 62%
of all bug seeding patterns.

5.4 RQ3: Impact of Configuration Parameters
5.4.1 Matching Threshold 𝑚. The matching threshold 𝑚 deter-
mines in Algorithm 1 whether to apply a bug pattern to a code
location. A threshold of 0 means that the seeding location need not
be similar to the bug-to-imitate at all, i.e., the decision to apply a
bug seeding pattern is purely syntactic. In contrast, a threshold of 1
requires the tokens to perfectly match the original bug.

Figure 3 shows how the matching threshold influences the bugs
that SemSeed creates. The two curves show two percentages: in blue,
the percentage of seeded bugs out of all bugs that a purely syntactic
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Figure 4: Reproduced real-world bugs depending on token
set 𝑇 and number 𝑘 if bugs to seed.

approach, i.e., with𝑚 = 0, would seed; in red, the percentage of
reproduced target bugs (RQ1) among the seeded bugs. As expected,
both percentages decrease when the matching threshold increases.
Intuitively, if filtering potential matching locations based on the
matching threshold is effective at guiding SemSeed towards realistic
bugs, then the blue curve should decrease faster than the red curve.
Indeed, the figure shows a clear gap between the two curves, i.e.,
the semantic matching of target locations is effective. For example,
with a matching threshold of 0.4, the approach seeds a bug at only
20% of all possible locations, but still reproduces 60% of all bugs
that SemSeed can reproduce.

Compared to purely syntactic matching of bug patterns, the
semantic matching increases the chance to seed realistic bugs.

5.4.2 Token Set 𝑇 and Number 𝑘 of Bugs to Seed. Another parame-
ter is the set𝑇 of tokens to consider when binding unbound tokens
(Section 3.3.3). We experiment with three variants of 𝑇 :

(1) 𝑇fct : Search for unbound tokens only in the function where
the bug gets seeded.

(2) 𝑇file : In addition to 𝑇fct , search among all tokens in the file
where the bug gets seeded.

(3) 𝑇common: In addition to 𝑇file , search among the 1,000 most
frequent tokens across all files in the guiding set.

A larger search space increases the chance that the token required
to reproduce a bug exists in 𝑇 , but also makes it more difficult
to choose the “right” token, i.e., a token that indeed produces a
realistic bug. A related parameter is how many bugs to seed for a
given code location and bug seeding pattern. Our approach seeds
one bug for each of the 𝑘 most likely tokens found by Algorithm 2,
and we evaluate values of 𝑘 ranging from 1 to 10.

Figure 4 illustrates the effect that the token set𝑇 and the number
𝑘 of bugs to seed have on the number of real-world bugs that Sem-
Seed reproduces. We see that using a more restricted search space
of tokens yields fewer reproduced bugs than a larger search space.
Regarding the influence of 𝑘 , considering more than the single most
likely token significantly increases the number of reproduced bugs,
in particular for larger 𝑇 . Our default configuration of 𝑇 = 𝑇common
and 𝑘 = 10 yields 47 reproduced bugs.

Depending on the token set 𝑇 and the number 𝑘 of bugs to seed,
SemSeed reproduces between 29 and 47 of the target bugs.

5.5 RQ4: Usefulness for Training a
Learning-Based Bug Detector

To evaluate the usefulness of semantic bug seeding, we explore one
of the applications of SemSeed: seeded bugs as training data for
learning-based bug detection. We build on DeepBugs [49], which
learns from examples of correct and incorrect code, and then pre-
dicts bugs in previously unseen code. DeepBugs supports several
bugs patterns, of which we focus on two that are particularly chal-
lenging to seed bugs for:

● Wrong assignment bugs, where the right hand side of an
assignment is incorrect, e.g., writing i=o; instead of i=0;.
● Wrong binary operands, where a developer uses an incorrect
operand in a binary expression, e.g., accidentally writing
length * height instead of length * breadth.

The other bug patterns [49], e.g., swapping function arguments, are
simpler to seed and do not require to select unbound tokens.

We train DeepBugs using two configurations that differ in the
way the incorrect code examples are generated. One configuration,
called “artificial”, uses DeepBugs’s default generation of incorrect
code examples, which randomly applies purely syntactic transfor-
mations and binds unbound tokens at random from 𝑇file . The other
configuration generates incorrect examples with SemSeed, which
we configure to seed only bugs that match the two bug patterns
targeted by DeepBugs. We apply both configurations to the same
code corpus: a de-duplicated version [1] of a JavaScript corpus [50],
which consist of 120K files. Generating for each correct example at
most one incorrect example, the “artificial” configuration yields 1.1
million wrong assignments and 2.6 million wrong binary operands.
Since SemSeed focuses on locations that have a semantic match
with one of the guiding bugs, it creates fewer incorrect examples,
namely 248K wrong assignments and 267K wrong binary operands.

Once trained, we measure the ability of DeepBugs to detect real-
world bugs. As the bug patterns targeted by DeepBugs are relatively
rare, we gather the bugs in three ways: (i) Those 8 of the held-out
bugs that match the two bug patterns; (ii) Additional bugs gathered
from 900 popular GitHub JavaScript projects using the methodology
in Section 3.1.1; and (iii) Bugs from the JavaScript variant of an
existing dataset of single-statement bugs [28]. This process yields
412 bugs (35 wrong assignments and 377 wrong binary operands).

We measure precision, i.e., how many of all reported warnings
are among the known bugs, and recall, i.e., how many of all known
bugs DeepBugs finds. For each warning, DeepBugs returns a proba-
bility for the location to be buggy. Figure 5 shows the precision and
recall of DeepBugs depending on the probability threshold used to
decide which warnings to report. Overall, using SemSeed-generated
bugs instead of artificial bugs significantly increases the effective-
ness of DeepBugs, with clearly improved recall and roughly the
same precision. For example, using a threshold of 0.5, SemSeed
increases the detected bugs from 7% to 53%.

To understand why SemSeed improves the bug detection abil-
ity of learned bug detectors, consider two bugs seeded into the
following code:

for (var i = 0; i < coordinates. length ; i += 2)
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Figure 5: Precision and recall of DeepBugs with artificially
seeded and SemSeed-seeded bugs.

SemSeed seeds a bug by turning length into another identifier that
also refers to a dimension and that semantically fits the surrounding
tokens, i.e., a bug that a developer might actually introduce:

for (var i = 0; i < coordinates. offsetHeight ; i += 2)

In contrast, DeepBugs uses an arbitrary other identify from the
same file, resulting in a rather unrealistic bug:
for (var i = 0; i < coordinates. enableClickBuster ; i += 2)

As illustrated by this example, a model trained on the artificial bugs
tends to identify obvious yet unrealistic mistakes. Instead, training
DeepBugs with SemSeed’s bugs teaches the model to identify subtle
yet more realistic mistakes. More broadly, the results also illustrate
a quality-versus-quantity tradeoff in bug seeding: The SemSeed-
generated bugs yield more effective bug detectors, despite being an
order of magnitude fewer than the artificially created bugs.

Using semantically seeded bugs as training data for a learning-
based bug detector allows for finding significantly more bugs.

5.6 RQ5: Comparison with Traditional
Mutation Operators

Existing code mutation approaches, such as Mutandis [43] for
JavaScript and Major [24] for Java, use pre-defined mutation oper-
ators. We compare the mutation operators in Mutandis with the
bugs created by SemSeed. Based on the 2,880 guiding bugs, we
seed 677,217 bugs into a random sample of 1,000 JavaScript files

and then compare the seeded bugs to the 23 mutation operators in
Mutandis.1

98.2% of the SemSeed-generated bugs go beyond the 23 pre-
defined mutation operators. The 1.8% of the bugs that are shared
with Mutandis correspond to 165 out of the 2,880 guiding bugs. For
example, one of the Mutandis patterns is about changing a literal
in a condition, a change SemSeed also performs. Another example
is about removing the var keyword from a variable declaration, a
pattern that SemSeed also learns and applies. Inversely, Mutandis
also creates some bugs that SemSeed cannot seed. Out of the 23
Mutandis operators, SemSeed has a corresponding bug seeding
pattern for 16. For 13 out of these 16, SemSeed seeds at least one
bug, while for the remaining three no suitable bug seeding location
is found. Among the remaining 23 − 16 = 7 Mutandis operators,
two are out of scope for SemSeed because the code transformation
affects more than one line, e.g., swapping two nested loops. For the
other five operators, SemSeed could in principle seed bugs, but there
is no corresponding guiding bug. These are mostly about changes
to JavaScript APIs, e.g., removing the integer base argument 10
from calls like parseInt(’09/11/08’, 10).

SemSeed complements traditional mutations by seeding many
bugs beyond a fixed set of pre-defined mutation operators.

5.7 RQ6: Efficiency
We measure the efficiency of SemSeed by keeping track of the time
it needs to seed the 677,217 bugs into the 1,000 files from RQ5.
This experiment is performed on a machine with 48 Intel Xeon
E5-2650 CPU cores and 64GB of memory. Because some files allow
for thousands of seeded bugs, we set a time limit of 30 minutes per
file. Out of the 1,000 files, SemSeed could seed bugs into 902 files
where it found at least one matching bug seeding pattern. In total,
seeding 677,217 bugs takes 140 minutes. Analyzing what part of
the approach takes the most time, we find that the analogy queries
are the biggest bottleneck.

SemSeed takes, on average, 0.01 seconds to seed a bug and hence
can generate a large number of bugs in very little time.

6 LIMITATIONS AND THREATS TO VALIDITY
SemSeed focuses on single-line bugs, for two reasons: (i) we can
gather a large set of these bugs automatically, which facilitates the
evaluation, and (ii) these bugs are relevant and important in prac-
tice [16, 28, 51]. For example, Karampatsis and Sutton [28] show
that there is an instance of one out of 16 common patterns of single-
line bugs every 1,600 to 2,500 lines of code. To generalize SemSeed
to more complex bugs, one would consider token sequence that
span multiple lines. One challenge we anticipate is that the prob-
ability that a complex bug-to-imitate syntactically matches code
in another program is smaller than for single-line bugs. Address-
ing this challenge, e.g., by approximately matching bug seeding
patterns to code locations, remains for future work.

Among the many applications of bug seeding, we select learning-
based bug detection to evaluate SemSeed’s usefulness. Based on our
1Mutandis can also use runtime information to decide which bugs to seed, which we
ignore here because our focus is on static bug seeding.
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comparison with traditional mutation operators, we are optimistic
that the approach could also be useful, e.g., for mutation testing,
and envision future work on this and other applications.

Our evaluation measures the realism and the usefulness of the
seeded bugs, but it does not confirm that each seeded bug indeed
changes the behavior of the target program. Future work could mea-
sure to what extent the seeded bugs affect a program’s semantics,
e.g., by executing the program’s test suite.

We implement the approach for JavaScript and cannot draw
conclusions about how well it would work for other languages. The
fundamental challenges that SemSeed addresses, i.e., where to seed
bugs, how to adapt a given example bug to a target location, and
how to handle unbound tokens, are language-independent.

7 RELATEDWORK
Bug Seeding. One approach to bug seeding is to apply mutations,

e.g., based on a predefined set of transformation patterns [21, 24].
Similar to our work, [9] propose to infer such patterns from code
changes. In contrast to these approaches, SemSeed decides where
to apply a bug seeding pattern and how to adapt it to the local code
context based on semantic similarities of code elements.

Tufano et al. [61] use neural machine translation (NMT) to learn
and apply mutations. Their approach requires hundreds of thou-
sands of bug-fixing commits to be trained properly. In contrast,
SemSeed learns from few examples – in the extreme case, one can
use a single example bug to seed similar bugs at various target loca-
tions. In general, an NMT-based approach could also seed bugs in
a semantics-aware way, and comparing such an approach against
SemSeed will be interesting future work. One advantage of our
work over NMT-based approaches is that SemSeed enables seeing
and possibly filtering the bug seeding patterns. For example, to
train a DeepBugs [49]-like, learning-based bug detector, we focus
on bug patterns supported by DeepBugs by selecting the corre-
sponding bug patterns. An important difference between SemSeed
and both [9] and [61] is that our approach handles unbound tokens,
seeding bugs even if this requires an application-specific identifier
or literal.

Tailored mutation operators [2, 13, 24, 39, 43], e.g., insert code
fragments that occur elsewhere in a project. In contrast to such
approaches, the mutations applied by us are based on previously
seen bug fixing patterns and not project-specific as in [2] or hard
coded as in [24, 43]. IBIR also learns from past bugs how to seed new
bugs [31]. It uses natural language in a bug report to decide where
to seed a bug, whereas SemSeed focuses on the tokens (including
natural language identifiers) in the code. IBIR neither adapts bugs
to a target location and nor addresses the unbound token problem,
which we show to be crucial for the majority of bug patterns.

Motivated by the abundance of fuzz testing tools [6, 18, 48, 56],
automatically seeded bugs have been proposed for evaluating fuzz
testing [15, 53]. These seeded bugs aim at being non-trivial to trigger
in an execution, but are easy to detect on the source code level, e.g.,
because the seeded bug relies on magic numbers.

Mining Code Change Patterns. Osman et al. [47] describe an em-
pirical study of frequent bug fixing code changes. Negara et al.
[44] identify repetitive code changes from fine-grained sequences
of code changes recorded in an IDE. In contrast, our approach

mines only concrete changes that correspond to a bug fix rather
than any change made by a developer. Nguyen et al. [45] mine
semantic change patterns by converting the correct and buggy files
to program dependence graphs. Instead of a graph, we leverage
embeddings of tokens as the semantic representation and extract
changes as a sequence of tokens. Kim et al. [32] manually inspect
human-written patches to infer common fix patterns. Neural ma-
chine translation can learn to apply bug fixes [60]. SemSeed ad-
dresses the inverse problem of seeding bugs, instead of fixing them.

Bug Benchmarks. Several bug benchmarks have been proposed,
including SIR [14], Defects4J [25], BugSwarm [58] Bugbench [40],
BegBunch [11], iBugs [12], ManyBugs [34], Codeflaws [57], Dbg-
Bench [7]. Our work complements such manually curated bug
datasets by automatically seeding bugs into a target program.

Finding Matching Code. Code clone detection [23, 26, 38, 52, 55]
relates to the semantic matching part of SemSeed. These approaches
find matching code pieces via string-based, parse tree-based, or
token-based comparisons. Our semantic matching relates to the
token-based techniques, but differs by using token embeddings to
find a match.

Token Embeddings. Recent work shows that token embeddings
enable learning-based program analysis, e.g., to detect bugs [49],
to predict types [41], to de-obfuscate code [3], or to map APIs
across programming languages [46]. Our work is the first to use
pre-trained token embeddings for bug seeding. Future work could
adapt SemSeed to other kinds of token embeddings, e.g., contextual
embeddings [17, 27, 30].

8 CONCLUSION
This paper presents SemSeed, an approach for seeding bugs in a
semantics-aware way. Given a possibly small set of example bugs,
the approach infers bug seeding patterns and then imitates the
given bugs at various code locations in a target program. The key
novelty is to go beyond purely syntactic bug seeding by (i) check-
ing if a code location semantically matches the bug-to-imitate, (ii)
adapting the bug seeding pattern to the local code context, and
(iii) binding unbound tokens based on semantic analogy queries.
To reason about the semantics of code elements, SemSeed builds
on learned token embeddings, which have not been used for bug
seeding before. Our evaluation with thousands of real-world bugs
shows that the approach effectively seeds realistic bugs, while be-
ing efficient enough for creating hundreds of thousands of bugs
within an hour. The created bugs complement traditional mutation
operators and are useful as training data for learning-based bug
detectors, allowing them to find many otherwise missed bugs.
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