Video presentation available here: https://www.youtube.com/watch?v=B8xMNglg7FI

Move to the next slide for the full slide presentation.
Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code

Matteo Paltenghi and Michael Pradel
Software Lab, University of Stuttgart, Germany
1. Motivation
Evaluation of Neural Models of Code

- Risk: deploying a model which is right for the wrong reason (aka spurious dataset correlations)

What is going on inside the model?

- Our work: compare human and neural model attention
- Goal: get insights into model weaknesses

Compare Attention

Prediction

Prediction
2. Methodology
Methodology

Attention Capturing

• Capture **token-level attention maps** from neural models and humans.

```java
synchronousDestination = new SynchronousDestination();
synchronousDestination.setName("testSynchronousDestination");
synchronousDestination.afterPropertiesSet();
synchronousDestination.open();
doTestSend(synchronousDestination);
```

* darker color --> higher attention
Task Choice: Code Summarization

Motivation:
- Research interest: popularity of the task among neural models of code
- Complex reasoning: a deeper understanding of the code is needed to name a method

Study different model architectures:
1. Convolutional Attention (Allamanis et al., ICML 2016)
2. Transformer-based (Ahmad et al., ACL 2020)
Attention of Neural Models

The studied models have two types of attention:

1. **Regular attention**
2. **Copy attention** to copy verbatim tokens from the method body
Experimental Setup: Human Reasoning Recorder

- **Human Task**: choose the correct method name among 7 alternatives

- **Fixation Time Assumption**: The more time you stare at a token the more attention it receives
Human-Model Agreement

How to measure it?
Via **Spearman Rank Coefficient**

We compute the agreement for each pair: t (Neural Model, Human)
3. Results
Human Attention Dataset

Our dataset contains:

- 1,508 human attention maps
- Methods from 10 Java Projects
- 91 participants:
 - 26 computer science students
 - 65 recruited via Amazon Mechanical Turk

```java
log.debug("Requesting new token");
int status = getHttpClient().executeMethod(method);
if (status != 200)
{
    throw new exception("Error logging in: " + method.get$);
}
document document = new saxBuilder(false).build(method.get
xPath path = xPath.newInstance("/response/token");
element result = (element)path.selectSingleNode(document);
if (result == null)
{
    element error = (element)xPath.newInstance("/response/
document);
    throw new exception(error == null ? "Error logging in"
}   
myToken = result.getTextTrim();
```
Research Question 1: Human-model agreement?

We compare each pair of human vs machine attention.

Regular attention shows a poor agreement.

Copy attention agrees with the humans.

Our work gives an empirical justification to the use of copy attention, as something in agreement with the humans.

* Here you see the transformer-based model (similar behavior for the CNN-based)
Research Question 2: How interesting are the various kinds of token?

We quantify how much attention certain kind of tokens get w.r.t. the uniform attention scenario.

Strings, keywords, and operators are often overlooked by the models, whereas the humans give more attention to them.

Future human-inspired neural models should pay more attention to strings, keywords, and operators.

Less than uniform attention

More than uniform attention

Perfectly uniform attention

Regular Attention

Copy Attention

Human Attention
Research Question 3: Where do humans and models struggle the most?

We analyze the human and model performance on methods of:

- different families (e.g., getter, setter, test, etc.);
- increasing length.

Future training datasets should include a larger portion of “difficult” examples for a more effective training, or different sub-datasets of increasing difficulty.

Neural models struggle on more challenging methods (checkers and test).

Longer methods are harder to summarize, both for models and humans.
Research Question 4: Relationship between Human-Model agreement and model effectiveness?

We compute the correlation between agreement and performance with a Pearson correlation coefficient.

Creating models that more closely mimic the human attention seems a promising way toward more effective models, e.g., by using human attention traces during training.

A higher human-model correlation coincides with more effective predictions by the neural models.
Impact on Future Work

Ideas and Guidelines

Our work gives an empirical justification to the use of copy attention, as something in agreement with the humans.

Future human-inspired neural models should pay more attention to strings, keywords, and operators.

Future training datasets should include a larger portion of “difficult” examples.

Creating models that more closely mimic the human attention, seems a promising way toward more effective models.

Artifacts Available

Dataset of human attention traces:
1. Benchmark another Explainable AI method.
2. Train your neural model on our human attention traces.

Human Reasoning Recorder:
3. Use it for future human studies on source code with remote participants.

Matteo Paltenghi and Michael Pradel
Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code
Matteo Paltenghi and Michael Pradel
Software Lab, University of Stuttgart, Germany
Contact: mattepalte@live.it
Project: github.com/MattePalte/thinking-like-a-developer
Video presentation available here:
https://www.youtube.com/watch?v=B8xMNrlg7FI

Thanks in advance for leaving a like to the video, a simple like helps to amplify the impact of this work. Thanks! I wish you a happy and productive day.