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ABSTRACT

Strings play many roles in programming because they often contain
complex and semantically rich information. For example, program-
mers use strings to filter inputs via regular expression matching,
to express the names of program elements accessed through some
form of reflection, to embed code written in another formal lan-
guage, and to assemble textual output produced by a program. The
omnipresence of strings leads to a wide range of mistakes that
developers may make, yet little is currently known about these
mistakes. The lack of knowledge about string-related bugs leads to
developers repeating the same mistakes again and again, and to
poor support for finding and fixing such bugs. This paper presents
the first empirical study of the root causes, consequences, and
other properties of string-related bugs. We systematically study 204
string-related bugs in a diverse set of projects written in JavaScript,
a language where strings play a particularly important role. Our
findings include (i) that many string-related mistakes are caused
by a recurring set of root cause patterns, such as incorrect string
literals and regular expressions, (ii) that string-related bugs have
a diverse set of consequences, including incorrect output or silent
omission of expected behavior, (iii) that fixing string-related bugs
often requires changing just a single line, with many of the required
repair ingredients available in the surrounding code, (iv) that string-
related bugs occur across all parts of applications, including the
core components, and (v) that almost none of these bugs are de-
tected by existing static analyzers. Our findings not only show the
importance and prevalence of string-related bugs, but they help
developers to avoid common mistakes and tool builders to tackle
the challenge of finding and fixing string-related bugs.
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1 INTRODUCTION

Programs are full of strings. The reason why strings are so pop-
ular in programming is that they can express semantically rich
and complex information, while providing maximum flexibility.
For example, programmers use strings to filter user-provided in-
puts using regular expressions and to build textual outputs of a
program. Strings also play an important role in dynamic program-
ming patterns, such as reflection-like access of an object property
based on the property name. To inspect, manipulate, and create
strings, most programming languages provide a rich set of string
APIs. Finally, strings often also serve as an interface to other formal
languages, e.g., when embedding database queries, shell commands,
or document markup code via a string.

The prevalence of strings in programming leads to a wide range
of possible string-related mistakes. When manipulating strings,
programmers may accidentally misuse some API, use a wrong
regular expression, or forget about some special string value. When
embedding code in another formal language into the program via a
string, programmers may write syntactically incorrect code or refer
to non-existing identifiers. Even when using simple string literals,
e.g., to represent file paths or enum-like properties, programmers
may easily introduce typos or forget to update a string when the
program evolves. Unfortunately, most compilers and bug detection
tools are of little help because they rarely reason about the value
of a string variable or how it relates to the rest of the program.

Despite the omnipresence of strings and the various potential
mistakes related to them, little is currently known about string-
related bugs. This lack of knowledge has several negative con-
sequences. First, developers are likely to repeat the same mis-
takes again and again. If recurring string-related bug patterns were
known, developers could derive best practices to avoid them. Sec-
ond, creators of bug detection techniques, e.g., static and dynamic
analyses, and of automated program repair tools do not know what
kinds of problems are most pressing. Third, designers of APIs and
programming languages, who may want to prevent some classes
of bugs by design, can only guess what mistakes developers suffer
from.

This paper presents the first empirical study of string-related
bugs in widely used, real-world software. To address the lack of
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knowledge about this class of mistakes, we ask the following re-
search questions:

e RQ 1: What are the main root causes of string-related bugs?

e RQ 2: What consequences do string-related bugs entail, i.e.,
what kinds of misbehavior do they cause and how do these
bugs surface?

e RQ 3: How do developers fix string-related bugs?

e RQ 4: What kinds of software components or parts of an
application are most affected by string-related bugs?

e RQ 5: How effective are widely used bug detection tools at
finding string-related bugs?

To address these questions, we systematically study string-related
bugs in a diverse set of real-world JavaScript projects. Choosing
JavaScript as the target language is motivated by the fact that strings
play a particularly important role in this language. One reason is
that JavaScript is widely used in the web, where strings are heavily
used to manipulate websites and to send data over the network.
Another reason is the dynamic nature of the language, which moti-
vates developers to represent and manipulate various concepts as
strings, including references to program elements and even code
itself. We systematically gather a set of 204 string-related bugs from
13 popular open-source projects. Each bug consists of the incorrect
code, the fix applied by the developers, and some informal descrip-
tion of the problem. Beyond our study, this dataset will support
future work on string-related bugs, e.g., on finding and fixing these
problems.

Our main findings include the following:

o The vast majority (95.6%) of string-related bugs are caused
by one or more recurring kinds of root causes. These root
cause patterns will guide future efforts toward finding string-
related bugs.

e The most prevalent root causes are incorrect string literals
and incorrect regular expressions (42% and 37% respectively),
making these two problems prime targets for bug detection
techniques.

e Many bugs cause the program to produce incorrect output
(30%) or to corrupt a file (5%), while only 11% of the bugs
lead to an error message, i.e., an obvious sign of misbehavior.
These results underline the need for clever test oracles [4],
beyond generic signs of misbehavior, such as error messages.

o A significant fraction of the bugs (18%) manifest only in some
environments, e.g., a specific operating system or browser.
This finding motivates the automated analysis of code in
different environments.

e String-related bugs affect all components of the studied soft-
ware systems, with 53% of the bugs affecting the core func-
tionality of the project, showing that string-related bugs are
an important class of problems.

o Most bugs (61%) are fixed by modifying a single line of code,
making them a promising target for automated program
repair [25].

e For a significant fraction of the bugs (26%), all code tokens
required in the fix occur within the same file in the vicinity
of the fix location. Moreover, 45% of the bugs have at least
70% of the ingredients in the vicinity. The availability of such
repair ingredients will facilitate automated repairing efforts.
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e A widely used static code analyzer finds only one out of
the 204 studied bugs. This result confirms an earlier finding
that static analyzers miss most bugs [18] and shows that this
finding holds for string-related bugs in particular.

In summary, this paper contributes (1) the first systematic study
of string-related bugs, (2) findings about the root causes, conse-
quences, and other properties of these bugs, (3) evidence that devel-
opers need tools to find and fix string-related bugs, (4) a documented
dataset of 204 bugs. Our dataset will be available as a reference
point for future work on best practices for developers, bug detection
tools, automated repair tools, and the design of string-related APIs
and programming language features.

2 METHODOLOGY
2.1 Scope

To conduct a systematic study of string-related bugs, it is essential
to have a clear definition of what bugs are considered string-related,
and which types of those bugs fall into the scope of this study. We
define three criteria for selecting the subjects of our study, which
we describe and illustrate with examples in the following.

Criterion 1: Bug. The study focuses on bugs, i.e., problems in the
source code that cause the functional behavior of the program to
diverge from the expected behavior. The problems can range from
code crashes over omitted behavior to incorrect output messages. In
contrast, new features and any other kinds of code improvements,
e.g., refactorings, are not considered in the scope of this study.

Criterion 2: String-only problem. We focus on string-related bugs,
which we define as bugs that are possible only with strings or
custom string wrappers. This criterion excludes bugs that coinci-
dentally involve a string value but that may just as well happen
with another data type. For example, although the following ex-
ample from the Socket.IO framework involves strings, it does not
fulfill our criterion:

- var origin =
+ var origin =

this.req.headers['origin']
this.req.headers['origin'] ||

"

The reason is that forgetting to set a default value for a variable
may happen for several other data types. For example,the above
bug could also happen with a number that should be initialized
to zero by default. In contrast, the following bug from the npm
package manager is caused by a faulty regular expression, i.e., it
cannot happen with a data type other than string:

- u u.replace(/*git\+ssh:\/\//, "")
- .replace(/*git\+/, "")

+ u = u.replace(/*git\+/, "")

Although comments in the code are sequences of characters,
and hence similar to strings, we exclude fixes in comments from
the study, as comments are not strings. Thus, this wrong type
declaration in the Mongoose tool,

/**
*
- % @param {Number} val
+ x @param {String} val
*

*/
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or this typo in a comment that provides a code example in Face-
book’s React framework

/**
* .o
- % var ReactComponentWithPureRender =
+ % var ReactComponentWithPureRenderMixin =
* ...
*/

are not considered string-related bugs.

Criterion 3: Programming language file. String-related code changes
may happen in documentation or configuration files. The study
focuses on bugs in programming language files, though, because
our goal is to gain insights for program analysis of code written in
Turing-complete languages. For example, this criterion excludes
version number changes in configuration files. Likewise, if a JSON
file contains some scripts, it also is beyond the scope of this study.
For example, the following incorrect command for running the tests
of the Socket.IO framework is not considered in the study:

"scripts": {

= "test": "make test"

+ "test": "mocha --reporter dot --slow 200ms --bail"
3

2.2 Data

All widely used programming languages support strings. We focus
our study on string-related bugs in JavaScript code, which is moti-
vated by three reasons. First, JavaScript has become one of the most
popular languages, oftentimes even reported as the most popular
language of all [9]. Second, JavaScript code covers a wide range
of application domains. While traditionally JavaScript has been
mostly used for client-side web applications, it has become popular
for server-side applications, mobile applications, cloud applications,
and many others. As a result of the first two points, there are many
open-source projects to study, including projects backed by large
software organizations, such as Facebook and Mozilla, and smaller
community-driven projects. Third, strings play an important role
in JavaScript, perhaps even more than in other languages, because
they are heavily used to manipulate websites, to send data over the
network, or to represent references to program elements and even
code itself in a string.

We gather string-related bugs from 13 JavaScript repositories
selected from the highest starred repositories on GitHub (Table 1).
The selection of these projects aims at covering a diverse set of
application domains and platforms, including stand-alone appli-
cations, tools, libraries, and frameworks. We selected JavaScript
repositories on GitHub by their stars in descending order, while
ignoring websites (like freeCodeCamp/freeCodeCamp) and any
project that had a similar (in terms of domain and use case) project
selected before itself. | To emphasise the diversity of our selection,
we briefly describe each project. Atom is a desktop application
for editing text and source code, with support for plugins writ-
ten in Node.js. Mozilla’s PDF.js renders PDF files using the web
standards. Impress.js is a feature-rich application to create non-
conventional presentations. Video.js is a video player that uses
HTML5’s video functionality. Babel is a transcompiler that is used

Data gathered on April 5, 2020
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Table 1: Repositories used in this study.

Repository Commits Used by Bugs
Applications

atom/atom 37.5k - 11
mozilla/pdf.js 12k 100 20
impress/impress.js 383 90 1
videojs/video.js 3.5k 7.5k 13
Tools

babel/babel 13.6k 2.2M 7
npm/cli 9k 150k 52
Libraries & Frameworks

jashkenas/backbone 3.3k - 16
jquery/jquery 6.5k 395k 49
koajs/koa 1k 111k 0
Automattic/mongoose 12k 938k 14
facebook/react 13k 3.4M 6
socketio/socket.io 1.7k 1.7M 7
react-boilerplate/react-boilerplate 1.4k - 8

to convert JavaScript code written in newer ECMAScript standards
to older versions. The npm/cli project, provides the command line
interface for the well-known node package manager. Backbone.js is
a framework based on the model-view-presenter design paradigm
that is used for developing web applications. JQuery is a famous
library used for simpler HTML DOM operations. Koa is a HTTP
middleware framework for Node.js. Mongoose is a MongoDB ob-
ject modeling tool (ODM). Facebook’s React.js is one of the most
popular front-end development frameworks. Socket.io provides
realtime, bi-directional communication between clients and servers.
And finally, react-boilerplate is a structured project to be used as a
starting point for developing react applications.

2.3 Bug Extraction

To gather string-related bugs from the development histories of the
projects in Table 1, we semi-automatically filter the commits made
to these repositories. The filtering is guided by the hypothesis that
most string-related bugs are fixed by changing just a few lines of
code. Section 3.3.1 provides evidence to support this hypothesis.
After cloning the repositories, we automatically extract all commits
that modify at least one JavaScript file and filter the commits by the
number of changed lines, i.e., the sum of added and removed lines.
We keep all commits up to four changed lines of code, resulting in
11,875 total commits.

We inspect each of the commits manually to identify bug fixes.
A commit is considered a bug fix if it explicitly mentions that a
programming mistake is corrected, e.g., by referring to an issue
tracker or by describing the mistake in the commit message. In
case of doubt whether a change is indeed a bug fix, or when we
do not fully understand what the fix is about, we do not include a
commit, to ensure that our study focuses on actual string-related
bugs. Across all studied projects, this process results in 204 string-
related bugs. Table 1 gives the per-project breakdown, showing that
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the bugs cover all but one project. For addressing the individual
research questions, the 204 bugs are further inspected manually
and also analyzed automatically, as explained in detail in Section 3.

Data availability. The full list of all studied bugs, along with the
results of our manual inspection, is publicly available.?

2.4 Categorization

To answer RQ 1 and RQ 2 the authors inspected each bug and de-
termined the category of root cause or consequence from personal
judgment. The process included discussions on complex cases or
disagreements, and the categories were finalized when the authors
agreed on the same set or not categorized at all, otherwise. Both
authors reviewed the dataset again after the above process was
finished.

3 RESULTS
3.1 RQ 1: Root Causes

What causes string-related bugs? Understanding the root causes
of these bugs is an important first step toward techniques that
help developers find and fix the bugs. Furthermore, knowing how
prevalent specific kinds of string-related bugs are helps prioritizing
efforts toward such techniques.

To better understand the root causes of string-related bugs, we
identify recurring patterns of root causes, categorize these patterns,
and investigate how many of all studied bugs match these patterns.
Figure 1 shows the resulting taxonomy of root causes. The number
given for each leaf node in the taxonomy is the number of bugs that
match the given pattern. The patterns are not mutually exclusive,
i.e,, a bug can have multiple of the root causes, and some bugs do
not match any recurring patterns. The following describes the root
cause patterns in more detail and illustrates them with examples.

3.1.1 Bugs in String Literals. The overall most prevalent class of
bugs are incorrect string literals. For each of these bugs, the incor-
rect code contains a hard-coded string that has been modified by
the developers to address the bug. We distinguish two subgroups
based on what exactly is wrong about the string literal.

Incorrect string literal. These bugs, which account for 85 (42%)
of all studied bugs, are due to a mistake in a specific string literal.
For example, these bugs include typos in a string literal, using one
string literal that is also used in the program instead of the correct
one, and string literals that are missing some information or that
include incorrect information.

As a concrete example, consider this example from the Mongoose
project:

- const City = db.model('City"', new Schema({
+ const City = db.model('City2', new Schema({

Another example is from the npm package manager:

if (lurl) {

= url = "https://npmjs.org/package/" + d.name

+ url = "https://www.npmjs.org/package/" + d.name
3

Zhttps://github.com/sola-st/string-bugs

Aryaz Eghbali and Michael Pradel

In both cases, the developers fix the bugs by modifying the string
literal in place, without touching any of the other code, which is
common for this bug pattern.

Should not use string literal at all. The second kind of string
literal bugs occurs four times, i.e., in 2% of all studied bugs. Here,
the incorrect code uses a string literal in a context where no literal
should be used at all. Instead, the code already contains a property,
a function, or a configuration value that yields the string to use.
Hard-coding a specific string instead may lead to the wrong string
being used, e.g., when the value needs to be updated.

This is an example of such a bug from the Atom text editor:

- const executablesToSign = [ path.join(packagedAppPath,
'Atom.exe') ]

+ const executablesToSign = [ path.join(packagedAppPath,
CONFIG.executableName) 1]

As in the example, such bugs are typically fixed by replacing the
string literal with a reference to the property, function, or configu-
ration value that yields the correct string.

Bugs caused by incorrect string literals are hard to find, both by
humans and automated tools. For humans, the main challenge is to
keep track of the different string literals spread across a code base
and the (typically implicit) consistency constraints between them.
For automated program analyses, the main challenge is to reason
about the content of string literals. Many existing analyses (see
Section 6 for some exceptions) do not even attempt to reason about
string literals, but simply abstract their content away. Reasoning
about the semantics of string literals, and how they related to their
surrounding code, is a promising direction for future work.

3.1.2  Bugs in Regular Expressions. Another highly prevalent class
of string-related bugs are bugs in regular expressions. Prior work re-
ports regular expression to be widely used [10] yet poorly tested [47].
We find 75 out of the 204 studied bugs (37%) to be within a regular
expression, which confirms the earlier results and shows that the
poor state of testing regular expression results in various bugs.

To get an impression of what kinds of mistakes developers typi-
cally make when writing regular expressions, Table 2 lists six re-
curring root cause patterns among the 75 regular expression bugs.
As for our overall classification, these patterns are not mutually
exclusive. The first two patterns are both the result of forgetting
to consider a specific case when designing a regular expression. In
pattern 1, the regular expression explicitly lists cases separated by
|. In pattern 2, the programmer searches and replaces particular
substrings in a given string using the replace() API, but forgets to
search for a specific kind of substring. Together, these two patterns
account for 38% of all regular expression bugs in our dataset. For
both patterns, the bug is typically fixed by adding the missing case,
as illustrated in the examples in Table 2.

Three of the remaining patterns are about incorrectly using, or
not using at all, a specific feature of the regular expression syntax.
In pattern 3, some part of the regular expression should be optional
or repeated, which the developer forgets to express using the 2,
{3, or » syntax. Pattern 5 is the result of not anchoring the regular
expression to the start or end of the matched string using the + and
$ symbols. Without such anchoring, the regular expression may
match any substring of the given string, which sometimes is not
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Figure 1: Common root causes of string-related bugs.

Table 2: Recurring bug patterns related to regular expressions.

Id Bug Pattern Example Occurrences
1 A case is missing in a list of alternatives. - loop|o(?:ff?|[rnl) 15
+ loop|for|o(?:ff?|[rn])
2 Incorrect chain of replace calls. - n.replace(/[,\_1/g, "-") 15
+ n.replace(/[,\_1/g, "-").replace(/\s/g, "")
3 Incorrect or missing use of optional or repeated pattern. = /(N AN/ 14
+ /(\d+\.\d+)\.\d+/
4 Mistake in literal part of a pattern. - /Edge/i 7
+ /Edg/i
5 Missing anchors (start and end of string). - /===([\s\SI+)---/g 7
+ /A= ([\s\SI+D) /g
6 Character should be escaped. - /1187 5
IRV

the intended behavior. In pattern 6, the developer forgets to escape
a character that has a special meaning in the regular expression
syntax of the underlying programming language, such as the slash
character.

Finally, pattern 4 is about mistakes in a literal part of a regular
expression, i.e., a sequence of characters that do not have any special
meaning in regular expressions, but simply match as they are. These
bugs are similar in nature to incorrect string literals, and techniques
to detect one may also help detecting the other.

The high total number of bugs in regular expressions and the
fact that a significant fraction of them fall under recurring patterns
motivates work on techniques to detect and repair such bugs. While
some techniques have been proposed in the past, e.g., a type system
for regular expressions [38] and a visualization tool [6], there clearly
is a need for additional testing and analysis techniques for regular
expressions.

3.1.3 Interface to Other Languages and External Resources. One
important role of strings in programming is that they often serve
as an interface to other (programming) languages and external
resources. For example, a program may create the source code of
another program, manipulate a document described in a markup
language, or issue operating system-level commands that refer to

paths in the file system. Because the well-formedness and content
of such strings is typically not checked before the execution, bugs
may easily arise. In our study, we find two common patterns of

such bugs.

Incorrect code embedded in string. This class of bugs is caused by
embedding code in one language as a string into another language.
The embedded code may, e.g., be HTML code embedded into a Ul
component or command line arguments embedded into a build
script. We find 22 (11% of all studied bugs) to belong to this class of
bugs. The following is an example from Facebook’s React library:

ReactDOM. render (
- <div className="pgErr">{err.toString()}</div>,

3+ <pre style={{overflowX: 'auto'}} className="pgErr">{
err.toString () }</pre>,

4 mountNode

5 )

1
5

Wrong path or URL. When programs refer to resources stored
on the same or another machine, they often encode a path or URL
into a string. We find that 22 (11%) of the studied bugs are due to a
wrong path or URL. The following example is a bug that occurred
in the Mongoose tool:

- require('../lib/utils"').random()
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+ require('../../1lib/utils').random()

In general, a wrong path or URL may be the result of an incorrect
string literal, as in this example, or of a mistake in manipulating a
string.

Detecting bugs related to interfacing with another language or
external resources seems possible because the syntax and semantics
of the content of the string is well-defined. For example, paths that
refer to the local file system could be checked, and some lint-like
static checkers reason about local paths. Another approach is to
prevent such bugs through programming language or API design,
e.g., in the form of embedded DSLs or APIs that allow programmers
to construct code while providing more safety guarantees than
when creating a raw string. Despite the fact that at least some of
these bugs seem in reach, the high number of bugs in this category
suggests that more effective techniques are needed.

3.1.4 Incorrect (Usages of) String APIs. To create, manipulate, and
validate strings, developers often use built-in APIs. We find 26 bugs
(13%) caused by incorrect usages of string APIs. These bugs are
often caused by using an API that is not appropriate for the intended
purpose, by using the API incorrectly, or by combining multiple
API calls in an unexpected way.

The following example is a bug in the npm package manager,
where the programmer accidentally used one API instead of an-
other:

- && !!p.substr(@, -1).match(relpatternl]) )
+ && !!p.slice(@, -1).match(re[pattern]) )

Another example is from Mozilla’s PDF.js, where the program-
mer expected the toLowercase() API to modify a string in place, while
it actually returns the modified string:

- ch.tolLowerCase();
+ ch = ch.tolLowerCase();

Since many clients of popular string APIs exist, techniques for
bug detection and repair based on API usage mining [2, 26, 32]
could help find such bugs.

3.1.5 Comparisons and Operations that Involve Strings. Another
common root cause of string-related bugs is mistakes in comparing
strings and in operations applied to strings. We distinguish the
following two subcategories.

Incorrect comparisons. We find 12 bugs (6%) that are caused by an
incorrect comparison of two strings. Half of them are related to the
case-sensitivity of the comparison, such as the following example
from the Socket.IO framework:

- this.req.headers.upgrade !== 'websocket'
+ this.req.headers.upgrade.toLowerCase() !== 'websocket'

Some of the comparison-related bugs occur when checking some
string variable against an expected valued, e.g., in testing code, such
as this example from the npm package manager:

- t.equal(stdout, 'cool\t\t\tprehistoric\t\t\nfoo')
+ t.equal(stdout, 'cool\t\t\tprehistoric\t1.0.0\t\nfoo')
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Figure 2: Consequences of string-related bugs.

Missing check or operation. 55 (27%) out of the studied bugs are
caused by a missing check or operation related to strings. These
bugs include code where only part of the expected string manipula-
tion is performed or where the programmer forgot to guard some
operation by an appropriate check. For example, the following bug
occurred in Mozilla’s PDF.js due to a missing call to trim():

- info.Version + ' ' + (info.Producer || '-")
+ info.Version + ' ' + (info.Producer || '-').trim()

3.1.6  Strings vs. Other Types. The final class of root causes is about
treating a value as a string, and not some other type. Among the
studied bugs, 10 (5%) fall into this category. For many of these bugs,
some variable is not of string type, but the programmer expects it to
be a string. Typically, these bugs are fixed by converting the value
into a string, which in JavaScript can be achieved by concatenating
a value with a string, as in the following example from jQuery:
- s.data = s.data.replace(jsre, "=" + jsonp);
+ s.data = (s.data + "").replace(jsre, "=" + jsonp);

Such type-related bugs could be detected by static type checking,
e.g., using gradual type checkers for dynamically typed languages,
such as Flow for JavaScript, or Pyre and Mypy for Python.

3.2 RQ 2: Consequences

The goal of this research question is to understand the consequences
of string-related bugs, i.e., what kinds of misbehavior they cause
and how the bugs manifest. Understanding the consequences will
help determine effective techniques for finding string-related bugs,
in particular, testing-based and dynamic analysis-based techniques
that rely on a manifestation of misbehavior.

3.2.1 Common Kinds of Consequences. Figure 2 shows the most
common kinds of consequences of string-related bugs. We identify
these consequences by carefully studying the code in which each
bug occurs and issue descriptions associated with a bug. As for
RQ 1, the categories for consequences are not mutually exclusive,
i.e., a bug may appear in multiple categories.

Incorrect output. Many of the string-related bugs (61, i.e., 30%)
cause the program to produce an incorrect output, such as an incor-
rect text printed to the console or an incorrect UI element rendered,
e.g., on a website. While incorrect outputs are often easy to spot
for humans, identifying them in an automated tool is much more
challenging, because the expected output often is not specified. One



An Empirical Study of String-related Software Bugs

promising direction for automatically detecting incorrect outputs
is cross-checking different, supposedly consistent outputs [14].

Corrupt a file. There are 11 bugs (5% of the studied bugs) that
cause the program to write incorrect data into a file or to store data
into a wrong file. Both are severe consequences, as they perma-
nently corrupt the state. From a bug detection perspective, these
bugs are similar to the “incorrect output” category discussed above.

Error message. Out of all the bugs found in our study, 23 bugs
(11%) lead to an error message being printed, e.g., to the command
line or the browser console. This relatively low percentage is likely
to be influenced by the “no crash philosophy” of JavaScript [3],
where many potential runtime mistakes do not cause errors but are
silently handled by the language, e.g., through implicit type conver-
sions [33]. From a bug detection perspective, the lack of obvious
error messages for most bugs poses an interesting challenge.

Task not done. A significant number of bugs (32, i.e., 16%) results
in a specific task or expected behavior not being done. For example,
these bugs include code that accidentally fails to download some
input data, fails to sanitize a string in some cases, or ignores some
of the give input files. Such omission errors are difficult to detect
because nothing wrong happens, but the correct behavior simply
does not happen.

Test failure. Among the studied bugs, 13 bugs (6%) manifest
through a test failure. Because we gather the studied bugs from
bug fixes in version histories, the dataset misses problems that
developers fix locally, before committing to the shared repository.
These missed bugs are likely to include some bugs exposed by test
failures triggered when a developer runs the test suite locally.

OS-specific problem. Some bugs manifest only on specific oper-
ating systems, e.g., because they relate to how file system paths are
encoded or how whether some external tool is available. We find
17 such OS-specific bugs (8%). Detecting such bugs through any
kind of runtime analysis requires the program to be executed on a
specific operating system, which increases the bug detection cost
in practice.

Software-specific problem. Similar to the above category, some
bugs manifest only when the code is executed within or in combi-
nation with a specific other software. These bugs include browser-
specific bugs that, e.g., manifest only in some versions of Internet
Explorer. We find 20 such bugs (10%) in our dataset. Combining this
and the previous category of consequences, 37 bugs (18%) manifest
only in a specific environment.

3.2.2  Relation between Root Causes and Consequences. Our classi-
fication of bugs based on their root causes and consequences allows
for studying the relation between both. Figure 3 shows how much
bugs with a specific kind of root cause lead to a specific kind of con-
sequence. There are a few noteworthy relations. First, we observe
that incorrect regular expressions often lead to incorrect output.
Almost half of all regular expression-related bugs have this con-
sequence. Second, test failures are frequently caused by incorrect
literals. The reason is that literals often appear in test cases as hard-
coded inputs or as part of assertions about the output of the tested
code. Finally, we find that bugs caused by treating a non-string
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Figure 3: Root causes leading to consequences.

as a string, or vice versa (category “String vs. other types”) often
manifest through an error message. We attribute this observation to
the fact that JavaScript raises errors for some type-related mistakes,
e.g., when trying to call a non-existing method of an object.

Overall, we conclude that string-related bugs are not limited to a few
kinds of consequences, but manifest on a variety of ways. The fact
that 18% of all bugs manifest only in a specific environment implies
that dynamic analysis-based approaches for finding string-related
bugs should execute the code under test in different environments.
Another interesting finding is that the vast majority of bugs does
not lead to an obvious sign of misbehavior, such as an error message,
but rather manifest through the absence of some expected behavior
or an incorrect output. This finding calls for more work toward
implicit oracles, e.g., through differential testing [30], metamorphic
testing [12, 35], or some kind of consistency check.

3.3 ROQ 3: Fixes

This research question is about the way developers fix string-related
bugs. Specifically, we are interested in the size of bug fixes (Sec-
tion 3.3.1) and in the degree to which the “ingredients” for a bug
fix are available in the buggy code (Section 3.3.2).

3.3.1 Size of Fixes. We measure the size of bug fixes in two ways.
Figure 4 shows how many lines a bug fix includes, where each
removed and added line counts separately. That is, modifying a
single line counts as two lines in the bug fix, as one line is removed
and another line is added instead. The figure shows that most fixes
of string-related bugs (125 out of 204, i.e., 61%) affect only a single
line, i.e., they have one or two lines in the bug fix. When interpreting
these results, one needs to consider that the bugs considered in
the study are filtered by the number of changed lines (at most four
added and removed lines, Section 2.3), i.e., our dataset is inherently
biased towards small bug fixes. Nevertheless, the fact that most
bugs are even smaller than our limit imposed when gathering bugs
shows that many string-related bugs indeed have small fixes.

The second measurement is about the number of characters
changed in a bug fix. For each bug fix, we take the sequence differ-
ence, using Python’s difflib library, between the added and removed
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Figure 5: Histogram of characters changed in bug fixes.

lines to detect the minimum required character change. We then
use the sum of added, removed, and modified characters as the total
number of changed characters. As an example, this is the output of
the sequence difference script for a bug in the JQuery library.

= = var m = er.message.match(/*E[A-Z]+/)

7 A

+ + var m = er.message.match(/*(?:Error: )?(E[A-Z1+)/)
7 o +H++tt bttt +
- - m = m[o]

? A A

+ o+ m=m[1]

7 A A

Using the markers provided by the difflib tool, we can easily count
the number of modified characters. Figure 5 shows the histogram
of the number of changed characters. The results confirm the ob-
servation that most string-related bugs require only small fixes. For
example, 111 out of the 204 bugs (54%) are fixed by changing fewer
than 30 characters.

3.3.2  Fix Ingredients. The fact that string-related bugs follow re-
curring patterns and that they often get fixed by modifying just a
single line of code may bring this class of bugs into the reach of
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automated program repair [25]. One challenge in automated repair
is to find the program code that is required in the fix but not part
of the buggy code location, sometimes called “fix ingredients”. To
better understand the potential for finding such fix ingredients for
string-related bugs, we analyze whether the tokens added when fix-
ing a bug are available close to the location where the string-related
bug gets fixed.

In the first step, we compare the old and the new code that fix a
string-related bug by extracting the tokens in these code fragments.
We then search up to a 100 lines before and 100 lines after the bug
for these tokens and measure how many of the otherwise missing
tokens are within this window of nearby available fix ingredients.
Not all bug fixes add tokens, e.g., some fixes require removing entire
lines or specific tokens from the source code. Our analysis does
not consider these bug fixes (39 out of 204), since all ingredients
for fixing these bugs are given in the buggy code. The analysis is
automated and implemented based on the Acorn JavaScript parser>
and the Difflib.js* package, which is ported from Python’s difflib
library.®

We present two variants of the fix ingredients results. Figure 6a
includes all tokens except for regular expressions, which are repre-
sented as a single token. The figure shows that 25% of the bugs have
all of the required ingredients present nearby, and 43% of the bugs
have at least 70% of the tokens needed for the fix around the bug.
Figure 6b shows the same results, now including regular expres-
sions. Here, 12% of the bugs have all required tokens in the vicinity
and 30% of the bugs have at least 70% of their repair ingredients
close by. The difference between these two figures is due to the fact
that the chance of having the exact regular expression required to
fix a bug somewhere in the code is small. Yet, both figures show
that for a significant fraction of string-related bugs, all or at least
many of the fix ingredients are available in the surrounding code.

Overall, the results of RQ 3 show that many string-related bugs are
fixed by modifying very little code, often just a single line, and that
many of the fix ingredients are available in the surrounding code.
For example, for this bug in the React-boilerplate project, the entry
point path is wrong.

' '

console.log(path.join(__dirname, '..', ‘'app/js/app.js'));
entry = [
= path.join(__dirname, '..',
with js/app.js...
+ path.join(__dirname, '..',
with js/app.js...

‘js/app.js') /// Start

‘app/js/app.js') /// Start

Notice that a few lines above, our script found the correct path used
in a log message, which could potentially be used to repair this
bug automatically. These findings bring string-related bugs into
the reach of automated program repair, motivating future work in
this direction.

3.4 ROQ 4: Program Components

This research question asks what parts of a software project are
most affected by string-related bugs. We address this question by
studying for each bug the code location where the bug is fixed,

3https://github.com/acornjs/acorn/
“https://www.npmjs.com/package/difflib
Shttps://docs.python.org/3/library/difflib.html
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Figure 6: Histogram for the portion of repair ingredients
present in +/- 100 lines of the bug.

and by classifying these code locations into six categories: the core
functionality of the project, utility functions, Ul components, testing
code, build scripts, and demo applications or examples for how to
use an APL

Figure 7 shows the results of our analysis. The overall finding is
that string-related bugs affect all kinds of code components, and are
not limited to, e.g., UI or testing code. The most commonly affected
parts of the studied projects are the core components, where 109 of
the bugs (53%) reside.

To assess whether the components where bugs resides relate in
any particular way with the root causes of bugs, Figure 8 shows how
many bugs with a specific root cause are in a specific component.
For most kinds of root causes and components, we do not see a
clear relation between root causes and where a bug resides. The
only exceptions are bugs caused by incorrect string literals, which
tend to appear relatively often in testing code. The likely reason
again is that hard-coded strings are common in testing code. The
absence of strong relations between root causes and components
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implies that bug detection tools that target a specific kind of root
cause should be applied across all components of a software.

Overall, we conclude from the results in RQ 4 that string-related
bugs are wide-spread, even in the most important parts of code
bases, and hence deserve appropriate attention.

3.5 RQ 5: Existing Bug Detection Tools

The following addresses the question of how effective existing bug
detection tools are at finding string-related bugs. There are many
bug detection tools, e.g., FindBugs [20], Google’s Error Prone [1],
or Facebook’s Infer [8]. For JavaScript, static linters are commonly
used in practice [41], and we therefore compare with JSHint®, one
of the most popular static linters for JavaScript. To check which of
the bugs studied in this paper are detected by JSHint, we apply the
tool to each of the buggy files just before the bug fix was applied.
We then compare any warnings reported by JSHint close to the
locations that were fixed to address the bug, focusing on warnings
in the line directly before, exactly at, or directly after a modified
line.

®http://jshint.com
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In total, there are 218 lines with a JSHint warning close to a
bug fix location. A manual inspection shows that almost all of
them are unrelated to the string-related bugs, but point to other
potential problems at the same code location. The majority of these
unrelated warnings are about missing semi-colons (which is legal
but discouraged in JavaScript), language features supported only
by ECMAScript 6 (which is not yet supported by all browsers), and
possibly undefined references to global variables available only
in the browser (but not, e.g., in Node.js). Only one out of the 218
warnings points to one of the string-related bugs. It warns about
an invalid regular expression, which was fixed by the developer.

Overall, we conclude that a widely used static bug detection tool
is not effective at detecting string-related bugs, offering ample of
opportunities to improve the state of the art.

4 THREATS TO VALIDITY

Subject projects and bugs. Our study focuses on 204 bugs gath-
ered from 13 JavaScript repositories. While we aim at a diverse set
of projects, they may not be representative for other projects. Be-
cause the study focuses on JavaScript only, our conclusions may not
hold for other languages. The selection process of bugs may have
introduced some bias, e.g., toward bugs that are locally fixed by
changing a few lines of code. Hence, our findings apply to such bugs
only, and more complex string-related bugs may have other prop-
erties. Finally, because we study bugs fixed through commits, our
dataset misses bugs that never appear in the version control system,
either because the developer fixes them even before committing or
because the bugs remain unnoticed.

Manual classification. Our answers for RQ 1, 2, and 4 rely on a
manual inspection and classification of the 204 bugs. While such a
manual process is necessary to identify non-trivial patterns, it may
introduce mistakes. To mitigate this potential threat, the classifi-
cation results were checked by two authors and iteratively refined
until reaching agreement.

5 DISCUSSION

The fact that string-related bugs often affect the core components of
a project and lead to hard-to-detect misbehavior, such as incorrect
output or corrupted files, raises the question of how developers
can find such bugs quicker. Unfortunately, developers currently
have access to little or no effective tool support for dealing with
string-related bugs. Most program analyses do not reason about
the values of strings, but simply abstract these values away. How to
develop effective tools for finding string-related bugs needs more
research. NLP-based reasoning about the content of strings may be
a promising, yet mostly unexplored, direction. The high number
of regular expression bugs, combined with the wide use of regular
expressions [10], suggests that mining-based or learning-based ap-
proaches to find regular expression bugs could be a fruitful research
direction. Our findings about recurring root cause patterns (RQ 1)
will help guide such efforts toward the most promising kinds of
string-related bugs.

While string-related bugs are non-trivial to detect, fixing them
often involves only small and local code changes. This finding
motivates work on automated repair of such bugs. A common
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challenge in automated repair is how to find repair ingredients,
i.e., code fragments needed in the corrected code. Our results for a
show that for many string-related bugs, the repair ingredients are
available, waiting to be exploited by appropriate repair tools.

6 RELATED WORK
6.1 String-related Bugs

Even though there is no comprehensive study of string-related
bugs yet, prior work has looked into specific kinds of string-related
code. Regular expressions are shown to be regularly used by pro-
grammers [10], and at the same time, tested less well than other
code [47]. Our finding that many string-related bugs are caused
by incorrect regular expressions show the natural consequence of
the two previous results. Recently, Wang et al.[46] have done an
empirical study on regular expression bugs, similar to Section 3.1.2
in our study. The results in [46] are close to what we found about
regular expression bugs, although the repositories and program-
ming languages in that study are different. To avoid such bugs,
visualization [6] and static type checking [38] of regular expres-
sions have been proposed. String-related bugs sometimes cause
security vulnerabilities, e.g., format string vulnerabilities [16, 37],
cross site scripting vulnerabilities [5], or regular expression denial
of service vulnerabilities [17, 39]. Compared to other string-related
bugs, such vulnerabilities have been studied intensively, and there
are techniques to detect and fix them. Our study shows that there
are many string-related bugs beyond vulnerabilities, for which very
little tool support exists.

6.2 Program Analysis of String-related Code

There are several techniques for reasoning about strings in a pro-
gram analysis. Christensen et al. [15] propose an analysis of string
expressions that tries to create a regular language describing the
values a string may have. String solvers, such as Hampi [23] and
Rex [43], help expressing and solving constraints gathered during
the analysis of string-manipulating programs, which can be used,
e.g., to create injection attacks [24]. These techniques help reason-
ing about the question of what values a string expression may have,
which is an important part of better tools to detect string-related
bugs.

6.3 Natural Language Information in Code

Strings often contain some form of natural language information.
Some program analyses use such natural language information,
e.g., to infer specifications from API documentation [7, 49], to find
inconsistencies between comments and code [40], to warn about
potentially incorrect combinations of identifier names [34], and
to predict types [29]. However, none of these techniques reasons
about natural language information within strings, which could
be interesting future work to find some of the bugs studied in this

paper.

6.4 Studies of Bugs

Other studies investigate bugs in specific application domains, e.g.,
in operating systems [13], in deep learning systems [21, 48], and in
blockchain code [44], or specific classes of bugs, e.g., concurrency
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bugs [28], bugs in test code [42], long-lasting bugs [11], and perfor-
mance bugs [19, 22, 27]. Prior studies of bugs in JavaScript focus on
client-side JavaScript bugs [31], performance bugs in JavaScript [36],
and bugs that occur on the Node.js platform [45]. Our work con-
tributes an in-depth analysis of the important yet currently under-
studied class of string-related bugs. A study by Habib and Pradel
[18] shows that state-of-the-art static bug detection tools miss the
majority of bugs that occur in the wild. Our findings about lint-like
tools for JavaScript reinforces this finding for string-related bugs.

7 CONCLUSION

This paper presents the first in-depth empirical study of string-
related software bugs. These programming mistakes are a class of
simple yet prevalent bugs that we find to affect all kinds of com-
ponents of software projects, including the core functionality. Our
study investigates 204 string-related bugs gathered from 13 popular
JavaScript projects. We find that many bugs are instances of recur-
ring root cause patterns, with incorrect string literals (42%) and
incorrect regular expressions (37%) being the most common root
causes. While string-related bugs tend to require only small fixes
(61% are fixed by modifying just one line), they can have severe
consequences (30% lead to incorrect output) and are non-obvious to
detect (only 11% lead to an error message and 18% manifest only in
specific environments). A widely used static checker for JavaScript
misses all but one of the 204 studied bugs. In general, string-related
bugs are difficult to find with program analyses because most anal-
yses do not reason about the values of strings.

Our dataset is made available as a reference for future work on
best practices for developers, bug detection tools, automated repair
tools, and the design of string-related APIs and programming lan-
guage features. In particular, we hope to inspire work on developer
tools to find and fix string-related bugs. The current state of the art
leaves a huge untapped potential for techniques that detect such
bugs, and the root cause patterns described in this paper will guide
such efforts toward the most promising kinds of bugs. Moreover,
we find string-related bugs to be in reach for automated program
repair: Not only are many fixes simple, but for many bugs, the fix
ingredients, i.e., tokens added in a fix, are available in the vicinity
of the fix location.
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