
L E A R N I N G T O F I N D B U G S I N P R O G R A M S
A N D T H E I R D O C U M E N TAT I O N

Vom Fachbereich Informatik der
Technischen Universität Darmstadt genehmigte

dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

von

andrew habib , m .sc .

geboren am 14.06.1989

in Sues, Ägypten

Referenten:

Prof. Dr. Mira Mezini
Prof. Dr. Michael Pradel

Prof. Dr. Premkumar T. Devanbu

Tag der Einreichung: 02.11.2020

Tag der Prüfung: 14.12.2020

Andrew Habib: Learning to Find Bugs in Programs and their Documentation, ©
November 2020

This document was published using tuprints, the E-Publishing-Service of
TU Darmstadt.

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Please cite this document as:

URN: urn:nbn:de:tuda-tuprints-173778

URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/17377

This work is licensed under a Creative Com-
mons “Attribution-ShareAlike 4.0 International”
license.

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-173778
https://tuprints.ulb.tu-darmstadt.de/id/eprint/17377
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

E R K L Ä R U N G

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in
ihr ausdrücklich genannten Hilfen – selbständig verfasst habe.

Darmstadt, Deutschland
November 2020

Andrew Habib

A C A D E M I C C V

October 2015 - December 2020
Doctoral Degree in Computer Science
Technische Universität Darmstadt, Germany

August 2013 - July 2015
Master of Science Degree in Computer Science and Engineering
Denmark Technical University, Denmark
The Norwegian University of Science and Technology, Norway

September 2006 - June 2011
Bachelor of Science Degree in Computer Science
Bachelor of Science Degree in Mathematics
The American University in Cairo, Egypt

iii

A B S T R A C T

Although software is pervasive, almost all programs suffer from bugs and
errors. To detect software bugs, developers use various techniques such as
static analysis, dynamic analysis, and model checking. However, none of
these techniques is bulletproof.

This dissertation argues that learning from programs and their documenta-
tion provides an effective means to prevent and detect software bugs. The
main observation that motivates our work is that software documentation is
often under-utilized by traditional bug detection techniques. Leveraging
the documentation together with the program itself, whether its source
code or runtime behavior, enables us to build unconventional bug detectors
that benefit from the richness of natural language documentation and the
formal algorithm of a program. More concretely, we present techniques that
utilize the documentation of a program and the program itself to: (i) Im-
prove the documentation by inferring missing information and detecting
inconsistencies, and (ii) Find bugs in the source code or runtime behavior of
the program. A key insight we build on is that machine learning provides a
powerful means to deal with the fuzziness and nuances of natural language
in software documentation and that source code is repetitive enough to
also allow statistical learning from it. Therefore, several of the techniques
proposed in this dissertation employ a learning component whether from
documentation, source code, runtime behavior, and their combinations.

We envision the impact of our work to be two-fold. First, we provide
developers with novel bug detection techniques that complement traditional
ones. Our approaches learn bug detectors end-to-end from data and hence,
do not require complex analysis frameworks. Second, we hope that our
work will open the door for more research on automatically utilizing natural
language in software development. Future work should explore more ideas
on how to extract richer information from natural language to automate
software engineering tasks, and how to utilize the programs themselves to
enhance the state-of-the-practice in software documentation.

v

Z U S A M M E N FA S S U N G

Obwohl Software allgegenwärtig ist, leiden fast alle Programme unter Feh-
lern. Um Softwarefehler zu erkennen, verwenden Entwickler verschiedene
Techniken wie statische Analyse, dynamische Analyse und Modellprüfung.
Jedoch ist keine dieser Techniken perfekt.

In dieser Dissertation wird argumentiert, dass das Lernen aus Program-
men und deren Dokumentation ein wirksames Mittel darstellt, um Software-
fehler zu erkennen und zu verhindern. Die wichtigste Beobachtung, welche
diese Arbeit motiviert, ist, dass die Softwaredokumentation von herkömm-
lichen Fehlererkennungstechniken häufig nicht ausreichend genutzt wird.
Durch die Nutzung der Dokumentation zusammen mit dem Programm
selbst, unabhängig davon, ob es sich um den Quellcode oder das Lauf-
zeitverhalten handelt, können unkonventionelle Fehlerdetektoren erstellt
werden, welche von der Fülle der natürlichen Sprache in der Dokumentati-
on und dem formalen Algorithmus eines Programms profitieren. Konkreter
stellen wir Techniken vor, welche die Dokumentation eines Programms und
das Programm selbst verwenden, um: (i) die Dokumentation zu verbessern,
indem auf fehlende Informationen geschlossen und Inkonsistenzen festge-
stellt werden, und (ii) Fehler im Quellcode oder im Laufzeitverhalten des
Programms zu finden. Eine wichtige Erkenntnis, auf welcher wir aufbauen,
ist, dass maschinelles Lernen ein leistungsfähiges Mittel darstellt, um mit
der Unschärfe und den Nuancen natürlicher Sprache in der Softwaredoku-
mentation umzugehen, und dass sich der Quellcode oft genug wiederholt,
um auch statistisches Lernen daraus zu ermöglichen. Daher verwenden
einige der in dieser Dissertation vorgeschlagenen Techniken eine Lernkom-
ponente, welche sich aus Dokumentation, Quellcode, Laufzeitverhalten und
deren Kombinationen ergibt.

Wir sehen die Auswirkungen unserer Arbeit in zweifacher Hinsicht. Ers-
tens bieten wir Entwicklern neuartige Fehlererkennungstechniken, welche
herkömmliche ergänzen. Unsere Ansätze lernen Fehlerdetektoren durch-
gängig aus Daten und erfordern daher keine komplexen Analyserahmen.
Zweitens hoffen wir, dass unsere Arbeit die Tür für weitere Forschungen
zur automatischen Verwendung natürlicher Sprache in der Softwareent-
wicklung öffnet. Zukünftige Arbeiten sollten weitere Ideen untersuchen,
wie umfangreichere Informationen aus der natürlichen Sprache extrahiert

vii

werden können, um Softwareentwicklungsaufgaben zu automatisieren, und
wie die Programme selbst verwendet werden können, um die aktuelle
Praxis in der Softwaredokumentation zu verbessern.

viii

A C K N O W L E D G E M E N T S

Getting a PhD is not an easy journey. However, if you are accompanied by
the right people, you would rather enjoy and always cherish it. I was very
lucky and blessed to be surrounded by an amazing group of people, without
whom my five-year PhD journey would have been an overwhelmingly
difficult path to tread.

I would like to start by thanking my PhD adviser, Michael Pradel. One of
the most difficult decisions, after deciding to do a PhD, is to choose your
adviser (after they choose you of course!). I would always choose to do
my PhD with Michael. He has been incredibly supportive, encouraging,
and patient. Michael has been a great example and role model, not only
as a successful and accomplished researcher, but also as an honest and
respectful human being. Michael, I am forever grateful for everything you
have taught me and I will always cherish working with you.

Sharing the day-to-day life of a PhD student is an unpleasant experience
without kind and nice colleagues. I am therefore grateful to my colleagues
and friends from the Software Lab for the warm, fun, and intellectual
environment they provided, in order of seniority: Marija Selakovic, Cristian-
Alexandru Staicu, Jibesh Patra, and Daniel Lehmann. I will always cherish
the time we spent together and I hope we will always stay in touch (thank
you Cris for the ML Flamewar group!).

One important person who greatly contributed to my smooth experi-
ence in Germany and at the university is our incredible secretary, Andrea
Püchner, who at times went out of her way to help beating the German
bureaucracy and ensuring that everything works out more than perfectly. I
cannot find enough words to thank you, Andrea, for your kind heart and
what you have done during my time here.

I would also like to thank Mira Mezini for accepting to be my official
local adviser (after Michael moved to the University of Stuttgart) and Prem
Devanbu for being an external examiner.

I want to thank Dr. Sherif El-Kassas from my undergraduate studies who
instigated my research appetite, gave me a role model to look up to, and
has always been supportive.

Next, I would like to thank our friends in Germany who made our life
more lively and provided us with warm and sincere company. To George,

ix

Sandra, and Ella; Noufer (now Peniot Mourhc), Olivia, Gori, and Royce;
Lance, Karen, and Adam; Morris and Koki; Amir, Soha, and Alex; and Rano
and Nini: Thank you so much for the past five years. To John Gergies: Thank
you for picking me from the airport on my first arrival in Germany, and
then five years later, for translating my dissertation’s abstract to German.

I would like to thank Joseph, Gergis, and Maged, my life-time friends
from Egypt for their continuous support, encouragement, and checking on
us. I also want to thank Mina Rady and Rania Naguib for visiting us at
different times and for their precious company.

To my parents who always believed in me, supported me in every possible
way, prayed for me, and encouraged me to go after my dreams: Thank you
so much for everything. I will forever be grateful to you! I would also like
to thank my elder brother Arsany, his wife Engy, and their kids Abigail
and Raphael; and my younger brother Mark for their encouragement and
support. Also, I want to thank my parents- and brother-in-law who believed
in me and have been encouraging and supportive.

To the love of my life and my partner, Lydia, who has been there for
me at my highest and lowest moments, put every effort to encourage and
support me, prayed for me, and believed in me: Thank you so much for
everything you have done and continue to do for us. I also want to mention
that I am super proud of your achievements and accomplishments, which
were crowned by your recent master degree in Economics!

I ought to thank our spiritual guides who enlighten our paths and lead
us in this life: Peniot Abraam for his explanations of God’s word, which
always give us new understandings and new perspectives, and for his
humble spiritual leadership; Peniot Pi;wl, whom we already miss after
he departed to heaven, for his unconditional love and for giving us a living
example of our Lord Jesus Christ; Peniot Mourhc for showing us how to
lead a Godly life without giving up your true and witty self; and Dr. Maher
Samuel whom I have never met in person, but I have always been guided
by his teachings and philosophy.

Finally, and above all, I want to thank God for all his great deeds in my
life. God has always guided my steps, been faithful to me, blessed my ways,
and been very generous with me even when I screw up. I know a lot of
people, and especially researchers, would take my faith lightly, but I am
unable to deny my faith and I cannot not testify about God, his grace, his
faithfulness, his righteousness, and his mercy in my life.

x

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Terminology . 3

1.3 Learning from Programs and their Documentation 4

1.4 Contents and Contributions . 5

1.5 List of Publications and Open-source Implementation 8

2 the state of static bug detectors 11

2.1 Motivation . 11

2.2 Methodology . 13

2.2.1 Real-World Bugs . 13

2.2.2 Static Bug Detectors . 15

2.2.3 Experimental Procedure 16

2.3 Implementation . 24

2.4 Experimental Results . 24

2.4.1 Properties of the Studied Bugs 25

2.4.2 Warnings Reported by the Bug Detectors 26

2.4.3 Candidates for Detected Bugs 26

2.4.4 Validated Detected Bugs 28

2.4.5 Comparison of Bug Detectors 28

2.4.6 Reasons for Missed Bugs 29

2.4.7 Assessment of Methodologies 31

2.5 Threats to Validity . 33

2.6 Implications for this Dissertation and Future Work 35

2.7 Contributions and Conclusions 36

3 inferring thread safety documentation 39

3.1 Motivation . 39

3.2 Challenges and Overview . 42

3.3 Extracting Field-Focused Graphs 44

3.3.1 Static Analysis . 44

3.3.2 Field-focused Graphs 47

3.4 Classifying Classes . 49

3.4.1 Background: Graph Kernels 50

3.4.2 Training . 51

3.4.3 Classifying a New Class 53

xi

xii contents

3.5 Implementation . 53

3.6 Evaluation . 54

3.6.1 RQ1: Existing Thread Safety Documentation 54

3.6.2 RQ2: Effectiveness of TSFinder 57

3.6.3 RQ3: Efficiency of TSFinder 60

3.6.4 RQ4: Comparison with Alternative Approaches 61

3.7 Limitations . 63

3.8 Contributions and Conclusions 64

4 learning to crosscheck documentation vs . runtime 67

4.1 Motivation . 67

4.2 Approach . 70

4.2.1 Problem Statement . 70

4.2.2 Overview . 71

4.2.3 Collecting Projects from Maven 72

4.2.4 Gathering NL Information 72

4.2.5 Capturing Runtime Behavior 74

4.2.6 Generating Buggy Examples 76

4.2.7 Learning the DocRT Model 78

4.3 Implementation . 80

4.4 Evaluation . 81

4.4.1 Experimental Setup . 81

4.4.2 RQ1: Effectiveness of Learned Model 82

4.4.3 RQ2: Detecting Real-world Bugs 83

4.4.4 RQ3: Efficiency . 89

4.5 Contributions and Conclusions 89

5 from documentation to subtype checking 93

5.1 Motivation . 94

5.2 Problem Statement . 96

5.2.1 Background . 96

5.2.2 JSON Subschema Problem 97

5.2.3 Challenges . 99

5.3 Algorithm . 101

5.3.1 JSON Schema Canonicalization 102

5.3.2 Simplification of Canonicalized Schemas 110

5.3.3 JSON Subschema Checking 117

5.4 Implementation . 121

5.5 Evaluation . 121

5.5.1 Experimental Setup . 121

5.5.2 RQ1: Effectiveness in Detecting Bugs 123

contents xiii

5.5.3 RQ2: Correctness and Completeness 125

5.5.4 RQ3: Comparison to Existing Work 128

5.5.5 RQ4: Efficiency . 128

5.6 Contributions and Conclusions 129

6 neural bug-finding : a futuristic outlook 131

6.1 Motivation . 131

6.2 Methodology . 133

6.2.1 Gathering Data . 134

6.2.2 Representing Methods as Vectors 135

6.2.3 Buggy and Non-Buggy Examples 139

6.2.4 Learning Bug Detection Models 141

6.2.5 Different Evaluation Settings 142

6.3 Implementation . 143

6.4 Results . 143

6.4.1 Experimental Setup . 144

6.4.2 RQ1: How effective are neural models at identifying
common kinds of programming errors? 144

6.4.3 RQ2: Why does neural bug finding work? 147

6.4.4 RQ3: Why does neural bug finding sometimes not
work? . 151

6.4.5 RQ4: How does the composition of the training data
influence the effectiveness of a neural model? 152

6.4.6 RQ5: How does the amount of training data influence
the effectiveness of a neural model? 153

6.4.7 RQ6: What pitfalls exist when evaluating neural bug
finding? . 153

6.5 Threats to Validity . 155

6.6 Implications for this Dissertation and Future Work 156

6.7 Contributions and Conclusions 156

7 related work 159

7.1 Exploiting Natural Language in Software Engineering 159

7.1.1 Mining Specifications from Natural Language 160

7.1.2 Inconsistencies Between Documentation and Code . . 161

7.1.3 Learning from Natural Language 162

7.2 API Documentation in Practice 162

7.2.1 Studies of API Documentation 162

7.2.2 Enhancing the Usage of API Documentation 163

7.3 Machine Learning and Program Analysis 163

7.3.1 Program Representation for Learning 163

xiv contents

7.3.2 Learning to Find Bugs 164

7.3.3 Learning from Source Code 165

7.3.4 Learning from Program Execution 165

7.4 Traditional Bug Detection Techniques 166

7.4.1 Static Analysis . 166

7.4.2 Dynamic Analysis . 168

7.4.3 Studies of Bug Detection Techniques 169

7.4.4 Defect Prediction . 171

7.5 Anomaly Detection and Specification Mining 172

7.5.1 Specification Mining . 172

7.5.2 Anomaly Detection . 172

7.6 JSON Schema and Subtype Checking 173

7.6.1 JSON Schema Subtyping and Formalism 173

7.6.2 Applications of Subschema Checks 174

7.6.3 Type Systems for XML, JavaScript, and Python 175

8 conclusions and future work 177

8.1 Summary of Contributions . 177

8.2 Future Work . 178

bibliography 181

1
I N T R O D U C T I O N

1.1 motivation

Software is a vital component of everyday life nowadays. Mobile devices,
personal computers, smart home appliances, transportation systems, medi-
cal devices, satellite and communications systems including the Internet,
and enterprise solutions are just some examples of how computer programs
are ubiquitous. In the EU alone, the software industry is estimated to have
a market value of around EUR 229 to EUR 290 billions between 2009 and
2020.1

That said, software is unavoidably error-prone. It has been estimated that
the number of buggy lines of code in industrially deployed software is about
15–50 per 1,000 lines of code, independent of the underlying programming
language [McC04]. Unfortunately, bugs in computer programs can lead to
serious system failures. Software failures in 2018 alone were estimated to
affect the lives of 3.7 billion people, around half of the world population,
and resulted in the loss of USD 1.7 trillions in assets.2

Because software bugs are severe and they have drastic impact on in-
dividuals’ lives as well as the global economy, programmers spend a lot
of effort and time to improve the programs they develop trying to elimi-
nate potential errors. To detect programming errors and prevent software
failures, developers rely on several techniques:

static analysis This technique utilizes several abstractions of the pro-
gram source code, such as abstract interpretation, control-flow, and
data-flow analyses to over-approximate the program behavior. After
building such approximations into static analysis frameworks, expert

1 https://ec.europa.eu/digital-single-market/en/news/economic-and-social-impact-

software-and-services-competitiveness-and-innovation
2 https://www.tricentis.com/resources/software-fail-watch-5th-edition

1

https://ec.europa.eu/digital-single-market/en/news/economic-and-social-impact-software-and-services-competitiveness-and-innovation
https://ec.europa.eu/digital-single-market/en/news/economic-and-social-impact-software-and-services-competitiveness-and-innovation
https://www.tricentis.com/resources/software-fail-watch-5th-edition

2 introduction

developers then hand-craft tens or even hundreds of rules for what
constitute different kinds of bug patterns. Automatic checkers for
these patterns are shipped in many static bug finding tools, such as
Google’s Error Prone [Aft+12] and Facebook’s Infer [Cal+15].

dynamic analysis This technique observes and analyzes the runtime
behavior of the program when executed under different conditions
and tries to detect erroneous behaviors and anomalies. Although it
detects real faults, crashes, and violations of safety properties, dy-
namic analysis cannot guarantee the absence of bugs because it relies
on under-approximating the program behavior. Dynamic analysis
frameworks, such as Jalangi [Sen+13] for JavaScript, and functional
testing frameworks, such as Randoop [Pac+07] for Java, are among
the most widely used.

model checking This technique formally verifies the program against
a specification: A set of desired properties, such as memory safety.
Similar to static analysis, model checking does not need to execute
the program. Rather, it computes an approximation of the program
states and tries to prove the existence (or the absence) of a specific
property. Bounded model checkers, such as CBMC [CKL04], exhaus-
tively examine all possible program states up to a bound, but cannot
certify the absence of bugs for infinite state programs.

Whether it is static analysis, dynamic analysis, or model checking, no
bug finding approach is bullet-proof. These techniques mainly provide
best-effort by experts and software developers to reduce the probability of
a software bug slipping into production and causing serious failures.

We observe that the main focus of the different techniques for finding
and preventing software bugs discussed above is the program itself, i.e., its
source code, byte code, or runtime behavior, and sometimes a predefined
specification in the case of model checking. However, we notice that other
important software artifacts, such as documentation, which are regularly
produced by developers as part of the software development process, are
neglected by most of the bug finding techniques, although they are more
direct, descriptive, and easier to understand. We distinguish between two
kinds of software documentation:

user documentation This kind of documentation is intended for end
users of a software system, e.g., user manuals and tutorials.

1.2 terminology 3

technical documentation This documentation describes the intrica-
cies of a software component in a more technical manner, which is
usually intended for other fellow programmers, e.g., API documenta-
tion.

Technical software documentation comes in various forms. Some of the
most common formats are natural language (NL) description of the seman-
tics of a programming language, such as the Java Language Specification,3

a structured mix of NL descriptions and names and types (for typed lan-
guages) of source code entities, such as Javadoc4 for Java APIs and JSDoc
for JavaScript,5 and inline source code comments.

On the one hand, these forms of software documentation carry a plethora
of valuable information that are often under-utilized by traditional bug
finding techniques. On the other hand, such documentation is oftentimes
inaccurate, stale, or even worse, presents wrong information about the
underlying software [Agh+19], which could lead eventually to serious
software failures.

Since current techniques for finding software bugs are far from being
perfect, this thesis examines the idea of utilizing documentation to improve soft-
ware bug detection techniques. Our work explores two dimensions: (i) Learn-
ing from and leveraging documentation to find bugs in programs, and
(ii) Improving documentation by learning from programs source code and
runtime behavior.

1.2 terminology

In this work, we use the term documentation to refer to technical documenta-
tion of software components (vs. user documentation). More specifically,
we refer to API documentation just as documentation.

Moreover, we use the terms bug or error interchangeably to refer to either
of the following:

• Programming error: A bug in the software implementation where the
program source code or runtime behavior deviates from the docu-
mentation, e.g., the documentation of an API says the method is
thread-safe but in practice it results in a dead-lock.

3 https://docs.oracle.com/javase/specs/jls/se14/html/index.html
4 https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
5 https://jsdoc.app/about-getting-started.html

https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://jsdoc.app/about-getting-started.html

4 introduction

• Documentation mistake: An error in the documentation of an API
where a condition or behavior does not match the actual behavior and
implementation, e.g., a NullPointerException is thrown at runtime
when a null argument is passed to the API but the documentation
states that IllegalArgumentException should be thrown instead.

1.3 learning from programs and their documentation

Software documentation is a fundamental artifact in the software engineer-
ing process. Developers often communicate their intentions, assumptions,
design decisions, algorithmic thoughts, and even usage examples through
documentation. That is why documentation is an equivocally important ar-
tifact in understanding, correctly using, and maintaining a piece of software.
Nevertheless, utilizing documentation in automatic software engineering
tasks, e.g., to find bugs, is non-trivial; as well as automatically finding bugs
in and improving documentation, for several reasons.

First, developers mostly write documentation in natural language, a fuzzy
and vague means of communication [Lak75], making it difficult to leverage
such rich resource of information in an automated manner. Second, code
bases evolve quickly and not enough resources are available for developers
to continuously update the documentation [Agh+20]. Third, documentation
best practices are often not clear or even unknown to developers, making it
challenging and straining to keep up with and sustain good documentation.

To tackle the fuzziness of the developers’ intentions, and the vagueness
and nuances of natural language, we propose utilizing probabilistic tech-
niques to learn from documentation to improve source code. To cope up
with fast evolving and growing source code, we also leverage learning, from
source code (or its runtime behavior), to capture the semantics and actual
behavior of the program and reflect them on the documentation. In both
directions, our decision to use machine learning is rooted in the fact that
probabilistic learning has matured enough to provide powerful algorithms
for such tasks as well as the availability of large open-source code bases to
learn from.

Therefore, this dissertation argues that:

Automatically learning from programs and their documentation provides
an effective means to prevent and detect software bugs.

1.4 contents and contributions 5

1.4 contents and contributions

In this dissertation, we present an empirical study and four approaches to
support our thesis statement that leveraging programs together with their
documentation can improve the tooling and support for automatic software
bug detection and prevention. First, we present a novel study that reports
on state-of-the-art techniques in static bug finding and identify several
of their limitations. Then, we contribute three effective approaches that
showcase how to automatically leverage programs and their documentation
to detect software bugs and improve the documentation. Finally, we present
a futuristic, and possibly an alternative, approach to traditional static bug
detection. Figure 1.1 shows a high-level summary of the contribution of
each chapter and which software artifacts each approach or study utilizes.
In the following, we summarize each contribution highlighting key ideas
and findings.

Chapter 2 : the state of static bug detectors

In this chapter, we present an empirical study of the recall of three state-
of-the-art static bug finding tools, namely, Google’s Error Prone [Aft+12],
Facebook’s Infer [Cal+15], and SpotBugs [HP04], the successor of FindBugs.
Usually, the evaluation of static bug finding techniques focuses on their
precision, i.e., how often do they report false positives. However, we show
that these mature and industry deployed tools suffer from low recall too,
i.e., they miss many of the bugs in a large set of real-world bugs.

This study highlights the need for improving traditional static bug finders
and identifies several classes of bug patterns which are missed by static
bug finders. One of the observations of this study is that domain-specific
knowledge is crucial for detecting a class of bugs missed by the traditional
tools. We argue that such knowledge could be, in part, found in software
documentation.

Chapter 3 : inferring thread safety documentation

In this chapter, we address the problem of undocumented thread safety
behavior of classes in object-oriented languages. First, we present an em-
pirical study of how many Java classes are documented to be thread-safe
or not. The findings of the study are consistent with several blog posts
and issue reports by developers where we find that thread safety is often
an under-documented property in Java classes. We then propose a novel

6 introduction

Chapter 6
Neural bug finding

Source code

Documentation

Chapter 3
Inferring thread safety

documentation

Chapter 5
Documentation-based

subtype checking

Chapter 4
Crosschecking documentation and runtime

Runtime behavior

Static bug finders
Chapter 2

Study of state-of-the-art tools

Figure 1.1: Overview of the contributions and techniques proposed in each chap-
ter of the dissertation and the different software artifacts each chapter
builds on.

1.4 contents and contributions 7

machine learning technique which learns from an API source code to infer
whether a class is thread-safe or not.

This approach leverages a light-weight static analysis combined with
a learning-based approach to improve APIs documentation regarding a
critical property: multi-threading. We show that our approach is effective
and efficient and could be easily used to improve the documentation of
libraries to prevent concurrency-related bugs.

Chapter 4 : crosschecking documentation and runtime

In this chapter, we introduce a learning-based approach to crosscheck
an API documentation against its observed exceptional runtime behavior.
The intuition of this technique is that documentation should describe the
true behavior of an API. Discrepancies between an API documentation and
its observed runtime behavior mean that either the API implementation is
itself buggy, or its documentation is not correct.

This technique serves as an automated oracle for the runtime behavior of
programs. Indeed, some of the bugs it reports were fixed by changing the
API code, and others were fixed by updating the documentation.

Chapter 5 : from documentation to static subtype checking

In this chapter, we leverage a ubiquitous form of API documentation,
JSON schemas, to provide static subtype checking for data-intensive appli-
cations. JSON schemas are widely used to describe REST APIs, store and
retrieve data in NoSQL databases, and in machine learning applications.
We propose an algorithm that decides in a reasonable time, for a large set
of the JSON Schema language, whether two schemas are subtype of each
other.

We implemented our algorithm in an open-source tool that is deployed
as part of an automated machine learning library, developed and used by
IBM AI, to detect data compatibility bugs in machine learning pipelines.
Moreover, we show that this algorithm detects API evolution errors in other
domains, such as cloud computing.

Chapter 6 : neural bug finding : a futuristic outlook

In this chapter, we investigate a novel and potentially alternative ap-
proach to traditional bug finding techniques, neural bug finding. This work
examines the idea of leveraging a neural model to learn how to detect
instances of frequent bug patterns. We propose a simple approach that
exploits two dimensions of the bi-modality of source code: (i) The natural

8 introduction

language aspect communicated through the identifiers and types names,
and (ii) The algorithmic channel expressed in the programming language
syntax and keywords; both available in the sequence of tokens of the pro-
gram source code. Although the proposed technique does not come on par
with state-of-the-art bug finding approaches yet, it serves as a stepping
stone towards non-traditional techniques which supplement classical bug
detection tools.

Finally, we provide an overview of the related work in Chapter 7 and
conclude the dissertation in Chapter 8 by highlighting future research direc-
tions in learning from and leveraging programs and their documentation
in software engineering tasks.

1.5 list of publications and open-source implementation

Parts of the work in this dissertation are based on the following peer-
reviewed publications and technical reports from which it verbatim reuses
material:

1. [HP18a] Andrew Habib and Michael Pradel. How many of all bugs
do we find? a study of static bug detectors. IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2018.

2. [HP18b] Andrew Habib and Michael Pradel. Is this class thread-safe?
inferring documentation using graph-based learning. IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE) 2018.

3. [Hab+19] Andrew Habib, Avraham Shinnar, Martin Hirzel,
and Michael Pradel. Type Safety with JSON Subschema. CoRR
abs/1911.12651 (2019).

4. [HP19] Andrew Habib and Michael Pradel. Neural Bug Finding: A
Study of Opportunities and Challenges. CoRR abs/1906.00307 (2019).

Table 1.1 shows the mapping between the publications above and the
chapters in this dissertation.

Additionally, to facilitate the reproducibility of our results and future
research, we make available several of the artifacts, implementations, and
datasets we produced as part of this dissertation. Table 1.2 lists the different
chapters and their corresponding artifacts.

1.5 list of publications and open-source implementation 9

Table 1.1: Mapping of publications to chapters in this dissertation.

[HP18a] Chapter 2

[HP18b] Chapter 3

[Hab+19] Chapter 5

[HP19] Chapter 6

Table 1.2: Dissertation chapters and their corresponding public artifacts.

Artifact link Contents

Chapter 2 https://github.com/sola-

da/StaticBugCheckers

Detailed results and source
code

Chapter 3 https://github.com/sola-

da/TSFinder

Tool incl. source code and
dataset

Chapter 5 https://github.com/IBM/

jsonsubschema

Tool incl. source code and
pypi module

https://github.com/sola-da/StaticBugCheckers
https://github.com/sola-da/StaticBugCheckers
https://github.com/sola-da/TSFinder
https://github.com/sola-da/TSFinder
https://github.com/IBM/jsonsubschema
https://github.com/IBM/jsonsubschema

2
T H E S TAT E O F S TAT I C B U G D E T E C T O R S

Static bug detectors are becoming increasingly popular and are widely used
by professional software developers. While most work on bug detectors
focuses on whether they find bugs at all, and on how many false positives
they report in addition to legitimate warnings, the inverse question is often
neglected: How many of all real-world bugs do static bug detectors find? This
chapter addresses this question by studying the results of applying three
widely used static bug detectors to an extended version of the Defects4J
dataset that consists of 15 Java projects with 594 known bugs.

2.1 motivation

Finding software bugs is an important but difficult task. Even after years of
deployment, software still contains unnoticed bugs. For example, studies
of the Linux kernel show that the average bug remains in the kernel for a
surprisingly long period of 1.5 to 1.8 years [Cho+01; Pal+11]. Unfortunately,
a single bug can cause serious harm, even if it has been subsisting for a
long time without doing so, as evidenced by examples of software bugs
that have caused huge economic loses and even killed people [Lio96; Pou04;
ZC09].

Given the importance of finding software bugs, developers rely on several
approaches to reveal programming mistakes. One approach is to identify
bugs during the development process, e.g., through pair programming
or code review. Another direction is testing, ranging from purely manual
testing over semi-automated testing, e.g., via manually written but auto-
matically executed unit tests, to fully automated testing, e.g., with UI-level
testing tools. Once the software is deployed, runtime monitoring can reveal
so far missed bugs, e.g., collect information about abnormal runtime be-
havior, crashes, and violations of safety properties, e.g., expressed through

11

12 the state of static bug detectors

assertions. Finally, developers use static bug detection tools, which check
the source code or parts of it for potential bugs.

In this chapter, we focus on static bug detectors because they have become
increasingly popular in recent years and are now widely used by major
software companies. Popular and widely used tools include Google’s Error
Prone [Aft+12], Facebook’s Infer [Cal+15], or SpotBugs, the successor to the
widely used FindBugs tool [HP04]. These tools are typically designed as
an analysis framework based on some form of static analysis that scales to
complex programs, e.g., AST-based pattern matching or data-flow analysis.
Based on the framework, the tools contain an extensible set of checkers
that each addresses a specific bug pattern, i.e., a class of bugs that occurs
across different code bases. Typically, a bug detector ships with dozens
or even hundreds of patterns. The main benefit of static bug detectors
compared to other bug finding approaches is that they find bugs early in
the development process, possibly right after a developer introduces a bug.
Furthermore, applying static bug detectors does not impose any special
requirements, such as the availability of tests, and can be fully automated.

The popularity of static bug detectors and the growing set of bug patterns
covered by them raise a question: How many of all real-world bugs do these bug
detectors find? Or in other words, what is the recall of static bug detectors?
Answering this question is important for several reasons. First, it is an
important part of assessing the current state-of-the-art in automatic bug
finding. Most reported evaluations of bug finding techniques focus on
showing that a technique detects bugs and how precise it is, i.e., how
many of all reported warnings correspond to actual bugs rather than false
positives. We do not consider these questions here. In contrast, practically no
evaluation considers the above recall question. The reason for this omission
is that the set of “all bugs” is unknown (otherwise, the bug detection
problem would have been solved), making it practically impossible to
completely answer the question. Second, understanding the strengths and
weaknesses of existing static bug detectors will guide future work toward
relevant challenges. For example, better understanding of which bugs
are currently missed may enable future techniques to cover previously
ignored classes of bugs. Third, studying the above question for multiple
bug detectors allows us to compare the effectiveness of existing tools with
each other: Are existing tools complementary to each other or does one
tool subsume another one? Fourth and finally, studying the above question
will provide an estimate of how close the current state-of-the-art is to the
ultimate, but admittedly unrealistic, goal of finding all bugs.

2.2 methodology 13

2.2 methodology

This section presents our methodology for studying which bugs are de-
tected by static bug detectors. At first, we describe the bugs (Section 2.2.1)
and bug detection tools (Section 2.2.2) that we study. Then, we present
our experimental procedure for identifying and validating matches be-
tween the warnings reported by the bug detectors and the real-world bugs
(Section 2.2.3). Finally, we discuss threats to validity in Section 2.5.

2.2.1 Real-World Bugs

Our study builds on an extended version of the Defects4J data set, a col-
lection of bugs from popular Java projects. In total, the data set consists of
597 bugs that are gathered from different versions of 15 projects. We use
Defects4J for this study for three reasons. First, it provides a representative
set of real-world bugs that has been gathered independently of our work.
The bugs cover a wide spectrum of application domains and have been
sampled in a way that does not bias the data set in any relevant way. Sec-
ond, the data set is widely used for other bug-related studies, e.g., on test
generation [Sha+15], mutation testing [Jus+14], fault localization [Pea+17],
and bug repair [Mar+17], showing that is has been accepted as a repre-
sentative set of bugs. Third, Defects4J provides not only bugs but also the
corresponding bug fixes, as applied by the actual developers. Each bug is
associated with two versions of the project that contains the bug: a buggy
version, just before applying the bug fix, and a fixed version, just after
applying the bug fix. The bug fixes have been isolated by removing any
irrelevant code changes, such as new features or refactorings. As a result,
each bug is associated with one or more Java classes, i.e., source code files
that have been modified to fix the bug. The availability of fixes is important
not only to validate that the developers considered a bug as relevant, but
also to understand its root cause.

Defects4J is continuously growing with 10 officially released versions
so far.1 At the time of this study, the official version of Defects4J (version
1.1.0) consisted of 395 bugs collected from 6 Java projects. An unofficial
pull request extends the dataset with 202 additional bugs from 9 additional
projects.2,3 In our work, we use the extended version of the dataset and refer

1 https://github.com/rjust/defects4j
2 https://github.com/rjust/defects4j/pull/112
3 The pull request was merged in a later release.

https://github.com/rjust/defects4j
https://github.com/rjust/defects4j/pull/112

14 the state of static bug detectors

Table 2.1: Projects and bugs of Defects4J.

Project ID Project Name Bugs

Official Defects4J

Chart JFreeChart 26

Closure Google Closure 133

Lang Apache commons-lang 64 (65)

Math Apache commons-math 106

Mockito Mockito framwork 38

Time Joda-Time 27

6 projects from official release 394 (395)

Extended Defects4J

Codec Apache commons-codec 21 (22)

Cli Apache commons-cli 24

Csv Apache commons-csv 12

JXPath Apache commons-JXPath 14

Guava Guava library 9

JCore Jackson core module 13

JDatabind Jackson data binding 39

JXml Jackson XML utilities 5

Jsoup Jsoup HTML parser 63 (64)

9 projects from pull request 200 (202)

Total of 15 projects 594 (597)

to it as “Defects4J”. Table 2.1 lists the projects and bugs in the data set.4 We
exclude three of the 597 bugs for technical reasons: Lang-48 because Error
Prone does not support Java 1.3, and Codec-5 and Jsoup-4 because they
introduce a new class in the bug fix, which does not match our methodology
that relies on analyzing changes to existing files.

4 We refer to bugs using the notation ProjectID-N, where N is a unique number.

2.2 methodology 15

2.2.2 Static Bug Detectors

We study three static bug detectors for Java: (i) Error Prone [Aft+12], a
tool developed by Google and is integrated into their Tricorder static anal-
ysis ecosystem [Sad+15]; (ii) Infer [Cal+15], a tool developed and used
internally by Facebook; and (iii) SpotBugs, the successor of the pioneer-
ing FindBugs [HP04] tool. These tools are used by professional software
developers. For example, Error Prone and Infer are automatically applied
to code changes to support manual code review at Google and Facebook,
respectively. All three tools are available as open-source. We use the tools
with their default configuration.

google’s error prone Error Prone is an open-source static analysis
tool written in Java. It is developed, maintained, and used internally by
Google to detect common errors in Java code. The tool is designed as a Java
compiler hook and can easily integrate with most common build systems,
or even could be hooked to the Java compiler without any build tool. Error
Prone can suggest code fixes to its reported bugs and can automatically
patch the erroneous code. It requires at least JDK 8 to run and can compile
Java 6 and 7 source code. Error Prone defines a set of rules corresponding
to known Java bug patterns and categorizes its findings into warnings and
errors. Moreover, the tool provides a set of experimental checks that are
disabled by default. In our experiments, we use Error Prone with its default
checkers.

facebook’s infer Infer is a static analysis tool developed by Facebook,
which was open-sourced in 2015. It is written in OCaml and analyzes Java,
C, C++, and Objective-C source code for a variety of issues. Similar to Error
Prone, the tool can be used in combination with many Java build systems
or as a stand alone tool in combination with a Java compiler. Infer runs
in two phases, the first is called the translation phase, where information
from the Java compiler is gathered during a normal compilation session,
while Infer performs its own translation of Java code into an intermediate
format. The second phase is the analysis, where several of Infer internal
checkers are applied to the intermediate files captured during the translation
phase. Infer builds on formal program analysis techniques, such as abstract
interpretation and bi-abduction logic. Similar to Error Prone, Infer has two
sets of checkers, a default set and an experimental set. For our experiments,
we use Infer with its default settings.

16 the state of static bug detectors

Candidates for detected bugs

Detected bugs

Bug detectorsBugs + fixes

Identify candidates for detected bugs

CombinedDiff-based Fixed warnings-based

Manual inspection of candidates

Figure 2.1: Overview of our methodology.

spotbugs SpotBugs is the successor of the pioneering FindBugs Java
tool. SpotBugs is written in Java and can run as a standalone static analysis
tool to analyze Java projects and files or it could be integrated within many
Java build tools. The tool reports a variety of warnings that fall into different
categories, such as correctness, bad-practice, and malicious code with a
severity score associated with each warning. Similar to Error Prone and
Infer, we use SpotBugs with its default configuration.

SpotBugs is quite similar to Error Prone as it uses predefined rules to
discover known bug patterns. Even the Error Prone documentation page
mentions that “Eclipse users should use the Findbugs Eclipse plugin instead,
as it catches many of the same issues.” However, Error Prone being actively
used at Google, it undergoes continuous improvements and tuning, where
its developers report less than 10% false positive rate [Sad+15].

2.2.3 Experimental Procedure

Given a set of bugs and a set of static bug detectors, the overall goal of the
methodology is to identify those bugs among the set B of provided bugs
that are detected by the given tools. We represent a detected bug as a tuple
(b, w), where b ∈ B is a bug and w is a warning that points to the buggy
code. A single bug b may be detected by multiple warnings, e.g., (b, w1)
and (b, w2), and a single warning may point to multiple bugs, e.g., (b1, w)
and (b2, w).

2.2 methodology 17

A naive approach to assess whether a tool finds a particular bug would be
to apply the tool to the buggy version of the code and to manually inspect
each reported warning. Unfortunately, static bug detectors may produce
many warnings and manually inspecting each warning for each buggy
version of a program does not scale to the number of bugs we consider.
Another possible approach is to fully automatically match warnings and
bugs, e.g., by assuming that every warning at a line involved in a bug
fix points to the respective bug. While this approach solves the scalability
problem, it risks to overapproximate the number of detected bugs. The
reason is that some warnings may coincidentally match a code location
involved in a bug, but nevertheless do not point to the actual bug.

Our approach to identify detected bugs is a combination of automatic and
manual analysis, which reduces the manual effort compared to inspecting
all warnings while avoiding the overapproximation problem of a fully
automatic matching. To identify the detected bugs, we proceed in two main
steps, as summarized in Figure 2.1. The first step automatically identifies
candidates for detected bugs, i.e., pairs of bugs and warnings that are likely
to match each other. We apply three variants of the methodology that differ
in how to identify such candidates:

• an approach based on differences between the code before and after
fixing the bug,

• an approach based on warnings reported for the code before and after
fixing the bug, and

• the combination of the two previous approaches.

The second step is to manually inspect all candidates to decide which bugs
are indeed found by the bug detectors. This step is important to avoid
counting coincidental matches as detected bugs.

2.2.3.1 Identifying Candidates for Detected Bugs

common definitions We explain some terms and assumptions used
throughout this section. Given a bug b, we are interested in the set Lb of
changed lines, i.e., lines that were changed when fixing the bug. We assume
that these lines are the locations where developers expect a static bug
detector to report a warning. In principle, this assumption may not hold
because the bug location and the fix location may differ. We further discuss
this potential threat to validity in Section 2.5. We compute the changed
lines based on the differences, or short, the diff, between the code just

18 the state of static bug detectors

before and just after applying the bug fix. The diff may involve multiple
source code files. We compute the changed lines as lines that are modified
or deleted, as these are supposed to directly correspond to the bug. In
addition, we consider a configurable window of lines around the location
of newly added lines. As a default value, we use a window size of [-1,1].

Applying a bug detector to a program yields a set of warnings. We refer
to the sets of warnings for the program just before and just after fixing a
bug b as Wbe f ore(b) and Wa f ter(b), or simply Wbe f ore and Wa f ter if the bug is
clear from the context. The bug detectors we use can analyze entire Java
projects. Since the purpose of our study is to determine whether specific
bugs are found, we apply the analyzers only to the files involved in the
bug fix, i.e., files that contain at least one changed line l ∈ Lb. We also
provide each bug detector the full compile path along with all third-party
dependencies of each buggy or fixed program so that inter-project and third-
party dependencies are resolved. The warnings reported when applying
a bug detector to a file are typically associated with specific line numbers.
We refer to the lines that are flagged by a warning w as lines(w).

diff-based methodology One approach to compute a set of candi-
dates for detected bugs is to rely on the diff between the buggy and the
fixed versions of the program. The intuition is that a relevant warning
should pinpoint one of the lines changed to fix the bug. In this approach,
we perform the following for each bug and bug detector:

1. Compute the lines that are flagged with at least one warning in the
code just before the bug fix:

Lwarnings =
⋃

w∈Wbe f ore

lines(w)

2. Compute the candidates of detected bugs as all pairs of a bug and a
warning where the changed lines of the bug overlap with the lines
that have a warning:

Bdi f f
cand = {(b, w) | Lb ∩ Lwarnings 6= ∅}

For example, the bug in Figure 2.2a is a candidate for a bug detected
by SpotBugs because the tool flagged line 55, which is also in the set of
changed lines.

2.2 methodology 19

fixed warnings-based methodology As an alternative approach
for identifying a set of candidates for detected bugs, we compare the
warnings reported for the code just before and just after fixing a bug. The
intuition is that a warning caused by a specific bug should disappear when
fixing the bug. In this approach, we perform the following for each bug and
bug detector:

1. Compute the set of fixed warnings, i.e., warnings that disappear after
applying the bug fix:

W f ixed = Wbe f ore \Wa f ter

2. Compute the candidates for detected bugs as all pairs of a bug and a
warning where the warning belongs to the fixed warnings set:

B f ixed
cand = {(b, w) | w ∈W f ixed}

In this step, we do not match warning messages based on line numbers
because line numbers may not match across the buggy and fixed files due
to added and deleted code. Instead, we compare the messages based on the
warning type, category, severity, rank, and code entity, e.g., class, method,
and field.

For example, Figure 2.2c shows a bug that the fixed warnings-based
approach finds as a candidate for a detected bug by Error Prone because
the warning message reported at line 175 disappears in the fixed version.
In contrast, the approach misses the candidate bug in Figure 2.2a because
the developer re-introduced the same kind of bug in line 62, and hence, the
same warning is reported in the fixed code.

combined methodology Both the diff-based and the fixed warnings-
based approaches may yield different candidates for detected bugs. For
instance, both approaches identify the bugs in Figure 2.2c and Figure 2.2d
as candidates, whereas only the diff-based approach identifies the bugs
in Figure 2.2a and Figure 2.2b. Therefore, we consider as a third variant of
our methodology: the combination of the fixed warnings- and the diff-based
approaches:

Bcombine
cand = Bdi f f

cand ∪ B f ixed
cand

Unless otherwise mentioned, the combined methodology is the default in
the remainder of the chapter.

20 the state of static bug detectors

2.2.3.2 Manual Inspection and Classification of Candidates

The automatically identified candidates for detected bugs may contain
coincidental matches of a bug and warning. For example, suppose that a
bug detector warns about a potential null dreference at a specific line and
that this line gets modified as part of a bug fix. If the fixed bug is completely
unrelated to dereferncing a null object, then the warning would not have
helped a developer in spotting the bug.

To remove such coincidental matches, we manually inspect all candidates
for detected bugs and compare the warning messages against the buggy
and fixed versions of the code. We classify each candidate into one of three
categories: (i) If the warning matches the fixed bug and the fix modifies
lines that affect the flagged bug only, then this is a full match. (ii) If the fix
targets the warning but also changes other lines of code not relevant to
the warning, then it is a partial match. (iii) If the fix does not relate to the
warning message at all, then it is a mismatch.

For example, the bug in Figure 2.2d is classified as a full match since the
bug fix exactly matches the warning message: to prevent a NullPointer-

Exception on the value returned by ownerDocument(), a check for nullness
has been added in the helper method getOutputSettings(), which creates
an empty Document("") object when ownerDocument() returns null.

As an example of a partial match, consider the bug in Figure 2.2a. As
we discussed earlier in Section 2.2.3.1, the developer attempted a fix by
applying proper check and cast in lines 58-63 of the fixed version. We
consider this candidate bug a partial match because the fixed version also
modifies line 60 in the buggy file by changing the return value of the
method hashCode(). This change is not related to the warning reported by
SpotBugs. It is worth noting that the fact that the developer unfortunately re-
introduced the same bug in line 62 of the fixed version does not contribute
to the partial matching decision.

Finally, the bug in Figure 2.2b is an example of a mismatch because the
warning reported by Error Prone is not related to the bug fix.

2.
2

m
e

t
h

o
d

o
l

o
g

y
2

1

Buggy code:
53 @Override
54 public boolean equals(Object o) {
55 return method.equals(o);
56 }
57

58 @Override
59 public int hashCode() {
60 return 1;
61 }

Fixed code:
53 @Override
54 public boolean equals(Object o) {
55 if (this == o) {
56 return true;
57 }
58 if (o instanceof DelegatingMethod) {
59 DelegatingMethod that = (DelegatingMethod) o;
60 return method.equals(that.method);
61 } else {
62 return method.equals(o);
63 }
64 }
65

66 @Override
67 public int hashCode() {
68 return method.hashCode();
69 }

(a) Bug Mockito-11. Warning by SpotBugs at line 55: Equality check for operand not compatible with this. Lb = { 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 67, 68, 69 }. Found by diff-based methodology. Classification: Partial match.

Figure 2.2: Candidates for detected bugs and their manual classification.

(Continued on next page)

2
2

t
h

e
s

t
a

t
e

o
f

s
t

a
t

i
c

b
u

g
d

e
t

e
c

t
o

r
s

Buggy code:
1602 public Dfp multiply(final int x) {
1603 return multiplyFast(x);
1604 }

Fixed code:
1602 public Dfp multiply(final int x) {
1603 if (x >= 0 && x < RADIX) {
1604 return multiplyFast(x);
1605 } else {
1606 return multiply(newInstance(x));
1607 }
1608 }

(b) Bug Math-17. Warning by Error Prone at line 1602: Missing @Override. Lb = { 1602, 1603, 1604, 1605, 1606, 1607, 1608 }. Found by
diff-based methodology. Classification: Mismatch.

Buggy code:
173 public Week(Date time, TimeZone zone) {
174 // defer argument checking...
175 this(time, RegularTimePeriod.DEFAULT_TIME_ZONE,

Locale.getDefault());
176 }

Fixed code:
173 public Week(Date time, TimeZone zone) {
174 // defer argument checking...
175 this(time, zone, Locale.getDefault());
176 }

(c) Bug Chart-8. Warning by Error Prone at line 175: Chaining constructor ignores parameter. Lb = { 175 }. Found by: Diff-based
methodology and fixed warnings-based methodology. Classification: Full match.

Figure 2.2: Candidates for detected bugs and their manual classification.

(Continued on next page)

2.
2

m
e

t
h

o
d

o
l

o
g

y
2

3

Buggy code:
214 public Document ownerDocument() {
215 if (this instanceof Document)
216 return (Document) this;
217 else if (parentNode == null)
218 return null;
219 else
220 return parentNode.ownerDocument();
221 }

...
362 protected void outerHtml(StringBuilder accum) {
363 new NodeTraversor(new OuterHtmlVisitor(accum,

ownerDocument().outputSettings())).traverse(this);
364 }

Fixed code:
362 protected void outerHtml(StringBuilder accum) {
363 new NodeTraversor(new OuterHtmlVisitor(accum,

getOutputSettings())).traverse(this);
364 }
365

366 // if this node has no document (or parent), retrieve the
default output settings

367 private Document.OutputSettings getOutputSettings() {
368 return ownerDocument() != null ?

ownerDocument().outputSettings() :
(new Document("")).outputSettings();

369 }

(d) Bug Jsoup-59. Warning by Infer at line 363: null dereference. Lb = { 363, 364, 365, 366, 367, 368, 369 }. Found by: Diff-based
methodology and fixed warnings-based methodology. Classification: Full match.

Figure 2.2: Candidates for detected bugs and their manual classification.

24 the state of static bug detectors

2.2.3.3 Error Rate

Beyond the question of how many of all bugs are detected, we also consider
the error rate of a bug detector. Intuitively, it indicates how many warnings
the bug detector reports. We compute the error rate by normalizing the
number of reported warnings to the number of analyzed lines of code:

ER =

∑
b∈B
|Wbe f ore(b)|

∑
b∈B

∑
f∈files(b)

LoC(f)

where files(b) are the files involved in fixing bug b and LoC(f) yields the
number of lines of code of a file.

2.3 implementation

To apply the bug detectors to the files relevant for a particular bug, we
apply them to single Java files (Error Prone and Infer) or to a list of classes
(SpotBugs). All tools we use, Error Prone, Infer, and SpotBugs, accept as
parameters the full compile path of a project along with the path to the
desired source file (Error Prone and Infer) or qualified class name (SpotBugs)
to check for errors. Each tool reports a set of warnings or errors at different
source code locations along with details about each warning and short
message to explain the flagged problem. We represent the warnings from
different tools in a single data format, as JSON files, based on which we
perform the automatic search for candidates of detected bugs.

2.4 experimental results

This section presents the results of applying our methodology to 594 bugs
and three bug detectors. We start by describing some properties of the
studied bugs (Section 2.4.1) and the warnings reported by the bug detec-
tors (Section 2.4.2). Next, we report on the candidates for detected bugs
(Section 2.4.3) and how many of them could be manually validated and
their kinds (Section 2.4.4), followed by a comparison of the studied bug
detectors (Section 2.4.5). To better understand the weaknesses of current bug
detectors, Section 2.4.6 discusses why the detectors miss many bugs. Finally,
Section 2.4.7 empirically compares the three variants of our methodology.

2.4 experimental results 25

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4 5 6 7 11

N
u

m
b
e

r
o

f
b

u
g
s

Number of buggy files

501

64

12 10 4 1 1 1

(a) Number of buggy files.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

1-
49

50
-9

9

10
0-

49
9

50
0-

99
9

1,
00

0-
1,

99
9

2,
00

0-
2,

99
9

3,
00

0-
3,

99
9

4,
00

0-
4,

99
9

N
u

m
b

e
r

o
f
b
u

g
s

Total size of buggy files (LoC)

25
63

268

116 99

16 4 2

(b) Bugs by total size of buggy files.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

1-
4

5-
9

10
-1

4

15
-1

9

20
-2

4

25
-4

9

50
-7

4

75
-9

9

10
0-

19
9

20
0-

1,
99

9

N
u
m

b
e
r

o
f
b
u
g

s

Diff size between buggy and fixed versions (LoC)

296

128

54
29 29 44

6 6 1 1

(c) Total size of diffs between buggy and
fixed files.

Figure 2.3: Properties of the studied bugs.

2.4.1 Properties of the Studied Bugs

To better understand the setup of our study, we measure several properties
of the 594 studied bugs. Figure 2.3a shows how many files are involved in
fixing a bug. For around 85% of the bugs, the fix involves changing a single
source code file. Figure 2.3c shows the number of lines of code in the diff
between the buggy and the fixed versions. This measure gives an idea of
how complex the bugs and their fixes are. The results show that most bugs
involve a small number of lines: For 424 bugs, the diff size is between one
and nine lines of code. Two bugs have been fixed by modifying, deleting,
or inserting more than 100 lines.

26 the state of static bug detectors

Table 2.2: Warnings generated by each tool. The minimum, maximum, and aver-
age numbers of warnings are per bug in the Defects4J and consider all
files involved in the bug fix.

Warnings

Per bug

Tool Min Max Avg Total Error rate

Error Prone 0 148 7.58 4,402 0.01225

Infer 0 36 0.33 198 0.00055

SpotBugs 0 47 1.1 647 0.0018

Total 5,247

2.4.2 Warnings Reported by the Bug Detectors

The first step in our methodology is running each tool on all files involved
in each of the bugs. Table 2.2 shows the minimum, maximum, and average
number of warnings per bug, i.e., in the files involved in fixing the bug,
the total number of warnings reported by each tool, and the error rate
as defined in Section 2.2.3.3. We find that Error Prone reports the highest
number of warnings, with a maximum of 148 warnings and an average of
7.58 warnings per bug. This is also reflected by an error rate of 0.01225.

The studied bug detectors label each warning with a description of the
potential bug. Table 2.3 shows the top 5 kinds of warnings reported by each
tool. The most frequent kind of warning by Error Prone is about missing
the @Override annotation when a method overrides a method with the
same signature in its parent class. Infer’s most reported kind of warning
complains about a potential null dereference. Finally, the most frequent
kind of warning by SpotBugs is related to missing the default case in a
switch statement. The question how many of these warnings point to a
valid problem (i.e., true positives) is outside of the scope of this study.

2.4.3 Candidates for Detected Bugs

Given the number of reported warnings, which totals to 5,247 (Table 2.2),
it would be very time-consuming to manually inspect each warning. The
automated filtering of candidates for detected bugs yields a total of 153

2.4 experimental results 27

Table 2.3: Top 5 warnings reported by each static checker.

Warning Count

Error Prone

Missing @Override 3211

Comparison using reference equality 398

Boxed primitive constructor 234

Operator precedence 164

Type parameter unused in formals 64

Infer

null dereference 90

Thread safety violation 43

Unsafe @GuardedBy access 30

Resource leak 29

Method with mutable return type 1

returns immutable collection

SpotBugs

switch without default 109

Inefficient Number constructor 79

Read of unwritten field 45

Method naming convention 37

Reference to mutable object 31

warnings and 89 candidates (Table 2.4), which significantly reduces the num-
ber of warnings and bugs to inspect. Compared to all reported warnings,
the selection of candidates reduces the number of warnings by 97%.

The number of warnings is greater than the number of candidates because
we count warnings and candidates obtained from all tools together and
each tool could produce multiple warnings per line(s).

28 the state of static bug detectors

2.4.4 Validated Detected Bugs

To validate the candidates for detected bugs, we inspect each of them
manually. Based on the inspection, we classify each candidate as a full
match, a partial match, or a mismatch, as described in Section 2.2.3.2.
Overall, the three tools found 31 bugs, as detailed in the table in Figure 2.4.
After removing duplicates, i.e., bugs found by more than one tool, there are
27 unique validated detected bugs.

We draw two conclusions from these results. First, the fact that 27 unique
bugs are detected by the three studied bug detectors shows that these tools
would have had a non-negligible impact, if they would have been used
during the development of the studied programs. This result is encouraging
for future work on static bug detectors and explains why several static bug
detection tools have been adopted in industry. Second, even when counting
both partial and full matches, the overall bug detection rate of all three
bug detectors together is only 4.5%. While reaching a detection anywhere
close to 100% is certainly unrealistic, e.g., because some bugs require a
deep understanding of the specific application domain, we believe that the
current state-of-the-art leaves room for improvement.

To get an idea of the kinds of bugs the checkers find, we describe the most
common patterns that contribute to finding bugs. Out of the eight bugs
found by Error Prone, three are due to missing an @Override annotation,
and two bugs because the execution may fall through a switch statement.
For the five bugs found by Infer, four bugs are potential null deferences.
Out of the 18 bugs detected by SpotBugs, three are discovered by pointing
to dead local stores (i.e., unnecessarily computed values), and two bugs are
potential null deferences. Finally, the two bugs found by both Infer and
SpotBugs are null deferences, whereas the two bugs found by both Error
Prone and SpotBugs are a string format error and an execution that may
fall through a switch statement.

2.4.5 Comparison of Bug Detectors

The right-hand side of Figure 2.4 shows to what extent the bug detectors
complement each other. SpotBugs finds most of the bugs, 18 of all 27, of
which 14 are found only by SpotBugs. Error Prone finds 6 bugs that are
not found by any other tool, and Infer finds 3 bugs missed by the other
tools. We conclude that the studied tools complement each other to a large
extent, suggesting that developers may want to combine multiple tools and

2.4 experimental results 29

Tool Bugs

Error Prone 8

Infer 5

SpotBugs 18

Total 31

Total of 27 unique bugs
Error Prone Infer

SpotBugs

 3

Figure 2.4: Total number of bugs found by all three static checkers and their
overlap.

that researchers could address the problem of how to reconcile warnings
reported by different tools.

2.4.6 Reasons for Missed Bugs

To better understand why the vast majority of bugs are not detected by
the studied bug detectors, we manually inspect and categorize some of the
missed bugs. We inspect a random sample of 20 of all bugs that are not
detected by any bug detector. For each sampled bug, we try to understand
the root cause of the problem by inspecting the diff and by searching for
any issue reports associated with the bug. Next, we carefully search the
list of bug patterns supported by the bug detectors to determine whether
any of the detectors could have matched the bug. If there is a bug detector
that relates to the bug, e.g., by addressing a similar bug pattern, then we
experiment with variants of the buggy code to understand why the detector
has not triggered an alarm. Based on this process, we have the following
two interesting findings.

domain-specific bugs First, the majority of the missed bugs (14

out of 20) are domain-specific problems not related to any of the patterns
supported by the bug checkers. The root causes of these bugs are mistakes in
the implementation of application-specific algorithms, typically because the
developer forgot to handle a specific case. Moreover, these bugs manifest in
ways that are difficult to identify as unintended without domain knowledge,
e.g., by causing an incorrect string to be printed or an incorrect number
to be computed. For example, Math-67 is a bug in the implementation

30 the state of static bug detectors

of a mathematical optimization algorithm that returns the last computed
candidate value instead of the best value found so far. Another example
is Closure-110, a bug in a JavaScript compiler that fails to properly handle
some kinds of function declarations. Finally, Time-14 is due to code that
handles dates but forgot to consider leap years and the consequences of
February 29.

near misses Second, some of the bugs (6 out of 20) could be detected
with a more powerful variant of an existing bug detector. We distinguish
two subcategories of these bugs. On the one hand, the root causes of some
bugs are problems targeted by at least one existing bug detector, but the
current implementation of the detector misses the bug. These bugs man-
ifest through a behavior that is typically considered unintended, such as
infinite recursion or out-of-bounds array accesses. For example, Commons-
Csv-7 is caused by accessing an out-of-bounds index of an array, which
is one of the bug patterns searched for by SpotBugs. Unfortunately, the
SpotBugs checker is intra-procedural, while the actual bug computes the
array index in one method and then accesses the array in another method.
Another example is Lang-49, which causes an infinite loop because mul-
tiple methods call each other recursively, and the conditions for stopping
the recursion miss a specific input. Both Error Prone and SpotBugs have
checkers for infinite loops caused by missing conditions that would stop
recursion. However, these checkers target cases that are easier to identify
than Lang-49, which would require inter-procedural reasoning about inte-
ger values. A third example in this subcategory is Chart-5, which causes
an IndexOutOfBoundsException when calling ArrayList.add. The existing
checker for out-of-bounds accesses to arrays might have caught this bug,
but it does not consider ArrayLists.

On the other hand, the root causes of some bugs are problems that are
similar to but not the same as problems targeted by an existing checker. For
example, Commons-Codec-8 is about forgetting to override some methods
of the JDK class FilterInputStream. While SpotBugs and Error Prone
have checkers related to streams, including some that warn about missing
overrides, none of the existing checkers targets the methods relevant in this
bug.

2.4 experimental results 31

Table 2.4: Candidate warnings (W) and bugs (B) obtained from the different
automatic matching approaches.

Approach

Diff-based Fixed warnings Combined

Tool W B W B W B

Error Prone 51 33 18 14 53 35

Infer 30 9 14 6 32 11

SpotBugs 51 32 29 22 68 43

Total: 132 74 61 42 153 89

2.4.7 Assessment of Methodologies

We compare the three variants of our methodology and validate that the
manual inspection of candidates of detected bugs is crucial.

candidates of detected bugs Our methodology for identifying
candidates for detected bugs has three variants (Section 2.2.3.1). Table 2.4
compares them by showing for each variant how many warnings and
bugs it identifies as candidates. The number of warnings is larger than
the number of bugs because the lines involved in a single bug may match
multiple warnings. Overall, identifying candidates based on diffs yields
many more warnings, 132 in total, than by considering which warnings
are fixed by a bug fix, which yields 61 warnings. Combining the two
methodologies by considering the union of candidates gives a total of 153

warnings corresponding to 89 bugs. Since more than one static checker
could point to the same bug, the total number of unique candidates for
detected bugs by all tools together boils down to 79 bugs.

Figure 2.5 visualizes how the variants of the methodology complement
each other. For example, for Error Prone, the fixed warnings-based approach
finds 14 candidates, 2 of which are only found by this approach. The diff-
based technique finds 21 candidates not found by the fixed warnings
approach. Overall, the diff-based and the fixed warnings-based approaches
are at least partially complementary, making it worthwhile to study and
compare both.

32 the state of static bug detectors

Error Prone Infer SpotBugs

 2 2 11

 Di -based

Fixed warnings-based

Figure 2.5: Candidate detected bugs using the two different automatic matching
techniques.

Error Prone Infer SpotBugs

 2 2 10

 Di -based

Fixed warnings-based

Figure 2.6: Actual bugs found using the two different automatic matching tech-
niques.

validated detected bugs Figure 2.7 shows how many of the candi-
dates obtained with the diff-based and the fixed warnings-based approach
we could validate during the manual inspection. The left chart of Figure 2.7a
shows the results of manually inspecting each warning matched by the
diff-based approach. For instance, out of the 51 matched warnings reported
by Error Prone, 6 are full matches and 2 are partial matches, whereas the
remaining 43 do not correspond to any of the studied bugs. The right chart
in Figure 2.7a shows how many of the candidate bugs are actually detected
by the reported warnings. For example, out of 9 bugs that are possibly
detected by Infer, we have validated 3. Figure 2.7b and Figure 2.7c show
the same charts for the fixed warnings-based approach and the combined
approach.

The comparison shows that the diff-based approach yields many more
mismatches than the fixed warnings-based approach. Given this result,
one may wonder whether searching for candidates only based on fixed
warnings would yield all detected bugs. In Figure 2.6, we see for each

2.5 threats to validity 33

bug detector, how many unique bugs are found by the two automatic
matching approaches. For both Error Prone and Infer, although the diff-
based approach yields a large number of candidates, the fixed warnings-
based methodology is sufficient to identify all detected bugs. For SpotBugs,
though, one detected bug would be missed when inspecting only the
warnings that have been fixed when fixing the bug. The reason is bug
Mockito-11 in Figure 2.2a. The fixed warnings-based methodology misses
this bug because the bug fix accidentally re-introduces another warning of
the same kind, at line 62 of the fixed code.

In summary, we find that the fixed warnings-based approach requires less
manual effort while revealing almost all detected bugs. This result suggests
that future work could focus on the fixed warnings-based methodology,
allowing such work to manually inspect even more warnings than we did.

manual inspection Table 2.4 shows that the combined approach
yields 153 candidate warnings corresponding to 89 (79 unique) bugs. How-
ever, the manual validation reveals that only 34 of those warnings and a
corresponding number of 31 (27 unique) bugs correspond to actual bugs,
whereas the remaining matches are coincidental. Out of the 34 validated
candidates, 22 are full matches and 12 are partial matches (Figure 2.7c). In
other words, 78% of the candidate warnings and 66% of the candidate bugs
are spurious matches, i.e., the warning is about something unrelated to the
specific bug and only happens to be on the same line.

These results confirm that the manual step in our methodology is im-
portant to remove coincidental matches. Omitting the manual inspection
would skew the results and mislead the reader to believe that more bugs
are detected. This skewing of results would be even stronger for bug detec-
tors that report more warnings per line of code, as evidenced in an earlier
study [Thu+12].

To ease reproducibility and to enable others to build on our results, full
details of all results are available online.5

2.5 threats to validity

As for all empirical studies, there are some threats to the validity of the
conclusions drawn from our results. One limitation is the selection of bugs
and bug detectors, both of which may or may not be representative for a
larger population. To mitigate this threat, we use a large set of real-world

5 https://github.com/sola-da/StaticBugCheckers

https://github.com/sola-da/StaticBugCheckers

34 the state of static bug detectors

Error Prone Infer SpotBugs

N
u
m

b
e
r

o
f
w

a
rn

in
g
s

6 3 5
2 3

43

27

43

51

30

51

Error Prone Infer SpotBugs

N
u
m

b
e
r

o
f
b
u
g
s

5 3 5
1 3

27

6

24

33

9

32

(a) Diff-based approach.

Error Prone Infer SpotBugs

N
u
m

b
e
r

o
f
w

a
rn

in
g
s

7 4
11

3
1

78
9

11
18

14

29

Error Prone Infer SpotBugs

N
u
m

b
e
r

o
f
b
u
g
s

6 4
112

1

6
6

1

5
14

6

22

(b) Fixed warnings-based approach.

Error Prone Infer SpotBugs

N
u
m

b
e
r

o
f
w

a
rn

in
g
s

7 4
11

3
1

8

43

27

49

53

32

68

Error Prone Infer SpotBugs

N
u
m

b
e
r

o
f
b
u
g
s

Full match
Partial match

Mismatch

6 4
112

1

7

27

6

25

35

11

43

(c) Combined approach.

Figure 2.7: Manual inspection of candidate warnings and bugs from the two
automatic matching approaches.

2.6 implications for this dissertation and future work 35

bugs from a diverse set of popular open-source projects. Moreover, the
bugs have been gathered independently of our work and have been used
in previous bug-related studies [Jus+14; Mar+17; Pea+17; Sha+15]. For the
bug detectors, we study tools that are widely used in industry and which
we believe to be representative for the current state-of-the-art. Despite these
efforts, we cannot claim that our results generalize beyond the studied
artifacts.

Another threat to validity is that our methodology for identifying de-
tected bugs could, in principle, both miss some detected bugs and mis-
classify coincidental matches as detected bugs. A reason for potentially
missing detected bugs is our assumption that the lines involved in a bug
fix correspond to the lines where a developer expects a warning to be
placed. In principle, a warning reported at some other line might help a
developer to find the bug, e.g., because the warning eventually leads the
developer to the buggy code location. Since we could only speculate about
such causal effects, we instead use the described methodology. The final
decision whether a warning corresponds to a bug is taken by a human and
therefore subjective. To address this threat, both authors discussed every
candidate for a detected bug where the decision is not obvious.

A final threat to validity results from the fact that static bug detectors
may have been used during the development process of the studied projects.
If some of the developers of the studied projects use static bug detectors
before checking in their code, they may have found some bugs that we miss
in this study. As a result, our results should be understood as an assessment
of how many of those real-world bugs that are committed to the version
control systems can be detected by static bug detectors.

2.6 implications for this dissertation and future work

Our findings regarding the effectiveness of current static bug detectors
and the manual inspection of several of the missed bugs pose various
implications for this dissertation and more broadly for future research on
general bug detection.

The first and perhaps most important is that there is a huge need for bug
detection techniques that can detect domain-specific problems. Most of the
existing checkers focus on generic bug patterns that occur across projects
and often even across domains. However, as most of the missed bugs are
domain-specific, more work should complement the existing detectors with
techniques beyond checking generic bug patterns. One potential direction

36 the state of static bug detectors

is to consider informal specifications, such as natural language information
embedded in code or available in addition to code, e.g., in documentation.
The following chapters of this dissertation explore this direction and present
several ideas techniques that utilize programs and their documentation
to prevent and detect software bugs in novel ways through: (i) Learning
from programs source code to infer API concurrency specifications, i.e.,
documentation, (Chapter 3), (ii) Learning from documentation and runtime
behavior to detect inconsistent program behavior (Chapter 4), (iii) Leverag-
ing API documentation to build a subtype checker that detects a novel class
of data compatibility bugs (Chapter 5), and (iv) Learning to detect general
bug pattern in source code (Chapter 6).

We also suggest that further work on sophisticated yet practical static
analysis is required. Given that several currently missed bugs could have
been found by inter-procedural variants of existing intra-procedural anal-
yses suggests room for improvement. The challenge here is to balance
precision and recall: Because switching to inter-procedural analysis needs
to approximate, e.g., call relationships, this step risks to cause additional
false positives. Another promising direction suggested by our results is to
generalize bug detectors that have been developed for a specific kind of
problem to related problems, e.g., ArrayLists versus arrays.

Finally, our findings suggest that some bugs are probably easier to detect
with techniques other than static checkers. For example, the missed bugs
that manifest through clear signs of misbehavior, such as an infinite loop,
are good candidates for fuzz-testing with automated test generators.

2.7 contributions and conclusions

This chapter investigates how many of all bugs can be found by current
state-of-the-art static bug detectors. To address this question, we study a
set of 594 real-world Java bugs and three widely used bug detection tools.
This is the first study to evaluate the recall of three of the state-of-the-art
static bug detectors on a large dataset of real-world bugs.

The main findings of our study are the following:

• The three bug detectors together reveal 27 of the 594 studied bugs
(4.5%). This non-negligible number is encouraging and shows that
static bug detectors can be beneficial.

2.7 contributions and conclusions 37

• Different bug detectors are mostly complementary to each other.
Combining the three studied tools yields an overall bug detection rate
of 4.5%.

• The percentage of detected among all bugs ranges between 0.84%
and 3%, depending on the bug detector. This result points out a
significant potential for improvement, e.g., by considering additional
bug patterns. It also shows that checkers are mostly complementary
to each other.

• The majority of missed bugs are domain-specific problems not covered
by any existing bug pattern. At the same time, several bugs could
have been found by minor variants of the existing bug detectors.

3
I N F E R R I N G T H R E A D S A F E T Y D O C U M E N TAT I O N

Thread-safe classes are pervasive in concurrent, object-oriented software.
However, many classes lack documentation regarding their safety guaran-
tees under multi-threaded usage, i.e., they lack concurrency specification. This
lack of documentation forces developers who use a class in a concurrent
program to either carefully inspect the implementation of the class, to
conservatively synchronize all accesses to it, or to optimistically assume
that the class is thread-safe. If a developer makes an uninformed decision
about how to use a class in a multi-threaded program, the result would
likely be a buggy program or at least, a poor performing one. To overcome
the lack of concurrency specification, we present TSFinder, an approach to
automatically classify classes as supposedly thread-safe or thread-unsafe.

3.1 motivation

In the previous chapter, we saw that static bug detectors suffer several
limitations. One way to tackle some of these limitations is by taking one
step back and adopting a preventive approach: Try to avoid bugs instead
of detecting them. In this chapter, we study and propose a solution to an
imminent problem which affects the correctness and performance of any
modern software: the lack of API specifications, which at times, could lead
to catastrophic failures.

Thread-safe classes are pervasive. They are the corner stone of concurrent,
object-oriented programs. A thread-safe class encapsulates all necessary
synchronization required to behave correctly when its instances are accessed
by multiple client threads concurrently, without additional synchronization
from the calling side. Developers of multi-threaded object-oriented pro-
grams often rely on thread-safe classes to cast away the burden of ensuring
the thread safety of their applications.

39

40 inferring thread safety documentation

Unfortunately, it is not always clear to a developer who uses a class
whether the class is thread-safe or not. The reason is that many classes
do not provide any or only partial information about their thread
safety. Instead, it is common to find questions on web forums, such
as Stack Overflow, about the thread safety of a specific class. For ex-
ample, one developer asked about the thread safety of the widely used
javax.xml.parsers.DocumentBuilder class.1 Another developer ques-
tioned the thread safety of the crucial JDK class java.util.Random.2

Developers often complain about the lack of thread safety documentation.
For instance, the developer who reported that earlier versions of JDK
format classes are not thread-safe notes that: “Not being thread-safe is
a significant limitation on a class, with potentially dire results, and not
documenting the classes as such is dangerous.”3 Eventually, the accepted
fix was to explicitly state in the documentation that JDK format classes
are not thread-safe. Another developer complains about the lack of thread
safety documentation of the classes java.beans.PropertyChangeSupport

and java.beans.VetoableChangeSupport and writes in her bug report:
“[...] However, the documentation does not indicate either their thread-
safety (sic) or lack thereof. In keeping with the current documentation
standards, this point should be indicated in the class documentation. This
will allow implementors to benefit from any thread-safety (sic) of the syn-
chronization in the class implementations and allow proper multi-threaded
implementation of these two classes”4

The lack of adequate documentation about the thread safety of classes has
several negative consequences. First, a developer may solve the problem by
manually analyzing the classes she wants to reuse. However, this approach
spoils some of the benefits of reusing an existing class because it forces the
developer to inspect and understand the class implementation, breaking
the encapsulation provided by the class API. Second, a developer may con-
servatively assume that a class is not thread-safe and carefully synchronize
all concurrent accesses to the class to avoid concurrency bugs, such as data
races, atomicity violations, and deadlocks. However, if the class is already
thread-safe, this additional synchronization imposes additional runtime
overhead and may unnecessarily limit the level of parallelism achieved by
the program. Finally, a developer may optimistically assume a class to be
thread-safe. However, if the class turns out to not provide this guarantee, the

1 https://www.stackoverflow.com/questions/56737
2 https://www.stackoverflow.com/questions/5819638
3 https://bugs.java.com/view_bug.do?bug_id=4264153
4 https://bugs.java.com/view_bug.do?bug_id=5026703

https://www.stackoverflow.com/questions/56737
https://www.stackoverflow.com/questions/5819638
https://bugs.java.com/view_bug.do?bug_id=4264153
https://bugs.java.com/view_bug.do?bug_id=5026703

3.1 motivation 41

program may suffer from concurrency bugs, e.g., [Tsba; Tsbb; Tsbc], which
often become apparent only under specific interleavings and therefore may
easily remain unnoticed during testing. In all three scenarios, the developer
takes a poorly guided decision that relies on her limited understanding of
an implementation or on luck.

This chapter addresses the problem of missing thread safety documen-
tation by automatically classifying a given class as thread-safe or thread-
unsafe. Our approach, called TSFinder, is a statistical, graph-based learning
technique that learns from a relatively small set of classes known to be
thread-safe or thread-unsafe the distinguishing properties of these two
kinds of classes. The approach is enabled by two contributions. First, TS-
Finder uses a lightweight static analysis of the source code of the class to
extract information and represent this information in a graph. Second, we
use graph-based classification techniques – graph kernels [Vis+10] com-
bined with support vector machines (SVM) [SS02] to learn a classifier for
previously unseen classes. TSFinder helps developers assess the thread
safety of an otherwise undocumented class, enabling a developer to take
an informed decision on whether and how to use the class.

Our work is complementary to techniques for finding concurrency bugs,
which has been extensively studied in the past [AHB03; Cho+02; FF04;
FF09; Lu+06; LC09; OC03; PG01; Sav+97; WS06; XBH05], in particular in
the context of thread-safe classes [CLP17; Nis+12; PG12; SR14; SR15; SRJ15;
TC16]. These approaches consider supposedly thread-safe classes and try
to find corner cases in their implementation that a developer has missed.
Instead, TSFinder addresses classes for which it is unknown whether the
class is even supposed to be thread-safe and tries to answer that question
in an automatic way. Applying existing bug detection techniques to answer
this question would likely result in missing thread-unsafe classes (by testing-
based approaches) or missing thread-safe classes (by sound static analyses).
Our work also relates to existing work on inferring [ABL02; HRD07] and
improving [Jia+17; McB+17; TR16; Zho+17] documentation. We extend this
stream of work to concurrency-related documentation, which has not yet
been studied.

In Section 3.2, we give an overview of TSFinder. Sections 3.3 and 3.4
fill in the details. Sections 3.5 and 3.6 summarize the implementation and
evaluation. Section 3.7 discusses the limitations of TSFinder. Finally, in
Section 3.8 we conclude the chapter and discuss future work.

42 inferring thread safety documentation

Classification

Labeled
training classes

Extracted graphs Graph kernel
matrix

SVM model

Training

New class Extracted graphs Feature vector

Thread-safe
Not thread-safe

Figure 3.1: Overview of TSFinder: Inferring thread safety using static analysis
and graph kernels.

3.2 challenges and overview

The goal of this work is to automatically document classes as supposedly
thread-safe or thread-unsafe. The approach should be efficient enough to
scale to hundreds of classes, e.g., all classes in a 3rd-party library, and
accurate enough to provide reliable documentation. Achieving this goal
is challenging for several reasons. First, there are different approaches
for ensuring that a class is thread-safe, e.g., making the class immutable,
using language-level synchronization primitives, building on other thread-
safe classes, using lock-free data structures, and combinations of these
approaches. Because of this diversity, a simple check, e.g., for whether a class
has synchronized methods, is insufficient to determine thread safety. Second,
the thread safety of a class may depend on other classes. In particular,
inheriting from a thread-unsafe class may compromise the thread safety of
the child class. Third, extensive reasoning about concurrent behavior, e.g.,
to reason about different interleavings [Vis+03], can easily require large
amounts of computational resources, which conflicts with our scalability
goal.

Figure 3.1 provides an overview of our approach to infer thread safety
documentation. The approach consists of a training phase, where it learns
from a set of classes known to be thread-safe and thread-unsafe, and a
prediction phase, where it infers thread safety documentation for a pre-
viously unseen class. Both phases combine a lightweight static analysis
that extracts graph representations of classes with a graph-based classifier.

3.2 challenges and overview 43

The graph-based classification converts graphs into vectors by computing
the similarity between graphs of a to-be-classified class and graphs in the
trained model. These vectors are then classified using a model based on
support vector machines (SVM). The following illustrates the main steps of
TSFinder using the Java class in Figure 3.2a.

extracting field-focused graphs To apply machine learning to
the thread safety classification problem, we need to represent classes in a
suitable form. Our approach exploits the structured nature of programs
by representing a class as a set of graphs. Since multi-threading is mainly
about sharing and allowing multiple concurrent accesses to resources, the
graphs represent shared resources and how these resources are accessed.

For the example class, Figure 3.2b shows the graphs extracted by TSFinder.
Each graph focuses on a single field or a combination of fields of the class.
The graphs represent read and write accesses to the fields, call relationships
between methods, and the use of synchronization primitives, such as the
synchronized keyword. For example, the first graph in Figure 3.2b which
focuses on the seq field shows that the field is read by the isMax method,
written by the reset method, and both read and written by the next method.
Furthermore, the graph represents the call relationship between next and
isMax.

computing graph kernels After extracting a set of graphs for each
class under analysis, TSFinder checks for each graph whether it is similar
to graphs that come from thread-safe or from thread-unsafe classes. To this
end, we use the graph kernels [Vis+10], i.e., mathematical functions that
compute the pairwise similarity of graphs. TSFinder computes the similarity
of each graph of a class and the graphs of classes known to be thread-safe
or thread-unsafe. The similarity values yield a vector of numbers, called the
graph vector or embedding. For the running example, the approach computes
three graph vectors, one for each graph, as illustrated in Figure 3.2c.

learning a classification model To train a classifier that can
distinguish thread-safe classes from thread-unsafe classes, TSFinder trains
a model using a corpus of classes with known thread safety. The approach
combines all graph vectors of a class into a single vector, called class vector,
that represents the entire class (Figure 3.2d) along with a label denoting
whether the class is thread-safe or not. Finally, the labeled class vectors

44 inferring thread safety documentation

are used to train a classification model that distinguishes between the two
kinds of classes.

classifying a new class Given a new class, our approach extracts
graphs and computes a class vector as in the previous step. Based on the
trained model, TSFinder then classifies the class by querying the model
with this vector. For the example in Figure 3.2, TSFinder infers that the class
is thread-safe and adds this information to the class documentation.

3.3 extracting field-focused graphs

The first step of our approach is to extract graphs from classes via a
lightweight static analysis. This section explains the properties extracted by
the static analysis (Section 3.3.1) and how we summarize these properties
into graphs (Section 3.3.2).

3.3.1 Static Analysis

TSFinder performs a lightweight static analysis that extracts various prop-
erties of a class under analysis. We focus on two kinds of properties: unary
properties, which describe program elements of the class, and binary proper-
ties, which describe relationships between program elements and properties
of program elements. We choose properties relevant for concurrency, e.g.,
memory locations, accesses to memory locations, and memory visibility
guarantees of these accesses.

unary properties The static analysis extracts the following unary
properties from each class:

Definition 3.3.1 (Unary properties) Let C be the class under analysis. Let C f
be the set of fields, Cm be the set of methods, and Cconst be the set of class con-
structors and static constructors defined by C. The set of unary properties of C
is:

Cunary = C f ∪ Cm ∪ Cconst

3.
3

e
x

t
r

a
c

t
i
n

g
f

i
e

l
d

-
f

o
c

u
s

e
d

g
r

a
p

h
s

4
5

1 public class Sequence {
2 private volatile int seq;
3 private int MAX;
4

5 public Sequence(int m) {
6 MAX = m;
7 reset();
8 }
9

10 public synchronized int
next() {

11 if(!isMax())
12 return seq++;
13 return -1;
14 }
15

16 boolean isMax() {
17 return seq > MAX;
18 }
19

20 void reset() {
21 seq = 0;
22 }
23 }

(a) Java class.

init

m

next()

Sequence(int)

isMax()

seq

m

public this

f

private

Writes

m

Calls

public

Mod

Reads

Writes

Mod

Sync

Reads

Mod

Mod

volatile

Calls

m

next()

Sequence(int)

MAX

m

public this

f

private

Writes

init

Calls

Mod

Sync

Reads

Mod

isMax()

public

Mod

init

m

next()

Sequence(int)

isMax()

seq

m

public this

f

private

Writes

m
reset()

Calls

public

Mod

Reads

Writes

Mod

Sync

Reads

Mod

Mod

volatile

Calls

f
MAX

Reads

Mod

private

Writes

reset()

(b) Extracted graphs. The graphs from left to right correspond to fields seq, MAX, and the pair (seq,
MAX), respectively. The identifier names, in italic and blue font, are not used for classification, but
shown only for illustration.

g1 g2 . . . g4,860 g1 g2 . . . g4,860 g1 g2 . . . g4,860[
0.350 0.436 . . . 0.573

] [
0.355 0.536 . . . 0.584

] [
0.392 0.588 . . . 0.567

]
(c) Vectors of the three graphs in Figure 3.2b. The trained model has 4,860 graphs.

min(g1) max(g1) avg(g1) min(g2) max(g2) avg(g2) . . . avg(g4,860)[
0.350 0.392 0.366 0.436 0.588 0.520 . . . 0.575

]
(d) Class vector of the entire class.

Figure 3.2: A Java class and graphs extracted from it by our analysis. TSFinder predicts this class to be thread-safe.

46 inferring thread safety documentation

For example, our approach extracts the following set of unary properties
from the class in Figure 3.2a:

C f = {seq, MAX}, Cm = {next(), isMax(), reset()}

and
Cconst = {Sequence(int)}

binary properties To capture relationships between different program
elements and properties of program elements, the analysis extracts several
binary properties:

Definition 3.3.2 (Binary properties) Let C be the class under inspection, and
Cconst, Cm, C f as defined above. We define the following binary relations Rels:

• Calls : {Cconst ∪ Cm} × {Cconst ∪ Cm}

• Reads : {Cconst ∪ Cm} × {C f }

• Writes : {Cconst ∪ Cm} × {C f }

• Sync : {Cm} × {this, lock}

• Mod : {Cconst ∪ Cm ∪ C f } × {public, protected, private,

static, volatile, f inal}

The set of binary properties of C is:

Cbinary = Calls ∪ Reads ∪Writes ∪ Sync ∪Mod

The binary properties capture a rich set of relations relevant to our
thread safety prediction task, e.g., whether a method is public, what fields
a method reads and writes, and whether a method is synchronized. The
set {this, lock} represents objects that the class uses as locks, where this
represents a self-reference to the current instance and lock represents any
other object.

For our running example in Figure 3.2a, the binary properties include
that the public class constructor Sequence(int) writes to the field MAX,
that the method next() reads and writes the field seq, and that the
method next()is synchronized on this. Note that the absence of properties
also conveys information. For example, the absence of a binary relation
(MAX, volatile) ∈ Mod indicates that the MAX field is non-volatile.

3.3 extracting field-focused graphs 47

flattening the class hierarchy The thread safety of a class not
only depends on its own implementation, but also on the implementation
of its superclasses. E.g., a class may inherit a method that does not synchro-
nize data accesses and therefore become thread-unsafe, even though the
subclass alone would be thread-safe [PG13]. Our static analysis addresses
this challenge by flattening the class hierarchy. Specifically, the analysis
recursively merges the unary and binary properties of each class with those
of its superclass until reaching the root of the class hierarchy. The merging
follows the inheritance rules of the Java language. For example, the proper-
ties related to a superclass method that is not overridden by the subclass
are merged into the properties of the subclass.

3.3.2 Field-focused Graphs

Given the properties extracted by the static analysis, TSFinder summarizes
this information into a set of graphs for each class. Traditionally, programs
have been represented by a variety of graphs suited for different purposes.
For example, abstract syntax trees, control-flow graphs, and program depen-
dency graphs have been used to analyze the syntax, control flow, and data
flow of programs. The following presents two kinds of graphs designed
specifically to reason about concurrency-related properties of classes. The
basic idea is to summarize in each graph how clients of the class may
access a field or a combination of fields of the class. We call these graph
representations field-focused graphs.

Before presenting field-focused graphs, we define a single graph per class,
which conflates all properties known about this class:

Definition 3.3.3 (Class graph) Given a class C, let Cunary and Cbinary be the
unary and binary properties of C, respectively. The class graph of C is a directed
multi-graph gC = (VC , EC), where VC = VRels ∪ Cunary ∪ {this, lock, public,
protected, private, static, volatile, f inal} are vertices that represent program el-
ements and properties of them, and VRels = {Calls, Reads, Writes, Sync, Mod}
are special nodes that represent the different relations in Cbinary. Each special node
is labeled with the name of the relation, i.e., with Calls, Reads, Writes, Sync, or
Mod and is connected to its binary operands by the set EC of directed unlabeled
edges.

One possible approach would be to predict the thread safety of a class
based on its class graph. However, most class graphs are dissimilar from
most other class graphs, independently of whether the classes are thread-

48 inferring thread safety documentation

safe, because classes and therefore also their class graphs are very diverse.
An important insight of our work is that this problem can be addressed
by deriving smaller graphs from the class graph, so that each small graph
captures a coherent subset of concurrency-related properties. The intuition
is that these smaller graphs capture recurring implementation patterns
of thread-safe and thread-unsafe classes, enabling TSFinder to learn to
distinguish them.

TSFinder derives smaller graphs from the class graph by focusing on a
single field or a combination of fields:

Definition 3.3.4 (Field-focused graph) Given a non-empty subset F ⊆ C f
of the fields of a class C and a class graph gC where gC = (VC , EC), the field-
focused graph gF = (VF , EF) contains all vertices reachable from F, i.e., VF =
{v | ∃ v f ∈ F s.tt. reachablegC

(v f , v) and reachablegC
(v, v f)}, and contains all

edges connecting these vertices.

For a directed graph g = (V, E) where u and v ∈ V,

reachableg(u, v) ⇐⇒ there exists a directed edge from u to v.

If the set F contains a single field, then the field-focused graph captures all
program elements related to this field, as well as the relations between them.
Such a single-field graph summarizes how clients of the class may access
the field and to what extent these accesses are protected by synchronization.

For the example in Figure 3.2a, TSFinder extracts two graphs that focus
on single fields, shown as the first two graphs in Figure 3.2b. They focus on
the fields seq and MAX, respectively.

Some characteristics of thread-safe classes cannot be captured by single-
field graphs. For example, a thread-safe class may update two semantically
related fields together and use a single lock or a synchronized method
to protect the access to these fields. TSFinder captures such behavior by
also considering sets F of multiple fields, which yields multi-field graphs.
Specifically, the approach considers all pairs of fields for which there exists
at least one method that reads or writes from both fields. To bound the
overall number of graphs extracted per class, we focus on field-focused
graphs with |F| ≤ 2, i.e., single fields or pairs of fields.

As an example of a multi-field graph, consider the third graph in Fig-
ure 3.2b. Because the class method isMax() reads both fields, the approach
extracts a graph that captures both fields together.

Intuitively, the reason why field-focused graphs are effective at character-
izing the thread safety of a class is that they capture various patterns for

3.4 classifying classes 49

making a class thread-safe. Whether a class is thread-safe depends on how
the class accesses its internal state, i.e., its fields, and in what ways these
accesses are protected by synchronization. Field-focused graphs capture the
various ways to implement thread safety, e.g., using synchronized methods,
volatile fields, or by making a class immutable. By capturing these imple-
mentation patterns, the graphs enable TSFinder to determine whether a
class is thread-safe.

graph canonicalization The final step of extracting field-focused
graphs from classes is to canonicalize the graphs. The motivation is that,
to learn recurring patterns in implementations of thread-safe and thread-
unsafe classes, the extracted graphs need to be comparable across different
classes. In particular, they should not contain identifier names, such as
method and field names, as these vary across different classes and projects.
Therefore, our approach renames each node that represents a method to
m, while two special node names init and clinit are reserved for class
constructors and static constructors, respectively. Similarly, all fields are
renamed to f.

3.4 classifying classes

Classifying graphs is a classical problem in several domains such as bio-
and chemo-informatics [Bor+05; Ral+05; Swa+05], image analysis [HB07],
and web and social network analysis [Vis+14]. Traditional approaches to
this problem [Vis+10] use a so-called kernel method [SS02], a function
to compute the similarity between two graphs. The pairwise similarities
between graphs are then used as vector embeddings to represent the graphs
for classification.

We adopt a variant of this approach to our problem of classifying thread-
safe classes. TSFinder first builds several graphs per class (Section 3.3.2). It
then uses the kernel method through a graph kernel function to generate
vectors (embeddings) for graphs (Section 3.4.2.1). Instead of training a
machine learning model on several individual graphs from each class,
we combine embeddings of graphs extracted from the same class into
one single embedding per class for the machine learning model to learn
(Section 3.4.2.2). This step allows TSFinder to classify thread-safe classes
using all generated graphs from a class.

Based on the field-focused graphs extracted for each class, TSFinder
learns how to classify classes into supposedly thread-safe and thread-unsafe

50 inferring thread safety documentation

classes. To this end, the approach combines a graph kernel, which computes
the similarity of two graphs, with a SVM, which classifies each class based
on the similarity of its graphs to other graphs from classes known to be
thread-safe or not.

The basic idea is to perform three steps:

1. Given a class, compare its graphs to graphs of classes known to be
thread-safe or thread-unsafe. For each pair of graphs, compute a
similarity score and summarize all scores into a vector per graph.

2. Combine all graph vectors of a class into one single class vector that
summarizes the similarity of graphs extracted from the class to graphs
in the trained model.

3. Classify a class by querying a vector-based binary classifier using the
resulting class vector. The classifier has been trained with the class
vectors of the classes with known thread safety.

The remainder of this section presents these steps in detail.

3.4.1 Background: Graph Kernels

Checking whether two graphs are isomorphic is a computationally hard
problem for which no polynomial-time algorithm is known. In contrast,
graph kernels offer an efficient alternative that compares graph substruc-
tures in polynomial time. In essence, a graph kernel is a function that takes
two graphs and yields a real-valued similarity score. Given a list of graphs
g1, .., gn and a kernel k, one can compute a matrix K = (k(gi, gj))i,j, 1 ≤
i, j ≤ n, that contains all pairwise similarity scores of the graphs. This
matrix, called the kernel matrix, is symmetric and positive-definite.

In this work, we build upon a fast, scalable, state of the art kernel, the
Weisfeiler-Lehman (WL) graph kernel [She+11]. It is based on the Weisfeiler-
Lehman graph isomorphism test [WL68], which augments each labeled
node by the sorted set of its direct neighbors and compresses this aug-
mented label into a new label. This step is repeated until the sets of node
labels of the two graphs are different or until reaching a maximum number
of iterations h. Given a graph g, we refer to the sequence of graphs obtained
by this augmentation and compression step as g0, g1, .., gh, where g0 = g
and gh is the maximally augmented and compressed graph. We call this
sequence of graphs the WL sequence of g.

3.4 classifying classes 51

Given two graphs and their WL sequences, we compute the graph kernel
as follows:

Definition 3.4.1 (Weisfeiler-Lehman kernel) The graph kernel of g and g′ is

k(g, g′) = ksub(g0, g′0) + ksub(g1, g′1) + . . . + ksub(gh, g′h)

The function ksub is a subtree kernel function.

Definition 3.4.2 (Weisfeiler-Lehman subtree kernel) The subtree graph ker-
nel of g and g′ is

ksub(g, g′) = 〈φ(g), φ(g′)〉

where the notation 〈., .〉 denotes the inner product of two vectors.

The φ function vectorizes a labeled graph by counting the original and
compressed node labels of the graphs in the WL sequences of g and g′.
Specifically, let Σi be the set of node labels that occur at least once in g or
g′ at the end of the i-th iteration of the algorithm, and let ci(g, σij) be the
number of occurrences of the label σij ∈ Σi in the graph g. Based on the
counter ci, we compute φ as follows:

φ(g) =
(
c0(g, σ01), . . . , c0(g, σ0|Σ0|), . . . ,

ch(g, σh1), . . . , ch(g, σh|Σh |)
)

3.4.2 Training

The goal of the training step of TSFinder is to create a binary classification
model that predicts whether a given class is thread-safe or thread-unsafe.
We use a supervised learning technique and therefore require training data.
As training data, we use two sets of classes CTS and CT̃S, which consist of
known thread-safe and known thread-unsafe classes, respectively. For each
of these classes, the static analysis (Section 3.3) extracts a set of graphs.

3.4.2.1 Graphs Vectors

TSFinder first computes a vector representation of each graph based on the
graph kernel function in Definition 3.4.1. Intuitively, the vector characterizes
a graph by summarizing how similar it is to other, known graphs in the
training data.

More technically, the approach computes the vector representation of a
graph in three steps:

52 inferring thread safety documentation

1. Fix the order of all graphs in GCTS∪CT̃S
to obtain a list of graphs

g1, .., gn. The specific order does not matter, as long as it remains
fixed.

2. Compute the kernel matrix of all graphs K = (k(gi, gj))i,j for 1 ≤
i, j ≤ n.

3. For each graph gi, the i-th row of K is the vector representation of g,
called graph vector.

3.4.2.2 Combining Class Graphs

Given the graphs vectors of a class, we combine these vectors into a single
class vector. Intuitively, the class vector should summarize to what extent
the individual graphs of a class resemble the graphs of classes in the training
data. If a class has graphs that are very similar to graphs that typically occur
in thread-safe classes, then the class is more likely to thread-safe. Likewise,
a class with graphs that mostly resemble graphs from thread-unsafe classes
is more likely to also be thread-unsafe. To encode this intuition, we create a
class vector by computing the minimum, maximum, and average similarity
of all the graphs of the class against all graphs extracted from the training
classes.

Let n = |GCTS∪CT̃S
| be the total number of graphs extracted from all

classes in the training data. For a specific class C, let GC be the set of all
graphs TSFinder extracted from C and m = |GC | be the total number of
these graphs. For each graph gi ∈ GC where 1 < i < m, let f j

gi where
1 < j < n be the jth feature of graph gi of the class C. Our approach
computes the class vector by calculating ∀j ∈ 1, . . . , n:

min(f j
gi ∀i ∈ 1, . . . , m),

max(f j
gi ∀i ∈ 1, . . . , m),

mean(f j
gi ∀i ∈ 1, . . . , m)

and concatenating these n ∗ 3 values into a single vector.
For example, the class vector in Figure 3.2d has 3*4860=14580 elements.

The first three elements are the minimum, maximum, and mean similarity
of the graphs in Figure 3.2b compared to the first graph in the list of
graphs extracted from the training classes. The next three elements are the
minimum, maximum, and mean similarity of the graphs in Figure 3.2b
compared to the second graph extracted from the training classes, . . . etc.

3.5 implementation 53

3.4.2.3 Classifier

Given the class vectors and their corresponding labels l1, .., ln that indicate
whether a class c is from CTS or from CT̃S, we finally feed the labeled
vectors into a traditional vector-based classification algorithm. By default,
TSFinder uses a SVM for learning the classifier. Our evaluation also consid-
ers alternative algorithms.

3.4.3 Classifying a New Class

Once TSFinder has learned a model, we use it to predict the thread safety
of a new class. Let Cnew be the new class for which we wish to infer its
supposed behavior regarding thread safety. The approach computes a class
vector of Cnew in the same way as for training. At first, TSFinder extracts
field-focused graphs from Cnew, which yields a set GCnew of graphs. For each
graph g ∈ GCnew the approach computes the graph vector of g by computing
its graph kernel against all graphs in our training data:

vec(g) = (k(g, gj))1j, j = 1, 2, . . . , n

where gj ∈ GCTS∪CT̃S
is the set of graphs in the learned model and n =

|GCTS∪CT̃S
| is the total number of graphs in the model. Given the set of

graphs vectors, TSFinder combines these graphs into a single class vector
as described in Section 3.4.2.2 and queries the trained model to obtain a
classification label for the class Cnew. The label indicates whether the model
predicts the class to be thread-safe or thread-unsafe.

3.5 implementation

We implement TSFinder into a fully automated tool to analyze Java classes.
The static analysis builds on the static analysis framework Soot [VR+99].
Given a class, either as source code or byte code, the analysis extracts
field-focused graphs by traversing all program elements, by querying the
call graph, and by analyzing definition-use relationships of statements. We
use the GraphML format [Bra+02] to store graphs. To compute the WL
graph kernel, we build on an existing Python implementation [She+11].
The SVM model is implemented on top of the Weka framework [Fra+05].
Our implementation and dataset of thread-safe and thread-unsafe classes
are available as open-source.5

5 https://github.com/sola-da/TSFinder

https://github.com/sola-da/TSFinder

54 inferring thread safety documentation

3.6 evaluation

The evaluation is driven by four main research questions:

• RQ1: How many classes come with documentation about their thread
safety? (Section 3.6.1)

• RQ2: How effective is TSFinder in classifying classes as thread-safe or
thread-unsafe? (Section 3.6.2)

• RQ3: How efficient is TSFinder? (Section 3.6.3)

• RQ4: How does TSFinder compare to variants of the approach and to
a simpler approach? (Section 3.6.4)

3.6.1 RQ1: Existing Thread Safety Documentation

To better understand the current state-of-the art in documenting thread
safety, we systematically search all 179,239 classes from the Qualitas corpus
for thread safety documentation. We focus on documentation provided
as part of the Javadoc comments of a class and its members, and ignore
any other documentation, e.g., on project web sites or in books. Most real-
world classes have Javadoc documentation and it is a common software
engineering practice to document class-level properties, such as thread
safety, there.

Our inspection proceeds in two steps. At first, we generate the Javadoc
HTML files for all classes and automatically search them for keywords
related to concurrency and thread safety. Specifically, we search for “concu”,
“thread”, “sync”, and “parallel”. We choose these terms to overapproximate
any relevant documentation. In total, the search yields hits in 8,655 of the
179,239 classes.

As the second step, we manually analyze a random sample of 120 of the
8,655 classes. For each sampled class, we inspect the Javadoc and search for
any documentation related to the thread safety of the class. Based on this
inspection, we classify the class in one of the following four categories.

documented as thread-safe The documentation explicitly specifies
that the class is supposed to be thread-safe or this intention can be clearly
derived from the available information. Examples include:

• The class-level documentation states “This class is thread-safe”.

3.6 evaluation 55

• The name of the class is SynchronousXYChart and the project also
contains a class XYChart, indicating that the former is a thread-safe
variant of the latter.

• The class-level documentation states “Mutex that allows only one
thread to proceed [while] other threads must wail until the one fin-
ishes”. The semantics of a mutex implementation imply that the class
is thread-safe because mutexes are accessed concurrently without
acquiring any additional locks.

documented as thread-unsafe The documentation explicitly speci-
fies that the class is not supposed to be thread-safe or this intention can be
clearly derived from the available information. Examples include:

• The class-level documentation states “This class is not thread-safe” or
“not to be used without synchronization”.

• The class-level documentation states “We are not using any synchro-
nized so that this does not become a bottleneck”.

• The class-level documentation states “The class (..) shall be used
according to the Swing threading model”, which implies that only
the Swing thread may access instances of the class and that the class
is not thread-safe [WO04].

documented as conditionally thread-safe The documentation
specifies the class to be thread-safe under some condition. Examples include:

• The class depends on another class and has the same thread safety as
this other class.

• All static methods of the class are thread-safe, whereas non-static
methods are not necessarily thread-safe.

no documentation on thread safety The documentation does
not mention thread safety and we cannot derive from other available in-
formation whether the class is supposed to be thread-safe. Examples of
documentation that matches our search terms but does not document thread
safety include:

• The class implements a graph data structure and its documentation
says that it “permits parallel edges”.

56 inferring thread safety documentation

Table 3.1: Existing thread safety documentation.

Documented as: Number Percentage

Thread-safe 11 9.2%

Not thread-safe 12 10.0%

Conditionally thread-safe 2 1.7%

No documentation 95 79.2%

Total inspected 120 100.0%

• The method-level documentation specifies that an argument or the
return value of the method is supposed to be thread-safe. While such
a statement is about thread safety, it does not specify this property
for the current class.

Table 3.1 summarizes the results of this classification. We find that most
(79.2%) of the inspected classes do not document the thread safety of the
class, but hit our search terms for some other reason. In the documented
subset of classes, which sums up to 20.8%, roughly the same number of
classes is documented as thread-safe and thread-unsafe, respectively.

Under the assumptions that our search terms cover all possible thread
safety documentation and that the 120 sampled classes are representative
for the entire population of classes in the corpus, we can estimate the
percentage of documented classes in the corpus:

% documented ∗ Search hits
Total classes

=
0.208 ∗ 8, 655

179, 239
= 1.004%

In summary, the vast majority of real-world Java classes do not
document whether they are thread-safe or not. Among the few
documented classes, 47.8% and 52.2% are documented as thread-
safe and thread-unsafe, respectively. We conclude that the current
state of thread safety documentation is poor and will benefit from
automatic inference of documentation.

3.6 evaluation 57

3.6.2 RQ2: Effectiveness of TSFinder

3.6.2.1 Dataset and Graph Extraction

For the remaining evaluation, we use a set of 230 classes gathered from JDK
version 1.8.0_152. These classes are documented to be either thread-safe
or thread-unsafe, providing a ground truth for our evaluation. Table 3.2
shows the number fo fields, methods, and lines of code of these classes. In
total, the classes sum up to 74,313 lines of Java code. The last three columns
of Table 3.2 provide statistics about the graphs that TSFinder extracts. On
average, the static analysis extracts 21.1 graphs per class, which yields a
total of 4,860 graphs that the approach learns from.

Although the number of thread-safe and thread-unsafe classes is equal,
the total number of extracted graphs from thread-unsafe classes is about
1.4 the number of graphs extracted from thread-safe classes. Since TSFinder
uses the entire set of 4,860 graphs to construct the class vector for any class,
this imbalance does not prevent the approach from learning an effective
classifier. The number of graphs per category in Table 3.2 is disproportionate
to the number of fields and methods in the same category due to flattening
the class hierarchy (Definition 3.3.1).

5
8

i
n

f
e

r
r

i
n

g
t

h
r

e
a

d
s

a
f

e
t

y
d

o
c

u
m

e
n

t
a

t
i
o

n

Table 3.2: Classes and extracted field-focused graphs used for training and cross-validation.

Fields Methods LoC Extracted graphs

Classes Count Min Max Avg Min Max Avg Min Max Avg Graphs Vertices Edges

Thread-safe 115 1 64 8.7 2 163 34.7 13 4,264 430.2 1,989 128,493 150,850

Thread-unsafe 115 0 55 4.3 1 103 23.8 7 1,931 219.7 2,871 151,410 170,473

All 230 0 64 6.4 1 163 29.2 7 4,264 323.1 4,860 279,903 321,323

3.6 evaluation 59

Table 3.3: Effectiveness of classification via 10-fold cross validation across 230

classes with h = 3.

Thread-safe Thread-unsafe

Accuracy Precision Recall Precision Recall

94.5% 94.9% 94.0% 94.2% 95.0%

3.6.2.2 Results

To evaluate the effectiveness of TSFinder, we apply it to the 230 classes
and measure precision, recall, and accuracy. We perform 10-fold cross
validation, a standard technique to evaluate supervised machine learning.
The technique shuffles and splits all labeled data, i.e., our 230 thread-safe
and thread-unsafe classes into ten equally sized sets. For each set, it then
trains a model with the classes in the other nine sets and predicts the labels
of the remaining classes using the trained model. We measure accuracy
as the percentage of correct classifications among all classifications made
by TSFinder. We measure precision and recall both for predicting thread
safety and for predicting thread unsafety. With respect to thread (un)safety,
precision means the percentage of correct thread (un)safety predictions
among all predictions saying that a class is thread-(un)safe. Recall means
the percentage of classes classified as thread-(un)safe among all classes that
are actually thread-(un)safe.

Table 3.3 shows the results of the 10-fold cross validation. The classifi-
cation accuracy is 94.5%, i.e., TSFinder correctly predicts the thread safety
of the vast majority of classes. The precision and recall results allow the
reader to further understand how incorrect predictions are distributed. For
example, the fact that the precision for thread safety is 94.9% means the
following: When the approach predicts a class to be thread-safe, then this
prediction is correct in 94.9% of the cases. Similar, the recall for thread-safety
of 94.0% means that TSFinder finds 94.0% of all thread-safe classes and
misses the remaining 6%.

3.6.2.3 Manual Inspection

To better understand the limitations of TSFinder, we inspect some of the
mis-classified classes.

60 inferring thread safety documentation

thread-safe class predicted as not thread-safe TSFinder
mistakenly predicts the thread-safe ConcurrentLinkedQueue class to be
thread-unsafe. This queue implementation builds upon a non-blocking
algorithm [MS96]. Since our training set includes only six classes that use a
similar lock-free implementation, the training data may not be sufficient for
the classifier to generalize to the ConcurrentLinkedQueue implementation.
Nevertheless, TSFinder correctly predicts some of the other classes that use
non-blocking implementations.

thread-unsafe class predicted as thread-safe The approach
predicts TreeSet and EnumSet as thread-safe, even though they are thread-
unsafe implementations of the abstract class AbstractSet. We suspect these
misclassification to be due limitations of the the learned model to generalize
to previously unseen cases.

inaccurate documentation TSFinder classifies the class
PKIXCertPathValidatorResult as thread-safe, even though its doc-
umentation labels it as not thread-safe. Manually inspecting the
implementation shows that the class is indeed thread-safe. The private
fields of the class are initialized by the constructor and after that cannot be
written to. This case illustrates that TSFinder can not only add otherwise
missing documentation, but could also be useful for validating existing
documentation.

In summary, our classifier correctly predicts the thread safety of a
class in 94.5% of the cases. The precision and recall for identifying
thread-safe classes are 94.9% and 94.0%, respectively. We conclude
that the approach achieves its goal of automatically and precisely
identifying whether a class is supposed to be thread-safe.

3.6.3 RQ3: Efficiency of TSFinder

We evaluate the efficiency of our approach by measuring the time required
for the different steps. All experiments are performed on a machine with 4

Intel i7-4600U CPU cores and 12GB of memory. Training the classifier with
a set of training classes is a one-time effort. For the 230 training classes that
we use in this evaluation, the training takes approximately 11.7 minutes,
including all computation steps, such as extracting graphs, computing
graph kernels, and training the SVM model. When querying TSFinder with

3.6 evaluation 61

Table 3.4: Effect of the WL kernel iterations parameter h on classification.

h 1 2 3 4 5 6 7

Accuracy 89.7% 94.1% 94.5% 94.4% 93.9% 94.1% 94.1%

a new class, the approach extracts graphs from this class and classifies the
class based on the graphs. The former step takes about 3 seconds and it
dominates the latter which is negligible, on average over all 230 training
classes.

TSFinder stores graphs extracted from training classes as part of its
trained model. These graphs are used to compute the pairwise similarity
of graphs extracted from the class under inspection to build the vector
embedding of the class. For our model trained with 230 graphs, the total
size of the compressed graphs is 0.6 MB, i.e., the space consumed by the
model graphs is negligible.

We conclude that TSFinder is time- and space-efficient enough
to document hundreds of classes, e.g., of a third-party library, in
reasonable time and with minimal space overhead.

3.6.4 RQ4: Comparison with Alternative Approaches

As the default classification algorithm, we use a SVM with stochastic
gradient decent (SGD) and the hinge loss function. We empirically set the
learning rate to 0.0001 and the number of WL-iteration h to 3. The following
compares this configuration with alternative approaches.

3.6.4.1 Configuration of the WL Graph Kernel

To compare field-focused graphs with each other, TSFinder uses the WL
graph kernel, which has a parameter h that determines to what extent
should it compress node labels. Table 3.4 shows the effect of h on the
classification accuracy. The results suggest that h = 3 is an appropriate
value for h and that small variations of the parameter do not significantly
change the accuracy.

62 inferring thread safety documentation

Table 3.5: Effectiveness of the graph-based TSFinder against the SimpleClassifier
classifier.

Accuracy

Classifier TSFinder SimpleClassifier

SVMa (SGD with hinge loss)b
94.5% 75.0%

Random forest 94.1% 79.3%

SVM (SMO)c
92.5% 70.6%

SVM (SGD with log loss) 92.0% 74.3%

Additive logistic regression 92.8% 74.5%

a Support vector machines
b Stochastic gradient descent
c Sequential minimal optimization

3.6.4.2 Classification Algorithm

TSFinder uses a classification algorithm that determines whether a given
class vector is likely thread-safe or not (Section 3.4.2.3). We evaluate several
other popular algorithms in addition to our default of SVM with stochastic
gradient descent and hinge loss. Table 3.5 shows the accuracy of TSFinder
with four other classification algorithms, each with the default configuration
of hyperparameters provided by Weka. The results show that the accuracy
is only slightly influenced by the choice of classification algorithm, as it
ranges between 92.0% and 94.5%.

3.6.4.3 Simple Class-level Features

We evaluate whether our graph-based view on classes could be replaced by
a simpler approach that summarizes class-level features into a vector. The
intuition behind this set of features is that as a human, we tend to believe
that, for example, a class with high percentage of synchronized methods
is probably more likely intended to be thread-safe than a class with fewer
synchronized methods. Specifically, we consider the following class-level
features:

• Percentage of fields that are volatile.

• Percentage of fields that are public and volatile.

3.7 limitations 63

• Percentage of methods that are either synchronized or contain a
synchronized block.

• Percentage of methods that are either public and synchronized or
public and contain a synchronized block.

Based on a feature vector for each of our 230 classes, we train and evaluate
a classifier using the same 10-fold cross validation strategy as above. We
call this approach SimpleClassifier. The last column in Table 3.5 shows the
accuracy obtained by SimpleClassifier using different learning algorithms.
All algorithms are used with their default configurations, as provided by
Weka. The highest accuracy that SimpleClassifier achieves is 79.3%, using
the random forest learning algorithm, which is significantly lower than the
accuracy of TSFinder.

In summary, we find that the choice of classification algorithm has
little influence on the accuracy of TSFinder. Comparing the approach
with a classifier based on simple, class-level features shows that our
graph-based representation of classes yields a significantly more
accurate classifier (94.5% versus 79.3%).

3.7 limitations

One limitation is that the training classes may not comprehensively cover
all possible patterns of thread-safe and thread-unsafe code. As a result,
the analysis may not be able to correctly classify a previously unseen class
that relies on a completely new way to implement thread safety. We try to
address this problem by selecting a diverse set of training classes that are
used in various application domains and that cover different concurrency-
related implementation patterns, e.g., immutable classes, classes that use
synchronized methods, and classes that use synchronization blocks.

Another limitation is that some of the supposedly thread-safe training
classes may have subtle concurrency bugs. If such bugs were prevalent, the
approach might learn patterns of buggy concurrent code. To mitigate this
potential problem, the training set contains well-tested and widely used
classes, for which we assume that most of their implementation is correct.

64 inferring thread safety documentation

3.8 contributions and conclusions

This chapter addresses the understudied problem of inferring concurrency-
related documentation. We present TSFinder, an automatic approach to infer
whether a class is supposed to be thread-safe or not. Our approach is a novel
combination of lightweight static analysis and graph-based classification.
We show that our classifier has an accuracy of 94.5% and therefore provides
high-confidence documentation, while being efficient enough to scale to
hundreds of classes, e.g., in a third-party library.

We envision the long-term impact of this work to be twofold. First, devel-
opers of concurrent software can use our approach to decide if and how to
use third-party classes. Second, we believe that the technical contribution
of this chapter – combining lightweight static analysis and graph-based
classification – generalizes to other problems. For example, future work
could adapt the idea to other class-level properties, such as immutability,
and to other code properties, such as whether a piece of code suffers from
a particular kind of bug.

Our evaluation consists of two parts. First, we validate our hypothesis
that existing classes lack thread safety documentation by systematically
searching all 179,239 classes in the Qualitas corpus [Tem+10]. We find
that the vast majority of classes fails to document whether it is thread-
safe or not. Second, we evaluate our classifier with 230 training classes
that were manually labeled as thread-safe or thread-unsafe. We find that
94.5% of TSFinder’s classification decisions are correct. In particular, the
precision and recall of identifying thread-safe classes are 94.9% and 94.0%,
respectively. On average, adding documentation to a new class takes about
3 seconds. These results show that the approach is accurate enough to
significantly improve over guessing whether a class is thread-safe and
efficient enough to scale to large sets of classes.

In summary, this chapter makes the following contributions:

• A systematic study of thread safety documentation in real-world Java
classes showing the lack of such documentation.

• The first automated classifier to distinguish supposedly thread-safe
and thread-unsafe classes, an understudied problem that addresses
the lack of thread safety documentation.

• A novel combination of static analysis and graph-based classification
that accurately and efficiently predicts the thread safety of a class.

3.8 contributions and conclusions 65

The approach we present in this chapter, TSFinder, supports the main
thesis of this dissertation that learning from programs provide an effective
means to prevent software bugs. TSFinder infers otherwise missing concur-
rency specification of object-oriented classes and therefore complements
standard bug finding techniques (Chapter 2) by providing a preventive
mechanism. In principal, providing such important, but unfortunately miss-
ing, documentation helps developers make informed and correct decisions
when designing and implementing multi-threaded software.

4
L E A R N I N G T O C R O S S C H E C K D O C U M E N TAT I O N V S .
R U N T I M E

Traditional static bug detectors, studied in Chapter 2, analyze source code
looking for predefined bug patterns. Testing frameworks detect bugs at
runtime by checking for known violations, which also have to be prespeci-
fied. To define what is a faulty program execution, testing relies on a test
oracle that distinguishes expected from unexpected behavior. Automati-
cally creating an effective test oracle is difficult, because the correctness
of observed behavior depends on what is expected of the software under
test. However, the expected behavior is often only informally specified,
e.g., in natural language documentation. This chapter presents DocRT, a
learning-based approach to crosscheck documentation against runtime behavior,
effectively providing an alternative solution to one of the challenges for the
test oracle problem. More specifically, we focus on exceptional behavior
of APIs, i.e., what kind of exception should be thrown, if any, and the
pre-condition(s) for such exception(s). The key idea is to exploit natural
language information, such as API documentation and names of identifiers
and types, which often describes what to expect from a piece of code, but
is typically unused during automated testing.

4.1 motivation

Automated testing is a powerful approach to reveal bugs by exercising a
program under test with numerous inputs. A key challenge in automated
testing is the oracle problem [Bar+15], i.e., the problem of determining
whether a test execution is within the expected behavior or exposes a
bug. Without an automated test oracle, a human must reason about test
executions, which severely limits the scale at which automated testing can
be applied.

67

68 learning to crosscheck documentation vs . runtime

A number of test oracles are used in automated testing [Bar+15]. Re-
gression testing provides an oracle by comparing the current behavior of
a program to a previous version [LW90; Rot+01]. Differential testing com-
pares two programs that are supposed to behave the same against each
other [McK98]. Mined specifications provide a probabilistic oracle that can
warn about behavior that deviates from the norm [ABL02; Dal+06; LZ05;
PG09; Sho+07; Yan+06]. Some software comes with an implicit specifica-
tion that may serve as an oracle, e.g., by checking that subclasses follow
Liskov’s substitutability principle [PG13] or that thread-safe classes have
linearizable behavior [PG12]. Another option is to warn about generic signs
of misbehavior, such as that program crashes [CS04]. While each of these
oracles is effective in some situations, they are likely to miss some bugs
even when the misbehavior of the software under test may be obvious to
a skilled human observer familiar with the documented behavior of the
software.

The reason why automatically creating a test oracle is difficult is that
the expected behavior of a software under test is usually only informally
specified. Such informal specifications often come in the form of natural lan-
guage information, e.g., in API documentation or embedded in descriptive
method names. While understanding such NL information is relatively easy
for a skilled human, e.g., an experienced software developer, automated test
oracles typically ignore NL information. The reason is that algorithmically
reasoning about NL information is non-trivial, as evidenced by decades of
active research in natural language processing (NLP).

As a real-world examples, consider Figure 4.1, which shows a method
under test from the widely used Apache Commons Lang project. The API
documentation associated with the method unwrap(String, String) (Fig-
ure 4.1a) describes that the method unwraps a given string (first parameter)
using a specified wrapping token (second parameter). Moreover, the docu-
mentation also gives several examples of invocations of this method and
the expected output. However, as shown by the test case in Figures 4.1b,
the method throws a StringIndexOutOfBoundsException when the length
of the string to be unwrapped equals the length of the wrapping token
(Figure 4.1c). This behavior is wrong according to the documentation, and
indeed the fix of this bug changes the logic of the source code to safely
handle this corner case.1 While the fact that this observed behavior is wrong
is obvious for a skilled human, automated test oracles typically fail to see a
problem, because they do not “understand” the NL documentation.

1 https://issues.apache.org/jira/browse/LANG-1475

https://issues.apache.org/jira/browse/LANG-1475

4.1 motivation 69

public static String unwrap(String str, String wrapToken)

Unwraps a given string from another string.
...
StringUtils.unwrap("AABabcBAA", "AA") = "BabcB"
...
StringUtils.unwrap("#A", "#") = "#A"
...
Parameters:
str - the String to be unwrapped, can be null
wrapToken - the String used to unwrap
Returns:
unwrapped String or the original string if it is not quoted properly with the

wrapToken

(a) Documentation of method under test.

org.apache.commons.lang3.StringUtils.unwrap("a", "a");

(b) Test case for the method under test.

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String
index out of range: -1

at java.lang.String.substring(String.java:1967)
at org.apache.commons.lang3.StringUtils.unwrap (StringUtils.java:9345)
at lang3_9.RegressionTest0.test05(RegressionTest0.java:50)
at lang3_9.Main.main(Main.java:12)

(c) Runtime behavior of the method under test

Figure 4.1: The method under test unwrap(String,String) from the Apache
Commons Lang library with associated NL information that hints at
the fact that the behavior of the shown test is unexpected.

This chapter presents DocRT, which addresses the test oracle problem
through a learning-based approach. In particular, we focus on the problem
of exceptional behavior of APIs. The key idea is to predict whether the
observed behavior of a method under test conforms to the NL information
associated with this method. The core of DocRT is a learned model that
takes two inputs: (1) different kinds of NL information associated with a
method under test, such as its API documentation, the name of the method,
and the name of its parameters; (2) a summary of the states before and
after a call of the method, e.g., the value of parameters, the return value,
or an exception the method may throw. Given these two inputs, the model
predicts whether the observed behavior conforms to the NL information.

70 learning to crosscheck documentation vs . runtime

If the observed behavior is likely to contradict the NL information, then
DocRT reports a warning, effectively providing an NL-based, automated
test oracle.

In principle, a wide range of approaches could address the problem
of predicting whether observed execution behavior and NL information
match. We here present a learning-based approach, and more specifically a
deep learning model, because such models have shown tremendous success
in NLP in the past few years [Boj+17; Col+11; Mik+13]. Neural models
can successfully identify a wide range of patterns in a given dataset and
so “understand” the meaning of specific NL information. As software,
even when developed by different developers and in different application
domains, tends to be repetitive [Hin+12], it provides an excellent target for
learning recurring patterns.

A key challenge in any supervised learning approach is obtaining a
suitable dataset for training. To train the DocRT model, we gather hundreds
of thousands of method executions and their associated NL information.
The data is the result of combining an existing unit test generator [Pac+07],
a mechanism to extract program states at runtime, and a mechanism to
extract NL information from code. The resulting data provides examples
of likely correct pairs of behavior and NL information. To also obtain
negative training examples, DocRT mutates the examples by mimicking
potential mistakes, such as undocumented exceptional behavior or wrongly
documented behavior.

4.2 approach

4.2.1 Problem Statement

The goal of this work is to predict whether the observed runtime behav-
ior of a method under test (MUT) corresponds to its natural language
documentation.

Definition 4.2.1 (Problem) Let MNL be the natural language description of
method M and let Mruntime be the observed runtime behavior of a single invocation
of M. The problem is to probabilistically predict whether Mruntime and MNL match
through a a binary classifier C : (MNL, Mruntime)→ [0, 1]. When using C as an
oracle, a prediction of 0 means certainly not buggy and 1 means certainly buggy.

A mismatch between Mruntime and MNL can be due to two reasons:

4.2 approach 71

Vector

RNN &
linear layer &

Sigmoid

Neural Model

['public',

 'static',

 'e',

 'list',

 ...]

Learn
Embeddings

Javadoc

Test Generation
& instrumentation

Extract NL

Observe Runtime
Behavior

Create Buggy &
Nonbuggy Examples

NL Preprocessing

Abstraction

Java Projects

Data Generation

Figure 4.2: Overview of DocRT: Learning-based crosschecking of documentation
and runtime.

• The NL description is wrong or incomplete with respect to the method
behavior, i.e., the observed behavior is actually intended but docu-
mented poorly. In this case, the method documentation should be
fixed.

• The method behavior is wrong or unexpected with respect to the
documented behavior, i.e., the observed behavior is wrong. In this
case, the method implementation should be fixed.

4.2.2 Overview

Figure 4.2 provides an overview of the DocRT approach for learning of
implicit test oracles from NL and observed program behavior. DocRT
requires a natural language description of the behavior of a MUT and a
manifestation of that behavior in terms of runtime execution. Therefore,
DocRT gathers natural language information about the MUT from several
sources, as well as several traces of the MUT execution at runtime.

The first step of our approach collects several hundreds of Java projects
from Apache Maven2, which serve as training and evaluation data (Sec-
tion 4.2.3). Second, the approach extracts NL information describing the
methods in these projects. The NL information comes from different sources,
such as the method names, parameter names, and documentation (Sec-
tion 4.2.4). Third, using the downloaded projects and an existing automatic
test generator [Pac+07], the approach collects thousands of execution traces

2 http://maven.apache.org

http://maven.apache.org

72 learning to crosscheck documentation vs . runtime

of methods exposed via public APIs (Section 4.2.5). The fourth steps is to
represent the NL information and the execution traces into a format suitable
for learning, which DocRT addresses by learning word embeddings and by
abstracting execution states into vectors (Section 4.2.7). Finally, the approach
trains a binary classifier in the form of a neural network (Section 4.2.7.3).

4.2.3 Collecting Projects from Maven

To obtain both natural language descriptions and runtime execution values
for thousands of methods, we use projects from Maven, which provides a
uniform interface to the different artifacts required by DocRT. We first down-
load the entire Maven index and search it for artifacts that are packaged as
jar files and that have their source code available. The reason for choosing
jar packaging is that it is one of the most widely used packaging formats, it
is compatible with the automatic test generator input format, and it is also
a suitable format for uniformly collecting the method documentation, as
we explain later in Section 4.2.4.

From the filtered Maven Index, we randomly sample 5,000 projects. For
each project, we use the Maven command line tool to download three kinds
of artifacts for each project: (i) The project sources jar (sources); (ii) The
project binary jar (binary); (iii) All jars required to compile the project
sources (compile-path).

4.2.4 Gathering NL Information

To automatically build a test oracle for a target MUT, we need two kind
of inputs, where the first is a description of the expected behavior of the
method. There are various sources that could provide useful information
about the functionality of an API, such as the project description, the API
documentation, FAQs about the API, and the names of API elements, e.g.,
classes, methods, and parameters.

In this work, we use API documentation along with method and param-
eters names and types. Our intuition is that, according to good software
engineering practices, developers are encouraged to use descriptive names
for the different API elements. Moreover, method-level documentations
serve as an informal contract between the API developer and the API user.
Method documentation describes what is the expected input of the method
and the expected output. Besides, documentation of methods should also

4.2 approach 73

specify the method behavior under faulty invocations, e.g., the kinds of
exceptions thrown when presented with unexpected argument.

Since we use Java projects, we collected all the documentation information
as well as method and parameter names and types from the Javadoc of
each method. Javadoc comments are structured class-level and method-level
descriptions of classes and methods, which include various tags, such as
@param, @return, to describe the method parameters and return values,
respectively. DocRT collects the following information for each MUT.

4.2.4.1 Method Name and Description

DocRT extracts the fully qualified method name M starting from the top
package. For the example in Figure 4.1, the approach extracts the method
name starting from org up until the method identifier unwrap. Moreover, the
main body of the method description desc(M) is also extracted from the doc-
umentation of M. This is the main paragraph describing the method func-
tionality but none of the tags, such as @parameter, returns, and @throws.

4.2.4.2 Return Type and Description

If the method return type is not void, DocRT also extracts the fully qual-
ified return type Mτ

ret of the the method and the NL comment desc(Mret)
describing the return value, which is specified by the Javadoc tag @return.

4.2.4.3 Parameter Names, Types, and Descriptions

For a method M with parameters p1, p2, . . . , pn, the approach extracts their
corresponding fully qualified types pτ

1 , pτ
2 , . . . , pτ

n, and the NL descriptions
desc(p1), desc(p2), . . . , desc(pn) of each parameter, as given by the Javadoc
tags @param. DocRT assembles the following list of information:

Mparams = [(p1, pτ
1 , desc(p1)), (p2, pτ

2 , desc(p2)), . . . ,

(pn, pτ
n, desc(pn))]

If the method accepts no parameters, the list Mparams is empty.

4.2.4.4 Type and Description of Thrown Exceptions

When the method defines how it it handles erroneous behavior through
runtime exceptions, the Javadoc provides API developers with the @throws

tag. It allows the developer to specify the type throwsτ of the thrown

74 learning to crosscheck documentation vs . runtime

exception and a description desc(throwsτ) of the condition under which
this exception is thrown. Since a method could throw multiple kinds of
exceptions for different faulty behaviors, the @throws tag can be used
multiple times in the Javadoc of a method. Hence, DocRT extracts the
following set of tuples that summarize the documentation about thrown
exceptions:

Mthrows = {(throwsτ
1 , desc(throwsτ

1)), (throwsτ
2 , desc(throwsτ

2)), . . . ,

(throwsτ
n, desc(throwsτ

n))}

In summary, the NL information extracted for a method M is:

MNL =
(

M, desc(M), Mτ
ret, desc(Mret), Mparams, Mthrows

)
4.2.5 Capturing Runtime Behavior

The second kind of input required for learning the DocRT test oracle is
a summary of the runtime behavior of a method. Capturing the runtime
behavior of a MUT is non-trivial for two reasons:

• What to capture? We need to choose what information exactly to
capture. For instance, one could represent the method behavior by
recording the sequence of method calls a the MUT performs, the
memory values it reads or writes, or the control flow decisions it
takes. Another approach would be to record a memory snapshot
before and after invoking the MUT.

• How to abstract the runtime behavior? To feed the captured runtime
behavior into a machine learning model, the information must be
abstracted in a suitable way.

4.2.5.1 Extracting Pre- and Post-States of MUT Calls

We address these challenges by capturing four kinds of information about
the runtime behavior of a MUT:

(a) The base object, if any, before and after the call;

(b) The values of the method arguments, if any, before and after the call;

(c) The return value of the method, if any;

4.2 approach 75

(d) The exceptional behavior, in case the method throws an exception.

The rationale for focusing on these four pieces of information is that their
roughly correspond to pre- and post-conditions of the MUT, which is what
informal API documentation also tries to describe. We now explain in more
detail how DocRT captures the runtime behavior.

base object If M is an instance method, then DocRT extracts the type
baseτ and the state of the base object, denoted Mbase. Since an invocation
of a MUT instance could potentially change the state of its base object, we
extract the pair of pre- and post-states of the base object (basepre, basepost).
If the M is a static method, then Mbase is empty.

method arguments If M accepts one ore more arguments arg1, arg2,
. . . , argn, DocRT captures the list of the values of these arguments, again in
pairs of pre- and post-states per argument:

Margs =
[
(argpre

1 , argpost
1), (argpre

2 , argpost
2), . . . , (argpre

n , argpost
n)

]
If the method accepts no arguments, then this list is empty.

method return value If M returns a value, then DocRT captures the
returned value Mret. Otherwise, the return value is none.

exceptional behavior When calling M triggers an exception thrown
back to the caller, the approach captures the type of exception thrown
Mτ

thrown.

abstracting the state of objects The state of objects can be arbi-
trarily complex. DocRT abstracts the captured states based on a series of
abstraction functions that encode special values, such as null, that capture
abstract properties of specific types of values, such as the size of a collection,
and that summarize the fields of an object into key-value pairs. To extract
the pre- and post-states, the approach instruments the code that invokes
the MUT via AST-based transformations. Section 4.3 describes how we
implement the extraction and abstraction of pre- and post-states.

In summary, the runtime behavior DocRT captures is given by:

Mruntime =
(
basepre, basepost, Margs, Mret, Mτ

thrown
)

76 learning to crosscheck documentation vs . runtime

4.2.5.2 Exercising the Methods Under Test

To capture runtime behavior, as described above, DocRT relies in executions
of the MUTs. One option would be to use test cases written by the developers
of each project. However, there are two problems with this approach. First,
it assumes that there are test cases for a large number of projects (5,000),
but not all projects provide an extensive test suite. Second, the quality and
number of test cases, when they exist, could differ heavily between different
projects.

Instead of relying on developer-written tests, DocRT builds on an auto-
mated test generator. We opted to use Randoop, a state-of-the-art automatic
test generator for Java applications [Pac+07]. We set Randoop to test public
methods only, with time budget of three minutes per project. Overall, this
setup yields hundreds of thousands of test executions (Section 4.4.1), pro-
viding DocRT with plenty of executions to capture the runtime behavior
from.

4.2.6 Generating Buggy Examples

Since we formulate test oracle problem as a binary classification problem
(Definition 4.2.1) and since we aim at training a supervised model, the
approach requires a large number of examples of both matching and non-
matching pairs (MNL, Mruntime). One option could be to manually inspect
method calls and the corresponding documentation, which however, does
not scale to the number of training examples needed to obtain an effective
model. Instead, we assume that the pairs of documentation and runtime
behavior we have collected from the real-world Java projects are mostly
non-buggy, and create buggy examples by mutating these real-world pairs.
Creating buggy data points through mutations of real-world code has been
successfully used for learning static bug detectors [PS18]. We here explore
whether this idea can be adapted to learning test oracles.

There are many possible ways of mutating a given, supposedly correct
(MNL, Mruntime) pair into a likely incorrect pair. DocRT focuses on a set
of four kinds of mutations, inspired by real-world bugs where the doc-
umentation and the actual behavior mismatch. The mutations focus on
exceptional behavior and its documentation, because unexpected excep-
tions may have a severe impact on API clients. The overall DocRT approach
could be easily extended with other kinds of mutations that model other
kinds of mismatches between documentation and runtime behavior.

4.2 approach 77

4.2.6.1 Raise Random Exception

This mutation replaces a non-exceptional post state of the MUT by a ran-
domly selected type of exception, imitating the situation where the invoca-
tion causes unexpected exceptional behavior. For a positive example

x+ =
(

MNL, basepre, basepost, Margs, Mret
)

applying the mutation yields the following negative example:

x− =
(

MNL, basepre, Margs, sample(Mτ
thrown)

)
where sample(Mτ

thrown) denotes a random exception type sampled from the
set of thrown exceptions in the dataset. The sampling follows the distribu-
tion of exceptions in the dataset, to create a realistic negative example.

4.2.6.2 Remove Thrown Exception

This mutation replaces the post-state where an exception is thrown by a
randomly sampled valid post-state of the another invocation of the same
method.

x+ =
(

MNL, basepre, Margs, Mτ
thrown

)
yields

x− =
(

MNL, basepre, sampleM(basepost, Margs, Mret)
)

where sampleM randomly samples a non-exceptional post-state among all
invocations of M.

4.2.6.3 Replace Thrown Exception by Random Exception

If the method post-state already raises an exception, this mutation replaces
this exception by another randomly sampled type of exception. Given the
positive example

x+ =
(

MNL, basepre, Margs, Mτ
thrown

)
the mutation yields

x− =
(

MNL, basepre, Margs, sample(Mτ
thrown)

)
where sample(Mτ

thrown) 6= Mτ
thrown.

78 learning to crosscheck documentation vs . runtime

4.2.6.4 Remove Raised Exception from Documentation

If the method post-state already raises an exception, and this exception is
properly documented in the API documentation, this mutation removes the
documentation of this thrown exception. Given

x+ =
(

. . . , throwsτ
i , desc(throwsτ

i), . . . , Mτ
thrown

)
where throwsτ

i = Mτ
thrown, the mutation yields

x− =
(

. . . ,throwsτ
i−1, desc(throwsτ

i−1),

throwsτ
i+1, desc(throwsτ

i+1), . . . , Mτ
thrown

)
4.2.7 Learning the DocRT Model

The final step of the approach is to train a machine learning model that
classifies a given pair (MNL, Mruntime) as correct or buggy. To this end, the
approach converts the different NL and runtime information into numerical
vectors suitable for a neural network-based model. We choose a neural
model, instead of of a more traditional, feature-based model, because
neural models have been shown to be very effective in reasoning about NL
information, both in natural language processing [Col+11] and in program
analysis [MPP19; PS18].

4.2.7.1 Embeddings

DocRT embeds the tokens from the NL and runtime information into
a vector space. An embedding maps an entity, a token in our case, to
a many-dimensional, real-valued vector space, while preserving seman-
tic similarities between the entities. We pre-train an embedding model
on API documentation using a state-of-the-art embeddings techniques
based on subword n-grams, which is able to handle out-of-vocabulary
tokens [Boj+17].

We train the embedding model on documentation and then use it for
both the NL and the runtime information for three reasons:

• Documentation is a natural source for the description of the method
behavior.

• Documentation also includes informal descriptions of pre-, and post-
state of methods.

4.2 approach 79

• Documentation sometimes includes values, e.g, of arguments and the
return values of methods.

The embedding model is trained on the documentation of all the 207,455

methods DocRT managed to extract documentation for.

4.2.7.2 Vector for Learning

DocRT assembles all gathered NL information about the MUT and the
information captured from a single execution of the MUT into an input
vector for the learned model.

Definition 4.2.2 (Input vectors) The vector DocRT uses to learn test oracles
is composed of NL components extracted from the MUT documentation and the
observed execution values related to the MUT.

vec =
[
M, desc(M),

pτ
1 , p1, desc(p1), argpre

1 , argpost
1 , . . . ,

pτ
n, pn, desc(pn), argpre

n , argpost
n ,

Mτ
ret, desc(Mret), Mret,

throwsτ
1 , desc(throws1), . . . ,

throwsτ
m, desc(throwsm), thrownτ ,

baseτ , basepre, basepost]
In this vector, several components are concatenated in a such a way

that related pieces of information are next to each other. For example,
each method argument value is concatenated next to the type, name, and
description of the corresponding parameter. This arrangement helps the
model to spot inconsistencies between the NL and runtime information
associated with a specific aspect of the MUT.

4.2.7.3 Neural Model

Given input vector labeled as correct and incorrect, DocRT trains a neural
classifier that learns to distinguish these two kinds of inputs. The classifier
is a bi-directional, long short-term memory, recurrent neural network (bi-
LSTM RNN) with two hidden layers each of size 100. The RNN summarizes
the given input vector into a hidden state, which is then fed through a fully
connected layer. Finally, the model outputs an output vector that indicates
the probability that the given input vector describes non-matching NL and

80 learning to crosscheck documentation vs . runtime

runtime information. The output layer uses the sigmoid activation function
and a dropout of 0.4. The model is trained with stochastic gradient descent
using the AdamW optimizer (with weight decay) [Zha18], based on binary
cross entropy (BCE) for computing the loss. During training, the expected
output is zero for all positive examples x+ and one for all negative examples
x−.

4.3 implementation

We use the Apache Maven Indexer API3 to download the entire Maven
Index and Lucene4 to search the index for artifacts matching our criteria
(Section 4.2.3). To extract documentation, we first build the HTML documen-
tation files for each public class and its public methods using the Javadoc
tool, and then extract the relevant parts of the documentation using or
own HTML parser, which is written in Python based on the Beautiful Soup
library5. The reason for generating the HTML documentation from the
source code instead of using the pre-packaged documentation jars available
via Maven are differences in the HTML trees due to different Javadoc or
HTML versions. We ignore methods that have neither a description of their
functionality nor a description of their return value.

To exercise the methods in the dataset, we use Randoop [Pac+07]. DocRT
instruments the Randoop-generated test cases to capture the runtime values
of pre- and post-states of method arguments and base objects, return values,
and exceptional behavior. The instrumentation is implemented as AST-
based transformations based on the JavaParser6.

To abstract the runtime states of objects, DocRT serializes all primitive
values of method arguments and return values. To capture non-primitive
values, such as the state of the base object and any non-primitive arguments
or return values, we use a set of rules: 1. Use Apache BeanUtils7 to get the
object state in terms of key-value pairs using all available object getters. 2. If
(1) fails, use Google’s Gson serialization library8 to obtain a property-based
string representation of the object using public fields only. 3. If (2) fails,
use the Jakarta JSON binding library9 to serialize the object. 4. If (3) fails,

3 http://maven.apache.org/maven-indexer
4 https://lucene.apache.org
5 https://www.crummy.com/software/BeautifulSoup
6 https://javaparser.org
7 http://commons.apache.org/proper/commons-beanutils
8 https://github.com/google/gson
9 http://json-b.net

http://maven.apache.org/maven-indexer
https://lucene.apache.org
https://www.crummy.com/software/BeautifulSoup
https://javaparser.org
http://commons.apache.org/proper/commons-beanutils
https://github.com/google/gson
http://json-b.net

4.4 evaluation 81

flag the object unserializable and abort. The different serialization scenarios
all yield a key-value map of the underlying object state. The intuition of
using property-based and field-based serialization is that either way, we get
a peek into the object state. Finally, in addition to the above, if the object
implements the Iterable interface, we query its size and prepend a size
key at the beginning of the serialized object.

To prepare the documentation and serialized runtime values for learning,
we apply standard preprocessing by removing stop words, punctuation
from key-value maps of runtime values, and lemmatization using NLTK 10.

To train embeddings for documentation and runtime value tokens, we
train a FastText embedding model [Boj+17], as implemented in the gensim
library11. The neural classifier of DocRT is built on top of PyTorch12.

4.4 evaluation

Our evaluation applies DocRT to methods from 5,000 open-source Java
projects. We address the following research questions:

• RQ1: How effective is the approach at distinguishing correct from
incorrect behavior?

• RQ2: How effective is the approach at detecting real-world bugs?

• RQ3: How efficient is the approach?

4.4.1 Experimental Setup

We download 5,000 Java projects from Maven. DocRT gathers documen-
tation for 207,455 public Java methods from those projects. We train the
FastText word embedding model [Boj+17] on the entire set of method docu-
mentation for 20 epochs, with window size of 5, a minimum word frequency
of 1, and an embedding size of 50. Randoop managed to generate 146,397

tests for 25,076 methods in the dataset of methods with documentation. Af-
ter creating the buggy examples using the mutations in Section 4.2.6, there
are 292,782 pairs (MNL, Mruntime) of method documentation and runtime
behavior. The dataset is balanced, i.e., it contains roughly the same number
of buggy and non-buggy examples.

10 https://www.nltk.org
11 https://radimrehurek.com/gensim
12 https://pytorch.org

https://www.nltk.org
https://radimrehurek.com/gensim
https://pytorch.org

82 learning to crosscheck documentation vs . runtime

Before running the experiments, we split the dataset into three parts: for
training (70%), validation (15%), and testing (15%). The validation data,
but not the test data, is used to tune the hyper-parameters of the neural
classifier model. Unless otherwise mentioned, all reported results are on
the test set.

We experiment with different values for the hyper-parameter of the neu-
ral classifier of DocRT. For the hidden layers, we use one, two, and three
layers with sizes of either 100 and 200. For dropout, we experiment with 0.2,
0.3, and 0.4. For the learning rate, we try 0.001, 0.0005, and 0.0001. For the
batch size, we experiment with 512, 1,024, and 2,048. By exploring different
combinations of these hyper-parameters and evaluating the resulting mod-
els on the validation data, we find the following configuration to provide
the best overall accuracy: Two hidden layers of size 100, dropout of 0.3,
batch size of 1,024, a decaying learning of 0.0001, and 50 epochs.

All experiments are done on a machine with one NVIDIA Tesla V100

GPU, 48 Intel Xeon CPU cores with 2.2Ghz, and 250 GB RAM, which is
running Ubuntu Linux 18.04.

4.4.2 RQ1: Effectiveness of Learned Model

The learned model that predicts whether a method execution is consistent
with the NL information is the core of the DocRT approach. We evaluate the
effectiveness of this model in distinguishing correct from incorrect method
executions. To this end, we train the model with the training data, then
apply the trained model to the test data, and compare the predictions to
the ground truth. Based on this comparison, we compute the following
metrics. P3 and P7 are the sets of calls the model predicts to be correct and
incorrect, respectively. G3 and G7 are the sets of calls that are labeled as
correct and incorrect, respectively, in the ground truth.

• Accuracy, which is the percentage of predictions that match the

ground truth among all predictions:
|(P3∩G3)∪(P7∩G7)|

|P3∪P7|

• Precision, which indicates how often the model is right when predict-

ing that a call is incorrect:
|P7∩G7|
|P7|

• Recall, which indicates how many of all incorrect the model finds:
|P7∩G7|
|G7|

• F1-score, which is the harmonic mean of precision and recall.

4.4 evaluation 83

0 20 40 60 80 100 120 140
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Precision
Recall
F1
Accuracy

(a) Effectiveness of the classifier.

0 20 40 60 80 100 120 140
Epochs

0.2

0.3

0.4

0.5

0.6

0.7
Training loss
Test loss

(b) BCE loss of the classifier.

Figure 4.3: Training DocRT over epochs.

Figure 4.3a shows the effectiveness of the learned model depending on
the number of training epochs. As is common with deep learning models,
the effectiveness fluctuates initially and then stabilizes after some number of
epochs. Once stabilized, the model achieves an accuracy of 87%, a precision
of 81%, a recall of 97%, and an F1-score of 88%. These results show that the
classifier is highly effective at distinguishing pairs of NL information and
runtime behavior that match from those that mismatch.

To illustrate the learning process, Figure 4.3b shows the overall loss of the
model in the validation and on the training data. Both losses are roughly
the same, indicating that the model does not simply overfit to the training
data but learns to generalize to other examples.

4.4.3 RQ2: Detecting Real-world Bugs

The ultimate goal of a test oracle is to detect bugs. We address the question
of how effective DocRT is at detecting real-world bugs in two ways. First,
we apply the approach to a set of previously known bugs that are related to
an inconsistency between the documented and actual behavior. We focus
on bugs described in issue trackers and that were fixed by the developers.
This experiment is useful to validate that the approach finds problems
relevant to developers and gives an idea how many of a set of such bugs
the approach can find. Second, we inspect a subset of those calls in the test
dataset that the DocRT model classifies as incorrect, but that correspond to
the actual behavior and documentation of the tested code. While in RQ1,
we consider all of these calls as correct, we suspect that some fraction of

84 learning to crosscheck documentation vs . runtime

them is actually incorrect. Since determining the expected behavior and
comparing it to the actual behavior is a time-consuming process, we inspect
only a subset of 50 such calls. This experiment shows how effective DocRT
is at detecting previously unknown bugs.

4.4.3.1 Previously Known Bugs

Table 4.1 shows the set of previously known bugs that we apply DocRT to.
We select these bugs by searching through issue trackers for bugs where
the behavior of a method clearly diverges from the API documentation.
In total, we gather 24 such bugs from ten bug reports. Instead of using
Randoop for generating tests, we opted to use the tests associated with
the bug reports as these tests are known to reveal the buggy behavior of
the methods. Using those tests, we instruct DocRT to instrument those test
cases to gather the runtime values and to extract the documentation of the
respective methods. For six out of the 24 methods, DocRT fails to extract
the pre- and post-runtime values. The reason is that when using reflection
to serialize arguments or base objects, exceptions were thrown and the
instrumentation hence fails to capture the values.

The table lists the remaining 18 bugs and whether the approach suc-
cessfully identifies a call to the buggy method as buggy. The results show
that DocRT successfully detects all 18 bugs. Although all these bugs are
mismatches between the documentation of a MUT and the corresponding
runtime behavior, the developers took different paths to fix them. For exam-
ple, the first bug in Table 4.1 was fixed by updating the documentation to
reflect the thrown exception, while bugs 2 to 4 were fixed by changing the
source code to avoid the thrown exception. Yet another approach was used
to fix bugs 4 and 5, where the developers deprecated the constructor that led
the object to be in a state where those method would behave erroneously.

4.
4

e
v

a
l

u
a

t
i
o

n
8

5

Table 4.1: Known bugs and whether DocRT finds them.

BugId Method Description Detected

Apache Commons Lang

1 LANG-1426 StringUtils.truncate(String,int,int) Undocumented IllegalArgumentException 3

2 LANG-1475 StringUtils.unwrap(String,String) Unexpected IndexOutOfBounds in corner
case

3

3 LANG-1406 StringUtils.removeIgnoreCase(
String,String)

Unexpected IndexOutOfBounds in corner
case

3

4 LANG-1453 StringUtils.replaceIgnoreCase(
String,String,String)

Unexpected IndexOutOfBounds in corner
case

3

Apache Commons Math

5 MATH-1116 optim.nonlinear.vector.
MultivariateVectorOptimizer.getWeight()

Undocumented NullPointerException 3

6 MATH-1116 optim.nonlinear.vector.
MultivariateVectorOptimizer.getTarget()

Undocumented NullPointerException 3

7 MATH-1116 optim.nonlinear.scalar.noderiv.
AbstractSimplex.getPoint(int)

Undocumented NullPointerException 3

8 MATH-1116 optim.nonlinear.scalar.noderiv.
SimplexOptimizer.optimize(optim.
OptimizationData...)

Undocumented NullPointerException 3

(Continued on next page)

8
6

l
e

a
r

n
i
n

g
t

o
c

r
o

s
s

c
h

e
c

k
d

o
c

u
m

e
n

t
a

t
i
o

n
v

s.
r

u
n

t
i
m

e

Table 4.1: Known bugs and whether DocRT finds them.

BugId Method Description Detected

9 MATH-1116 random.ValueServer.resetReplayFile() Undocumented NullPointerException 3

10 MATH-1116 random.EmpiricalDistribution.
getGeneratorUpperBounds()

Undocumented NullPointerException 3

11 MATH-1116 stat.correlation.PearsonsCorrelation.
getCorrelationStandardErrors()

Undocumented NullPointerException 3

12 MATH-1116 stat.regression.
AbstractMultipleLinearRegression.
estimateErrorVariance()

Undocumented NullPointerException 3

13 MATH-1116 stat.regression.
OLSMultipleLinearRegression.
calculateHat()

Undocumented NullPointerException 3

14 MATH-1224 ode.AbstractIntegrator.
computeDerivatives(
double,double[],double[])

Undocumented NullPointerException 3

15 MATH-1224 stat.correlation.SpearmansCorrelation.
getCorrelationMatrix()

Undocumented NullPointerException 3

16 MATH-1401 stat.interval.IntervalUtils.
getClopperPearsonInterval(int,int,double)

Unexpected custom math exception in
corner case

3

(Continued on next page)

4.
4

e
v

a
l

u
a

t
i
o

n
8

7

Table 4.1: Known bugs and whether DocRT finds them.

BugId Method Description Detected

Apache Commons Collections

17 COLL.-701 list.SetUniqueList.add(Object) Infinite recursion when adding itself 3

18 COLL.-727 iterators.CollatingIterator.setIterator(
int,Iterator)

Wrong equality in @throws condition 3

88 learning to crosscheck documentation vs . runtime

Table 4.2: Summary of previously unknown bugs detected by DocRT.

Analyzed method calls 21,592

Calls where DocRT reports a warning 4,829

Inspected calls with warning 50

True positives 45

Undocumented exception 39

Wrong type of exception documented 1

False positives 5

Indirect description of the exceptional behavior 4

Exceptional behavior is fully documented 1

4.4.3.2 Previously Unknown Bugs

To evaluate if and how precisely DocRT detects previously unknown bugs,
we manually inspect a subset of the supposedly correct calls in the test
data set that the approach classifies as incorrect. Table 4.2 summarizes the
results of this experiment. The number of real-world method calls, i.e., not
created by mutations, in the held-out test set is 21,592. When considering
every prediction above 0.5 as a warning, then DocRT classifies 4,829 out of
those 21,592 calls as buggy. In practice, we envision developers to inspect
the methods with the highest predicted probability first.

We sample 50 of the top predictions for manual inspection. For each
method, we carefully inspect the documentation of the MUT, the generated
test case, and the exposed runtime behavior. If the described and the actual
behavior clearly diverge, then we consider the warning as a true positive.
Otherwise, we consider the warning to be a false positive.

Overall, we find that 45 of the inspected 50 warnings are true posi-
tives, i.e., method calls exposing behavior that does not match the doc-
umentation. Figure 4.4 shows two of the true positives for illustration.
Figure 4.4a shows a bug detected by DocRT in the Apache Fluo project,
where the thrown exception does not match the type of exception specified
in the method documentation. Figure 4.4b shows another bug, detected
in the Apache ActiveMQ project. In this bug, the documented exception
is correct in the sense that java.io.DataOuput could potentially throw a
java.io.Exception. However, the documentation does not mention the

4.5 contributions and conclusions 89

risk of a NullPointerException being thrown, i.e., the example is an un-
documented exception. Both bugs have already been fixed in response to
our reports of the problems to the developers.

The results of the manual inspection show that DocRT successfully detects
previously unknown documentation-related bugs. The fact that most of
inspected warnings are true positives also suggests that the precision of
DocRT is likely to be higher than the precision measured in RQ1, which
assumes that the analyzed MUTs are bug-free.

4.4.4 RQ3: Efficiency

Our evaluation the efficiency of DocRT focuses on the time required by the
neural model, because this is the most time-consuming part of the approach.
Training DocRT on a dataset of 204,970 examples takes on average 2.5
minutes per epoch. In total, it takes around 5.5 hours to train DocRT for 50

epochs. To classify a single pair of NL information and runtime behavior,
DocRT takes less than a second.

In addition to the time spent on training and using the neural model, the
DocRT approach also requires time for extracting NL information from API
documentation, for generating tests, and for capturing runtime information
during test execution. The test generation time depends on the test generator
used, and improving it is beyond the scope of this work. The other time
costs are negligible compared to the neural model.

4.5 contributions and conclusions

Automated testing is promising but requires test oracles to distinguish
correct from incorrect executions. This chapter tackles the old test oracle
problem in a new way: By learning a model that predicts whether the
observed runtime behavior is in line with the NL documentation. The
approach first gathers pairs of runtime behavior from executions driven
by an automated test generator and NL information associated with the
tested methods, and then trains a neural model to classify these pairs as
correct or buggy. To create buggy examples for training, we use a set of
mutation operators that mimic common documentation-related bugs. One
interesting insight from this work is that training with artificially created
negative examples eventually yields a model able to find real-world bugs.

9
0

l
e

a
r

n
i
n

g
t

o
c

r
o

s
s

c
h

e
c

k
d

o
c

u
m

e
n

t
a

t
i
o

n
v

s.
r

u
n

t
i
m

e

Documentation:
public byte byteAt(int i)

Gets a byte within this sequence of bytes

Parameters:
i - index into sequence
Returns
byte
Throws:
IllegalArgumentException - if i is out of range

Test case:
1 org.apache.fluo.api.data.Bytes bytes = new

org.apache.fluo.api.data.Bytes();
2 bytes.byteAt(-1);

Observed runtime behavior:
Exception in thread "main"

java.lang.IndexOutOfBoundsException: i < 0, -1
at org.apache.fluo.api.data.Bytes.byteAt(Bytes.java:106)
at fluo_1_2.RegressionTest0.test01(RegressionTest0.java:14)
at fluo_1_2.Main.main(Main.java:8)

(a) Bug detected in Apache Fluo project. The actual exception
type thrown by the method byteAt does not match the type
of exception documented in the @throw tag.

Documentation:
public void marshal(java.lang.Object command,

java.io.DataOutput out) throws java.io.IOException

Specified by:
marshal in interface org.apache.activemq.wireformat.WireFormat
Throws:
java.io.IOException

Test case:
1 org.apache.activemq.transport.xstream.XStreamWireFormat

format = new org.apache.activemq.transport.xstream.
XStreamWireFormat();

2 java.io.DataOutput out = null;
3 format.marshal("", out);

Observed runtime behavior:
Exception in thread "main" java.lang.NullPointerException
at org.apache.activemq.transport.util.TextWireFormat.

marshal(TextWireFormat.java:47)
at activemq_5_15_11.RegressionTest0.

test01(RegressionTest0.java:14)
at activemq_5_15_11.Main.main(Main.java:8)

(b) Bug detected in Apache ActiveMQ project. The marshal

method throws a NullPointerException whereas documen-
tation mentions IOException only.

Figure 4.4: Examples of previously unknown bugs detected by DocRT.

4.5 contributions and conclusions 91

Applying DocRT to 25,076 Java methods from a variety of application
domains shows the effectiveness of the approach. The learned oracle model
achieves an accuracy of 87%, a precision of 81%, and a recall of 97%.
Specifically, our results show that the approach finds 18 previously known
and 45 previously unknown bugs in popular Java software—bugs that are
caused by inconsistencies between behavior and documentation. All bugs
are related to exceptional behavior and how (if at all) it is documented, as
this is the focus of our training data.

In summary, this chapter contributes the following:

• Problem: We are the first to formulate the test oracle problem as
the problem of predicting whether observed runtime behavior and
associated NL information match.

• Approach: We present DocRT, which addresses the above problem
with a learning-based approach that reasons about NL information
and runtime behavior using a neural classification model.

• Effectiveness: We show that DocRT identifies mismatches between
behavior and documentation with an accuracy of 87%, enabling the
approach to find 18 known and 45 previously unknown bugs in
widely used Java code.

This chapter supports the central thesis of this dissertation by presenting
DocRT, a novel learning-based approach to crosscheck API documentation
and runtime behavior for potential inconsistencies. Our experience with
the reported bugs show that not only is DocRT effective, but it also detects
bugs in both the documentation and the program runtime behavior. Our
insight here is that documentation provides invaluable and readily avail-
able information which can help in detecting and preventing bugs, but is
often overlooked by traditional bug detection techniques, whether static or
dynamic.

5
F R O M D O C U M E N TAT I O N T O S U B T Y P E C H E C K I N G

JSON (JavaScript Object Notation) is a popular data format used pervasively
in web APIs, cloud computing, NoSQL databases, and increasingly also
machine learning. One of the main advantages of JSON is that it is both
human- and machine-readable. To ensure that JSON data is compatible
with an application, one can define a JSON Schema and use a validator to
check data against the schema. JSON schemas serve two purposes: (i) They
provide an effective means to automatically validate JSON data ensuring it
conforms to a predefined specification. (ii) They serve as documentation
describing what is (not) allowed by APIs and hence facilitate code reuse
and programmers’ communication. However, a JSON schema as an API
documentation is quite different from documentation considered in this
dissertation so far in that it uses formal types, i.e., it uses a set of predefined
data types and each type has its own set of validation keywords which can
restrict the values a type may inhibit.

Because schema validation can happen only once concrete data occurs
during an execution, data compatibility bugs may be detected too late or not
at all. Examples include evolving the schema for a web API, which may
unexpectedly break client applications, or accidentally running a machine
learning pipeline on incorrect data. This chapter presents a novel way
of detecting a class of data compatibility bugs by reasoning about JSON
schemas, a form of API documentation, via subschema checking. Subschema
checks can find bugs before concrete JSON data is available and across
all possible data specified by a schema. This chapter presents a formal
algorithm, similar to that of a subtype checker and not a learning-based
approach, to leverage the formal nature of JSON Schema.

93

94 from documentation to subtype checking

5.1 motivation

JSON is a data serialization format that is widely adopted to store data
on disk or send it over the network. The format supports primitive data
types, such as strings, numbers, and Booleans, and two possibly nested data
structures: arrays, which represent sorted lists of values, and objects, which
represent unsorted maps of key-value pairs. JSON is used in numerous
applications. It is the most popular data exchange format in web APIs,
ahead of XML [Rod+16]. Cloud-hosted applications also use JSON perva-
sively, e.g., in micro-services that communicate via JSON data [New15].
On the data storage side, not only do traditional database management
systems, such as Oracle, IBM DB2, MySQL, and PostgreSQL, now support
JSON, but two of the most widely deployed NoSQL database manage-
ment systems, MongoDB and CouchDB/Cloudant, are entirely based on
JSON [RW12]. Beyond these applications, JSON is also gaining adoption in
machine learning [Hir+19; Smi+19].

With the broad adoption of JSON as a data serialization format soon
emerged the need for a way to describe how JSON data should look.
For example, a web API that consumes JSON data can avoid unexpected
behavior if it knows the structure of the data it receives. JSON Schema
declaratively defines the structure of nested values (JSON data) via types
(JSON schemas) [Pez+16]. A JSON Schema validator checks whether JSON
data d conforms to a schema s. JSON Schema validators exist for many
programming languages and are widely used to make software more
reliable [Zyp09].

Despite the availability of JSON schema validators, some data-related
bugs may get exposed late in the development process or even remain un-
noticed until runtime misbehavior is observed. As one example, consider a
RESTful web API for which the data types are specified with JSON schemas.
If the API, and hence the schemas, evolve, the revised schemas may not be
backward compatible and unexpectedly break client applications [EZG15;
Li+13]. As another example, consider a machine learning pipeline where the
data, as well as the input and output of operations, are specified with JSON
schemas [Hir+19; Smi+19]. If some data is incorrect or different components
of the pipeline have incompatible expectations, the pipeline may compute
incorrect results or crash after hours of computation. For both of the above
scenarios, schema validators can detect these problems only at runtime,
because that is when concrete JSON data is available for validation. Even
worse, the problems may remain completely unnoticed until some data that

5.1 motivation 95

triggers the problem occurs. We call such problems data compatibility bugs,
which means that two pieces of software that share some JSON data have
incompatible expectations about the data.

This chapter presents a novel way of detecting this class of data compat-
ibility bugs early. The key idea is to check for two given JSON schemas
whether one schema is a subschema (subtype) of the other schema. Because
such a check can be performed on the schema-level, i.e., independently
of concrete JSON data, the approach can detect data compatibility bugs
earlier and more reliably than JSON schema validation alone. For the first
of the above examples, our approach can check whether a revised schema
is a subtype or a supertype of the original schema. If it is neither of the
two, then the schema evolution is a breaking API change that should be
communicated accordingly to clients. For the second example, the approach
can check if the schema of the input given to an ML pipeline step is a
subtype of the schema expected by that step, which reveals bugs before
running the pipeline.

Deciding whether one JSON schema is a subtype of another is far from
trivial because JSON Schema is a surprisingly complex language. Seman-
tically equivalent schemas can look syntactically dissimilar. Schemas for
primitive types involve sophisticated features, such as regular expressions
for strings, that interact with other features, such as string length con-
straints. JSON Schema supports enumerations (singleton types) and logic
connectives (conjunction, disjunction, and negation) between schemas of
heterogeneous types. Even schemas without explicit logic connectives often
have implicit conjunctions and disjunctions. JSON schemas or their nested
fragments thereof can be uninhabited. As a result of these and other features
of JSON Schema, simple structural comparison of schemas is insufficient to
address the subschema question.

Our work addresses these challenges based on the insight that the sub-
schema problem can be decomposed into simpler subproblems. Given two
JSON schemas, the approach first canonicalizes and then simplifies the
schemas using a series of transformations. While preserving the semantics
of the schemas, these transformations reduce the number of cases and
ensure that the schemas consist of schema fragments that each describe
a single basic type of JSON data. This homogeneity enables the last step,
recursively performing the subtype check using type-specific checkers. We
have built an open-source tool, jsonSubSchema, that always terminates,
returning one of three answers for a subschema check: true, false, or un-

96 from documentation to subtype checking

known. It returns unknown for a small set of rarely occurring features of
schemas. When it returns true or false, it is always correct.

We evaluate the approach with 11,478 pairs of real-world JSON schemas
gathered from different domains, including schemas used for specifying
web APIs, cloud computing, and machine learning pipelines. The results
show that the approach decides the subschema question for 96% of all
schemas, clearly outperforming the closest existing tool in terms of both
precision and recall. Applying JSON subschema checking for bug detection,
we find 43 data compatibility bugs related to API evolution and mistakes
in machine learning pipelines. All bugs are confirmed by developers and
38 are already fixed. Developers acknowledged our work and emphasized
the severity of many of the bugs.

5.2 problem statement

In this section we give a brief background on JSON Schema and then
introduce the subschema problem and the several challenges it faces.

5.2.1 Background

JSON Schema is a declarative language for defining the structure and
permitted values of JSON data [Zyp09]. This work focuses on JSON Schema
draft-04 [GZ13], one of the most widely adopted versions.

JSON Schema itself uses JSON syntax. To specify which data types
are allowed, JSON Schema uses the keyword type with one type name
or a list of type names. For example, the schema {’type’:’string’} ac-
cepts strings, whereas the schema {’type’:[’null’, ’boolean’]} accepts
null or Boolean values. Each JSON type has a set of validation keywords
that restrict the values a schema of this type permits. For example, {

’type’:’integer’, ’minimum’:0} restricts integers to be non-negative,
whereas {’type’:’string’, ’pattern’:’^[A-Za-z0-9]+$’} uses the key-
word pattern with a regular expression to restricts strings to be alphanu-
meric.

In addition to type-specific keywords, JSON Schema allows enumerating
exact values with enum and combining different schemas using a set of logic
connectives. For example, schema {’enum’:[’a’, [], 1]} restricts the set
of permitted JSON values to the string literal ’a’, an empty array, or the
integer 1. Logic connectives, such as anyOf, allOf, and not, allow schema
writers to express disjunctions, conjunctions, and negations of schemas. The

5.2 problem statement 97

empty schema, {}, is the top of the schema hierarchy, i.e., any JSON data is
valid for {}. The negation of the empty schema, {’not’:{}}, is the bottom
of the hierarchy, i.e., no JSON data is valid for it. Finally, the keyword $ref

retrieves schemas using URIs and JSON pointers. JSON validation against
a schema with $ref has to satisfy the schema retrieved from the specified
URI or JSON pointer.

Figure 5.1 shows the full grammar of JSON schemas. The start symbol of
the grammar is schema. A schema can mix keywords for all types as well
as logic connectives. All-caps indicates literal tokens such as NUM or BOOL
whose lexical syntax follows the usual conventions of JSON. We refer the
interested reader to the full specification of JSON Schema [GZ13] and its
formalization [Pez+16].

5.2.2 JSON Subschema Problem

This chapter presents how to detect data compatibility bugs by addressing
the JSON subschema problem. Suppose a schema validator that deter-
mines whether JSON data d is valid according to a schema s: valid(d, s)→
{True, False}.

Definition 5.2.1 (JSON Subschema) For any two JSON schemas s and t.
Schema s is a subschema (subtype) of schema t, denoted s <: t, if and only if:

∀d : valid(d, s) =⇒ valid(d, t)

The subschema relation is a form of subtyping that views a type (JSON
schema) as a set of values (JSON data) [PSW76].

As an example, consider the schema shown in Figure 5.2a, an excerpt of
version 0.6.1 of a real-world schema that describes an API.1 The schema
evolves into version 0.6.2 (Figure 5.2b). Both schemas describe an object
with a property ’category’ with a fixed set of values. Version 0.6.1 is a
subschema of version 0.6.2 because all documents valid according to the
first schema are also valid according to the second schema. In contrast,
version 0.6.2 is not a subschema of version 0.6.1 because the JSON da-
tum {’category’:’stock’} is valid with respect to version 0.6.2 but not
version 0.6.1. To retain backward compatibility, this evolution is fine for
API arguments, but it could break clients if the schema describes an API
response.

1 From a collection of schemas for content used by the Washington Post [Wp2]

98 from documentation to subtype checking

schema ::= {type?, strKw, numKw, arrKw, objKw,
enum?, not?, allOf?, anyOf?, oneOf?, ref?}

type ::= "type": (typeName | [typeName+])
typeName ::= "null" | "boolean" | "string" | "number" | "integer" |

"array" | "object"
strKw ::= minLength?, maxLength?, pattern?
minLength ::= "minLength": NUM
maxLength ::= "maxLength": NUM
pattern ::= "pattern": REGEX
numKw ::= minimum?, maximum?, exclMin?, exclMax?, multOf?
minimum ::= "minimum": NUM
maximum ::= "maximum": NUM
exclMin ::= "exclusiveMinimum": BOOL
exclMax ::= "exclusiveMaximum": BOOL
multOf ::= "multipleOf": NUM
arrKw ::= items?, minItems?, maxItems?, addItems?, uniqItems?, contains?
items ::= "items": (schema | [schema+])
minItems ::= "minItems": NUM
maxItems ::= "maxItems": NUM
addItems ::= "additionalItems": (BOOL | schema)
uniqItems ::= "uniqueItems": BOOL
contains ::= "contains": schema
objKw ::= props?, minProps?, maxProps?, required?, addProps?,

patProps?, depend?
props ::= "properties": {(STR :schema)* }

minProps ::= "minProperties": NUM
maxProps ::= "maxProperties": NUM
required ::= "required": [STR*]

addProps ::= "additionalProperties": (BOOL|schema)
patProps ::= "patternProperties": {(REGEX :schema)* }

depend ::= "dependencies": {(STR :(schema | [STR+]))* }

enum ::= "enum": [VALUE+]

not ::= "not": schema
allOf ::= "allOf": [schema+]

anyOf ::= "anyOf": [schema+]

oneOf ::= "oneOf": [schema+]

ref ::= "$ref": PATH

Figure 5.1: Grammar of full JSON Schema (draft-04).

5.2 problem statement 99

{’type’: ’object’,

’properties’: {

’category’: {

’type’: ’string’,

’enum’: [’staff’, ’wires’,

’other’]}}}

(a) Version 0.6.1

{’type’: ’object’,

’properties’: {

’category’: {

’type’: ’string’,

’enum’: [’staff’, ’wires’,

’stock’, ’other’]}}}

(b) Version 0.6.2

Figure 5.2: A real example of schema evolution from the Washington Post content
management system.

5.2.3 Challenges

The rich feature set of JSON Schema makes establishing or refuting a sub-
type relation between two schemas non-trivial. Even for simple, structurally
similar schemas, such as {’enum’:[1, 2]} and {’enum’:[2, 1]}, equiva-
lence does not hold through textual equality. There are several challenges
for algorithmically checking the JSON schema subtype relation.

First, the schema language is flexible and the same set of JSON values, i.e.,
the same type, could be described in several different syntactical forms, i.e.,
schemas. For example, Figure 5.3 shows five equivalent schemas describing
a JSON datum that is either a non-empty string or null.

Second, even for primitive types, such as strings and numbers, nominal
subtyping is not applicable. JSON Schema lets users specify various con-
straints on primitive types, resulting in non-trivial interactions that are not
captured by nominal types. For example, one cannot infer that an integer

schema is a subtype of a number schema without properly comparing the
range and multiplicity constraints of the schemas.

Third, logic connectives combine non-homogeneous types, e.g., string
and null in Figure 5.3b. Moreover, enumerations restrict types to predefined
values, which require careful handling, especially when enumerations
interact with non-enumerative types, such as in Figures 5.3a, 5.3b, and 5.3c.

1
0

0
f

r
o

m
d

o
c

u
m

e
n

t
a

t
i
o

n
t

o
s

u
b

t
y

p
e

c
h

e
c

k
i
n

g

{’type’: [’null’, ’string’],

’not’: {’enum’: [’’]}}

(a)

{’anyOf’: [

{’type’: ’null’},

{’type’: ’string’}],

’not’: {’type’: ’string’, ’enum’: [’’]}}

(b)

{’allOf’: [

{’anyOf’: [

{’type’: ’null’},

{’type’: ’string’}]},

{’not’: {’type’: ’string’, ’enum’: [’’]}}]}

(c)

{’anyOf’: [

{’type’: ’null’},

{’type’: ’string’, ’pattern’: ’.+’}]}

(d)

{’allOf’: [

{’anyOf’: [

{’type’: ’null’},

{’type’: ’string’}]},

{’anyOf’: [

{’type’: ’boolean’}, {’type’: ’null’},

{’type’: ’number’}, {’type’: ’integer’},

{’type’: ’array’}, {’type’: ’object’},

{’type’: ’string’, ’pattern’: ’.+’}]}]}

(e)

Figure 5.3: Five syntactically different but semantically equivalent JSON schemas describing a JSON value that is either a
non-empty string or null.

5.3 algorithm 101

JSON
schema s

JSON
schema t

1) Canonicalization

2) Simplification

scan tcan

scanSimp tcanSimp

is subschema?

3) Subtype checking

Extract
fragments

Extract
fragments

scanSimp1 tcanSimp1
check if
subtype

scanSimpN tcanSimpN
check if
subtype

... ...

Figure 5.4: Overview of JSON subschema checker.

Fourth, the schema language allows implicit conjunctions and disjunc-
tions. For example, Figure 5.3b has an implicit top-level conjunction between
the subschemas under anyOf and not. As another example, a schema that
lacks a type keyword, such as {’pattern’:’.+’}, has an implicit disjunc-
tion of all possible types, while still enforcing any type-specific keyword,
such as the pattern for strings only. Figure 5.3e makes this implicit disjunc-
tion explicit.

Finally, JSON Schema allows uninhabited types. That is, a schema can
be syntactically valid yet semantically self-contradicting, i.e., it does not
validate any data, e.g., {’type’:’number’, ’minimum’:5, ’maximum’:0}

and {’type’:’boolean’, ’enum’:[1, 2, 3]}. Such schemas validate no
JSON value at all and complicate reasoning about subtyping.

5.3 algorithm

This section describes how we address the problem of checking whether one
JSON schema is a subtype of another. Because JSON schemas are complex,
creating a subtype checker for arbitrary schemas directly would necessitate

102 from documentation to subtype checking

a complex algorithm to handle all of its variability. A key insight of our
work is to instead decompose the problem into three steps, outlined in
Figure 5.4. The first step canonicalizes a given schema into an equivalent
but more standardized schema (Section 5.3.1). The second step further
simplifies a schema by eliminating enumerations, negation, intersection,
and union of schemas where possible (Section 5.3.2). Table 5.1 summarizes
the first two steps. Finally, the third step checks for two canonicalized and
simplified schemas whether one is a subtype of the other by extracting and
comparing type-homogeneous schema fragments (Section 5.3.3).

notation We formalize canonicalization and simplification via rewrite
rules of the form s1 → s2. The notation s.k indicates access of property k
in schema s. For any JSON schema s, helper function dom(s) returns its
property names, i.e., the set of keys in the key-value map s. The notation
s[k 7→ v] indicates a substitution, which is a copy of s except that the
mapping of key k is added or changed to value v. The notation [. . .]
indicates a JSON array and the notation { . . . } indicates a JSON object. The
notation {k:v | . . . } indicates a JSON object comprehension. The notation
a ‖ b is a default operator that returns a if it is defined and b otherwise.

5.3.1 JSON Schema Canonicalization

This section introduces a canonicalization procedure that compiles any
JSON schema into an equivalent canonical schema. The canonicalization en-
forces two main simplifications. First, JSON Schema allows schemas to mix
specifications of different types. To enable local, domain-specific reasoning
in the subtype checker, canonicalization first splits up these schemas into
smaller, homogeneously typed schemas combined with logic connectives.
Second, JSON Schema also allows many alternative ways to represent the
same thing. Additionally, most keywords can be omitted and defaults as-
sumed. Canonicalization picks, when possible, one form, and explicates
omitted defaults. Column “Canonicalized” of Table 5.1 summarizes the
properties that the canonicalizer establishes. Given any JSON schema as
input, canonicalization terminates and produces a semantically equivalent,
canonical JSON schema as output.

type-independent transformations Figure 5.5 presents non-type-
specific canonicalization rules whose purpose is to enable reasoning about
one type or connective at a time. Rule multiple types applies to schemas

5.3 algorithm 103

Table 5.1: Properties of original, canonicalized (Section 5.3.1), and simplified
(Section 5.3.2) schemas.

Language Use of feature in schemas

feature Full JSON Schema Canonicalized Simplified

null (no keywords) Yes Yes

boolean (no keywords) Represented as enum Represented as enum

string {min,max}Length,

pattern

Keyword pattern

only
Keyword pattern

only

number {min,max}imum,

multipleOf,

exclusive{Min,Max}imum

All keywords All keywords

integer (same keywords as
number)

Eliminated Eliminated

array {min,max}Items,

items,

additionalItems,

uniqueItems

All keywords, but
items is always a list
and additionalItems

is always a schema

All keywords, but
items is always a list
and additionalItems

is always a schema

object properties,

{min,max}Properties,

required,

patternProperties,

additionalProperties,

dependencies

Only
{min,max}Properties,

patternProperties,

required keywords

Only
{min,max}Properties,

patternProperties,

required keywords

enum Heterogeneous, any
type

Homogeneous, any
type

Only for boolean

not Multiple connectives Single connective Only for number, array,
object

allOf Multiple connectives Single connective Only for not

anyOf Multiple connectives Single connective Only for not, allOf,
array, object, and
disjoint number

oneOf Multiple connectives Single connective Eliminated

104 from documentation to subtype checking

multiple types
s.type = [τ1, . . . , τn]

s→ {anyOf:[s[type 7→ τ1], . . . , s[type 7→ τn]]}

multiple connectives

dom(s) ∩ {enum, anyOf, allOf, oneOf, not} 6= ∅
dom(s) \ {c} 6= ∅

s→ {allOf:[{c:s.c}, {k:s.k | k ∈ (dom(s) \ {c})}]}

missing type
dom(s) ∩ {type, enum, anyOf, allOf, oneOf, not} = ∅

s→ s[type 7→ Jtypes]

Figure 5.5: Non-type-specific canonicalization rules that ensure exactly one type,
enum, or logic connective.

whose type is a list, such as in the example in Figure 5.3a, making the
implicit disjunction explicit using anyOf, as shown in Figure 5.3b. Rule
multiple connectives applies to schemas that contain a connective mixed
with other connectives, such as in the example in Figure 5.3b, making the
implicit conjunction explicit using allOf, as shown in Figure 5.3c. Rule
missing type generously assumes all JSON types are possible, yielding an
implicit disjunction to be further canonicalized by the multiple-types rule.

type-dependent transformations Figure 5.6 presents type-specific
canonicalization rules whose purpose is to reduce the number of cases to
handle for later simplification and subschema rules. Rule missing keyword
adds the default for a keyword if there is a single type and the keyword
for that type is missing, using a helper function default that returns the
default from the meta-schema in Figure 5.1 and maps numerical and length
constraints of different types to appropriate representations, e.g., minimum
to −∞, maximum to ∞, and minLength to 0, for convenience. Rule irrelevant
keywords strips out spurious keywords that do not apply to a given type (or
to any type), using a helper function kw that returns the relevant keywords
in Figure 5.1.

eliminating integers and oneof Rule integer rewrites integer
schemas to number schemas with the appropriate multipleOf. For instance,
the schema {’type’:’integer} is rewritten into {’type’:’number’,

’multipleOf’:1}. Rule oneOf eliminates the oneOf keyword by rewriting
the exclusive or into a disjunction of conjunctions.

5.3 algorithm 105

canonicalizing enumerations In full JSON Schema, enumerations
of values may be heterogeneous, i.e., contain multiple different types. Our
canonicalization ensures that enumerations are homogeneous, so that each
enumeration schema contains values of a single type. To this end, rule
heterogeneous enum transforms any heterogeneous enumeration into a dis-
junction of multiple homogeneous enumerations using a helper function
typeOf that maps a concrete JSON value to its type.

representing strings as patterns In full JSON Schema, strings
may be restricted based on their minimum length, maximum length, and
a regular expression. To reduce the number of cases, and since length
constraints interact with the pattern, if specified, minLength and maxLength

keywords are transformed into a semantically equivalent regular expression
(intersected with the pattern schema), so canonicalized string schemas only
have the keyword pattern. The two string rules in Figure 5.6 show these
transformations.

canonicalizing arrays We canonicalize schemas that describe ar-
rays using two transformations that reduce the number of ways in which
the items and additionalItems keywords may be used. The two array
rules handle keywords that can be specified in multiple different ways, as
indicated by meta-schemas with anyOf in Figure 5.1. Rule array with one
schema for all items changes the keyword items from a single schema to a
list (empty) of schemas, by moving the schema into additionalItems. For
example, the transformation would perform the following:

{’type’: ’array’,

’items’: {’type’: ’number’}}
→ {’type’: ’array’,

’additionalItems’: {’type’: ’number’}}

Since additionalItems may be either a schema or a Boolean (false dis-
allows additional items), the second transformation replaces a Boolean
additionalItems with a corresponding JSON schema, where the schemas {
} and {’not’:{}} replace true and false, respectively. So additionalItems

becomes always a schema. Rule array with additionalItems false changes the
keyword additionalItems from a boolean to a schema (bottom).

canonicalizing objects Schemas for objects have various keywords.
The five object rules eliminate the keywords dependencies, properties, and
additionalProperties by rewriting them into the keywords required and
patternProperties, and ensure that the patterns in patternProperties use
non-overlapping regular expressions. The object rules are the most intricate

106 from documentation to subtype checking

out of the canonicalization rules because in JSON Schema, object schemas
have the largest number of special cases. Reducing the cases reduces the
complexity of subsequent rules for simplification and subschema checking.

Rule object with additionalProperties false changes the additionalProperties
keyword from a boolean to a schema (bottom). Rule object with properties
eliminates properties and additionalProperties by rewriting them into
patternProperties. First, it turns each property key ki from properties

into a pattern property with the regular expression '^ki$' that accepts
exactly ki. Second, it subtracts all keys ki from each of the original pattern
properties so they only apply as a fall-back, where the notation p1 \ p2
indicates regular expression subtraction. Third, it creates a tertiary fall-back
regular expression that applies when neither the original properties nor the
original pattern properties match, using the notation ¬p for the complement
of a regular expression, and associates that regular expression with the orig-
inal additionalProperties. Finally, it removes the eliminated keywords
properties and additionalProperties from the resulting schema.

Rule object with string list dependencies, when iterated, eliminates depen-
dencies specified as a list of property names by rewriting them into depen-
dencies specified as a schema. Rule object with schema dependencies, when
iterated, eliminates dependencies of a key ki on a schema si by rewriting
them into a conjunction with either si or a schema that enforces the absence
of ki. Rule object with overlapping pattern properties rewrites a pair of pattern
properties with overlapping regular expressions pi and pj so their regular
expressions match only disjoint keys, by replacing them with different
schemas for the cases where (i) both pi and pj match, (ii) only pi and not pj
matches, and (iii) only pj and not pi matches. When iterated, this eliminates
all overlapping patterns, facilitating local reasoning. For example, this object
schema would be canonicalized as follows:

{’type’:’object’,

’properties’: {

’a’: {’type’:’string’},

’b’: {’type’:’array’}}

’patternProperties’: {

’a’: {’type’:’boolean’}}}

→

{’type’:’object’,

’patternProperties’: {

’^a$’: {’type’:’string’},

’^b$’: {’type’:’array’},

’([^a]+a!a.).*’: {’type’:’boolean’}}}

The non-canonical schema on the left describes the types of properties
“a” and “b” using properties, and of any property that contains an “a”
using additionalProperties. The canonical schema on the right describes
the same type constraints by expressing all property names as regular
expressions, which will simplify the subschema check.

5.
3

a
l

g
o

r
i
t

h
m

1
0

7

missing keyword
s.type = τ τ ∈ Jtypes τ 6= string k ∈ kw(τ) k /∈ dom(s)

s→ s[k 7→ default(k)]

irrelevant keywords
s.type = τ τ ∈ Jtypes

s→ {k:s.k | k ∈ (dom(s) ∩ (kw(τ) ∪ {type, enum})}

integer
s.type = integer

s→ s[type 7→ number, multipleOf 7→ lcm(1, s.multipleOf ‖ 1)]

oneOf
s.oneOf = [s1, . . . , sn]

s→ {anyOf:[{allOf:[s1, {not:s2}, . . . , {not:sn}]},
. . . ,
{allOf:[{not:s1}, . . . , {not:sn−1}, sn]}]}

heterogeneous enum
s.enum = [v1, . . . , vn] ∃j, typeOf (vj) 6= typeOf (v1)

s→ {anyOf:[s[enum 7→ [vi | typeOf (vi) = typeOf (v1)], type 7→ typeOf (v1)],
s[enum 7→ [vj | typeOf (vj) 6= typeOf (v1)]]]}

Figure 5.6: Type-specific canonicalization rules.

(Continued on next page)

1
0

8
f

r
o

m
d

o
c

u
m

e
n

t
a

t
i
o

n
t

o
s

u
b

t
y

p
e

c
h

e
c

k
i
n

g

string without maxlength
s.type = string s.pattern = p s.minLength = a maxLength /∈ dom(s)

s→ {type:string, pattern:p ∩ '^.{a}'}

string with maxlength
s.type = string s.pattern = p s.minLength = a s.maxLength = b

s→ {type:string, pattern:p ∩ '^.{a, b}$'}

array with one schema for all items
s.type = array s.items = { . . . }

s→ s[items 7→ [], additionalItems 7→ s.items]

array with additionalItems false
s.type = array s.additionalItems = false

s→ s[additionalItems 7→ {not:{}}]

Figure 5.6: Type-specific canonicalization rules.

(Continued on next page)

5.
3

a
l

g
o

r
i
t

h
m

1
0

9

object with additionalProperties false
s.type = object s.additionalProperties = false

s→ s[additionalProperties 7→ {not:{}}]

object with properties

s.type = object s.properties = {k1:sk1 , . . . , kn:skn}
s.additionalProperties = { . . . } s.patternProperties = {p1:sp1 , . . . , pm:spm}

s→s[patternProperties 7→ {'^k1$':sk1 , . . . , '^kn$':skn ,
p1 \ '^(k1|...|kn)$':sp1 , . . . , pm \ '^(k1|...|kn)$':spm ,
¬'^(k1|...|kn)$|p1|...|pm':s.additionalProperties}]

\{properties, additionalProperties}

object with string list dependencies
s.type = object s.dependencies = {ki:[ki1 , . . . , kin]}∪ drest

s→ s[dependencies 7→ drest ∪ {ki : {type:object, required:[ki1 , . . . , kin]}}]

object with schema dependencies
s.type = object s.dependencies = {ki:si}∪ drest

s→ {allOf:[s[dependencies 7→ drest],
{anyOf:[si, {type:object, properties:{ki:not:{}}}]}}

object with overlapping patternProperties
s.type = object s.patternProperties = {pi:si}∪ {pj:sj}∪ drest

s→ s[patternProperties 7→
{pi ∩ pj:{allOf:[si, sj]}}∪ {pi ∩ ¬pj:si}∪ {¬pi ∩ pj:sj}∪ drest]

Figure 5.6: Type-specific canonicalization rules.

110 from documentation to subtype checking

5.3.2 Simplification of Canonicalized Schemas

This section describes the second step of our approach: a simplifier that
compiles any canonical JSON schema into an equivalent simplified schema.
Column “Simplified” of Table 5.1 summarizes the properties that the sim-
plifier establishes. The simplifier eliminates many cases of enum, not, allOf,
and anyOf connectives, thus making subschema checking rules less compli-
cated. Unfortunately, in some cases, JSON schema cannot express schemas
without these connectives, so they cannot be completely simplified away.

simplification of enumerations Figure 5.8 shows simplification
rules for enum, which turn schemas with enums into schemas without enums
by using restrictions keywords from their corresponding types instead. Rule
multi-valued enum puts each non-Boolean enumerated value into an enum of
its own. The rules for primitive types (null, string, and number) express
a primitive enumerated value via a schema that does not use an enum. For
instance, in Figure 5.3c, the enumerated empty string value is compiled
into the regular expression ’^$’ before computing its complement ’.+’ in
Figure 5.3e. The rules for structured types (array and object) push down
enums to components; with iteration, the rules eventually reach primitive
types and the enums get eliminated.

The simplifier does not eliminate Boolean enumerations as the space of
values is finite and there is no other way to specify the true or false value.

simplification of negated schemas Figure 5.7 shows simplifica-
tion rules for not, which eliminates negation except for numbers, arrays,
and objects. Rule not type turns a schema of a given type τ into a disjunction
of either ¬s (the complement of the values permitted by s in τ) or values
of any type other than τ. An example for this rule in action is the rewrite
from Figure 5.3c to Figure 5.3e, where the complement of a string schema
introduces schemas of all non-string types. The complement rules for null,
boolean, and string use the bottom type {’not’:{}}, the complement of
the Boolean enumeration, and the complement of the regular expression,
respectively. Rules not anyOf and not allOf use De Morgan’s theorem to
push negation through disjunction and conjunction, and rule not not elim-
inates double negation. Unfortunately, JSON Schema is not closed under
complement for numbers, arrays, and objects. For example, the complement
of schema {’type’:’number’, ’multipleOf’:1} is R \Z, which cannot be
expressed in JSON schema without a negation. Similar counter-examples

5.3 algorithm 111

not type
s.type = τ τ ∈ Jtypes

{not:s}→ {anyOf:[¬s, {type:(Jtypes \τ)}]}

complement
boolean

s.type = boolean s.enum = e
¬s→ {type:boolean, enum:¬e}

complement
string

s.type = string s.pattern = p
¬s→ {type:string, pattern:¬p}

not anyOf
s = {anyOf:[s1, . . . , sn]}

{not:s}→ {allOf:[{not:s1}, . . . , {not:sn}]}

not allOf
s = {allOf:[s1, . . . , sn]}

{not:s}→ {anyOf:[{not:s1}, . . . , {not:sn}]}

not not
s = {not:s1}

{not:s}→ s1

Figure 5.7: Simplification rules to eliminate negation, except for types number,
array, and object.

exist for array and object schemas. The case of negated number schemas is
handled later during subschema checking.

simplification of intersection of schemas Figure 5.9 shows
simplification rules for allOf. For example, the intersection type in Fig-
ure 5.3e yields the simplified schema in Figure 5.3d. Rule singleton allOf
rewrites a conjunct of just one schema into that schema. Rule fold allOf turns
an n-ary allOf into a binary one, so the remaining rules need to handle
only the binary case. Rule intersect heterogeneous types returns the bottom
type because intersection of incompatible types is the empty set, so the
remaining rules only need to handle homogeneously-typed schemas. Rule
intersect null rewrites two nulls to one null. Rule intersect boolean uses the
intersection of enumerations. Rule intersect string uses the intersection of reg-
ular expressions. Rule intersect number uses helper functions schema2range
and range2schema to convert back and forth between number schemas and
mathematical ranges, and lcm to compute the least common multiple of
the multipleOf constraints, where lcm handles undefined arguments by
returning the other argument if defined, or an undefined value if both argu-
ments are undefined. Rule intersect array takes advantage of the canonical
form, where items are always specified as lists, to compute an item-wise

112 from documentation to subtype checking

intersection; undefined per-item schemas default to additionalItems. Rule
intersect object simply picks up the union of the patternProperties key-
words, relying on the rule for objects with overlapping patternProperties

to make them disjoint again later. Finally, rule intersect anyOf pushes con-
junctions through disjunctions by using the distributivity of intersection
over union. We choose not to push intersections through negations because
we prefer the end result of simplification to resemble distributive normal
form to the extent possible.

simplification of union of schemas Figure 5.10 shows simplifica-
tion rules for anyOf. In contrast to intersection, union allows incompatible
types, e.g., string or null as in Figure 5.3d. Fortunately, such heteroge-
neous unions are non-overlapping for inhabited schemas, so they can be
handled later during subschema checking. Rule singleton anyOf rewrites
a disjunct of just one schema into that schema. Rule fold anyOf turns an
n-ary anyOf into a binary one so the remaining rules only need to handle
the binary case. Rule union null rewrites two nulls to one. Rule union boolean
uses the union of enumerations. Rule union string uses the union of regular
expressions. For example, the following schema that specifies strings using
regular expressions gets simplified by computing the union of the two
regular expressions:

{’anyOf’: [

{’type’:’string’, ’pattern’:’.+’},

{’type’:’string’, ’pattern’:’a’}]}
→ {’type’:’string’, ’pattern’:’.+’}

Rule union number turns a binary union with overlap into a ternary
non-overlapping union. In other words, while it does not eliminate the
union of number schemas, it does simplify subschema checking by at least
making the union disjoint so it can be checked element-wise. Unfortunately,
JSON Schema is not closed under union for types number, array, and
object. For example, the union of {’type’:’number’, ’minimum’:0} and {

’type’:’number’, ’multipleOf’:1} is R+ ∪Z, which cannot be expressed
in JSON schema without anyOf. There are similar counter-examples for
arrays and objects. The case of unioned number schemas is handled later in
subschema checking. As mentioned earlier, we would like simplification to
end in schemas that resemble a distributive normal form, so we choose not
to push anyOf through allOf or not.

5.
3

a
l

g
o

r
i
t

h
m

1
1

3

multi-valued enum
s.type = τ τ 6= boolean s.enum = [v1, . . . , vn] n > 1

s→ {anyOf:[{type:τ, enum:[v1]}, . . . , {type:τ, enum:[vn]}]}

null enum
s.type = null s.enum = [null]

s→ {type:null}

string enum
s.type = string s.enum = [v]

s→ {type:string, pattern:'^v$'}

number enum
s.type = number s.enum = [v]

s→ {type:number, minimum:v, maximum:v}

array enum
s.type = array s.enum = [[v1, . . . , vn]]

s→ {type:array, minItems:n, maxItems:n, items:[{enum:[v1]}, . . . , {enum:[vn]}]

object enum
s.type = object s.enum = [{k1:v1, . . . , kn:vn}]

s→ {type:object, required:[k1, . . . , kn], additionalProperties:false,

properties:{k1:{enum:[v1]}, . . . , kn:{enum:[vn]}}}

Figure 5.8: Simplification rules to eliminate enum except for type boolean.

1
1

4
f

r
o

m
d

o
c

u
m

e
n

t
a

t
i
o

n
t

o
s

u
b

t
y

p
e

c
h

e
c

k
i
n

g

singleton allOf
s.allOf = [s1]

s→ s1

fold allOf
s.allOf = [s1, s2, . . . , sn] n ≥ 3

s→ {allOf:[s1, {allOf:[s2, . . . , sn]}]}

intersect heterogeneous types
s1.type 6= s2.type

{allOf:[s1, s2]}→ {not:{}}

intersect null
s1.type = null s2.type = null

{allOf:[s1, s2]}→ {type:null}

intersect boolean
s1.type = boolean s2.type = boolean

{allOf:[s1, s2]}→ {type:boolean, enum:s1.enum∩ s2.enum}

intersect string
s1.type = string s2.type = string

{allOf:[s1, s2]}→ {type:string, pattern:s1.pattern∩ s2.pattern}

intersect number
s1.type = number s2.type = number r1 = schema2range(s1) r2 = schema2range(s2)

{allOf:[s1, s2]}→ range2schema(r1 ∩ r2) ∪ {multipleOf:lcm(s1.multipleOf, s2.multipleOf)}

Figure 5.9: Simplification rules to eliminate allOf except for connective not.

(Continued on next page)

5.
3

a
l

g
o

r
i
t

h
m

1
1

5

intersect
array

s1.type = array s2.type = array s1.items = [s11 , . . . , s1k] s2.items = [s21 , . . . , s2m]

n = max(k, m)

{allOf:[s1, s2]}→ {type:array,
minItems:max(s1.minItems, s2.minItems),
maxItems:min(s1.maxItems, s2.maxItems),
items:[{allOf:[s11 ‖ s1.additionalItems, s21 ‖ s2.additionalItems]},

. . . ,
{allOf:[s1n ‖ s1.additionalItems, s2n ‖ s2.additionalItems]}],

additionalItems:{allOf:[s1.additionalItems, s2.additionalItems]},
uniqueItems:s1.uniqueItems∧ s2.uniqueItems}

intersect
object

s1.type = object s2.type = object

{allOf:[s1, s2]}→ {type:object,
minProperties:max(s1.minProperties, s2.minProperties),
maxProperties:min(s1.maxProperties, s2.maxProperties),
required:s1.required∪ s2.required,
patternProperties:s1.patternProperties∪ s2.patternProperties}

intersect anyOf
s2 = {anyOf:[s21 , . . . , s2n]}

{allOf:[s1, s2]}→ {anyOf:[{allOf:[s1, s21]}, . . . , {allOf:[s1, s2n]}]}

Figure 5.9: Simplification rules to eliminate allOf except for connective not.

1
1

6
f

r
o

m
d

o
c

u
m

e
n

t
a

t
i
o

n
t

o
s

u
b

t
y

p
e

c
h

e
c

k
i
n

g

singleton anyOf
s.anyOf = [s1]

s→ s1

fold anyOf
s.anyOf = [s1, s2, . . . , sn] n ≥ 3

s→ {anyOf:[s1, {anyOf:[s2, . . . , sn]}]}

union null
s1.type = null s2.type = null

{anyOf:[s1, s2]}→ {type:null}

union boolean
s1.type = boolean s2.type = boolean

{anyOf:[s1, s2]}→ {type:boolean, enum:s1.enum∪ s2.enum}

union string
s1.type = string s2.type = string

{anyOf:[s1, s2]}→ {type:string, pattern:s1.pattern∪ s2.pattern}

union number

s1.type = number s2.type = number
r1 = schema2range(s1) r2 = schema2range(s2)

r1 ∩ r2 6= ∅
{anyOf:[s1, s2]}→ {anyOf:[

range2schema(r1 ∩ r2) ∪ {multipleOf:gcd(s1.multipleOf, s2.multipleOf)},
range2schema(r1 \ r2) ∪ {multipleOf:s1.multipleOf},
range2schema(r2 \ r1) ∪ {multipleOf:s2.multipleOf}]}

Figure 5.10: Eliminating overlapping anyOf, except for connectives not and allOf, and types array and object.

5.3 algorithm 117

5.3.3 JSON Subschema Checking

Given two canonicalized and simplified schemas, the third step of our
approach checks whether one schema is a subtype of the other. Figure 5.11

presents inference rules defining the subschema relation on canonical, sim-
plified schemas. All rules are algorithmically checkable, and all rules except
for schema uninhabited are type-directed. To simplify their presentation, some
of the rules use quantifiers, but all quantifiers are bounded and can thus be
checked via loops.

Rule schema uninhabited states that an uninhabited schema is a subtype of
any other schema. It uses an auxiliary inhabited predicate, which is elided
for space but easily computable for primitives (recall that emptiness is
decidable for regular languages). For structures, the predicate ensures that
the schemas of all required components are inhabited. For logic connectives,
the predicate is more involved but decidable. The rule for uninhabited types
is the only rule that is not type-directed. Because canonicalization generally
separates schemas by type, all other rules check same-typed schemas. We
can handle uninhabited schemas independently of their type because there
is no actual data of that type that would require type-specific reasoning.

Rule subschema non-overlapping anyOf handles anyOf schemas for the
cases where simplification eliminates overlapping unions. Helper function
nonOverlapping checks for unions of arrays and objects and conservatively
assumes that those might overlap. In the non-overlapping case, it suffices
to check the component schemas independently. For each schema on the
left, we require a same-typed super schema on the right.

Rule subschema number is the most complicated of the subtype rules
for primitive types due to multipleOf constraints. The simplifier cannot
push negation through multipleOf constraints, and it cannot combine
allOf combinations of such negated schemas. As a result, the rule has
to handle multiple such constraints on both sides of the relation, with
or without negation. We treat simple number schemas as single-element
allOfs for consistency. This rule verifies that any number allowed by the
set of constraints on the left is also allowed by the set of constraints on
the right using an auxiliary subNumber relation, which is sketched in the
following.

1
1

8
f

r
o

m
d

o
c

u
m

e
n

t
a

t
i
o

n
t

o
s

u
b

t
y

p
e

c
h

e
c

k
i
n

g

uninhabited
¬ inhabited(s1)

s1 <: s2
null

s1.type = null s2.type = null
s1 <: s2

boolean
s1.type = boolean s2.type = boolean s1.enum ⊆ s2.enum

s1 <: s2

string
s1.type = string s2.type = string s1.pattern ⊆ s2.pattern

s1 <: s2

number

∀i ∈ {1, . . . , k}, not /∈ dom(si) ∧ si.type = number
∀i ∈ {k + 1, . . . , n}, not ∈ dom(si) ∧ si.not.type = number
∀i ∈ {1, . . . , l}, not /∈ dom(ti) ∧ ti.type = number

∀i ∈ {l + 1, . . . , m}, not ∈ dom(ti) ∧ ti.not.type = number
subNumber(([s1, . . . , sk], [sk+1, . . . , sn]), ([t1, . . . , tl], [tl+1, . . . , tm]))

{allOf:[s1, . . . , sk, sk+1, . . . , sn]} <: {allOf:[t1, . . . , tl , tl+1, . . . , tm]}

Figure 5.11: JSON Schema subtype inference rules.

(Continued on next page)

5.
3

a
l

g
o

r
i
t

h
m

1
1

9

array

s1.type = array s2.type = array
s1.minItems ≥ s2.minItems s1.maxItems ≤ s2.maxItems

s1.items = [s11 , . . . , s1k] s2.items = [s21 , . . . , s2m]

∀i ∈ {0, . . . , max(k, m) + 1}, s1i ‖ s1.additionalItems <: s2i ‖ s2.additionalItems
s2.uniqueItems =⇒ (s1.uniqueItems∨ allDisjointItems(s1))

s1 <: s2

object

s1.type = object s2.type = object
s1.minProperties ≥ s2.minProperties s1.maxProperties ≤ s2.maxProperties

s1.required ⊇ s2.required
∀p1 : sp1 ∈ s1.patternProperties, p2 : sp2 ∈ s2.patternProperties, p1 ∩ p2 6= ∅ =⇒ sp1 <: sp2

s1 <: s2

non-overlapping anyOf
∀i ∈ {1, . . . , n}, ∃j ∈ {1, . . . , m}, si <: tj nonOverlapping([t1, . . . , tm])

{anyOf:[s1, . . . , sn]} <: {anyOf:[t1, . . . , tm]}

Figure 5.11: JSON Schema subtype inference rules.

120 from documentation to subtype checking

The subNumber relation first normalizes all schema range bounds by
rounding them to the nearest included number that satisfies its multipleOf

constraint. For each side, it then finds the least and greatest finite bound
used. Every unbounded schema is split into two (or three for totally un-
bounded) schemas: one (or two) that are unbounded on one side, with the
least/greatest bound as the other bound. The “middle” part is bounded. All
these derived schemas keep the original multipleOf. The bounded schemas
can all be checked (exhaustively if needed). For the unbounded schemas,
we can separately check the positive and negative schemas, since they do
not interact in interesting ways over unbounded sets. If PL and PR are
the left and right positive schemas, and NL and NR are the left and right
negative schemas, we verify that the constraints divide each other:

∀pl∈PL, ∃pr∈PR, pl.multipleOf mod pr.multipleOf = 0

∀nr∈NR, ∃nl∈NL, nr.multipleOf mod nl.multipleOf = 0

For example, because 3 divides 9 and 2 divides 4, we have:

{’allOf’:[

{’type’: ’number’,

’multipleOf’: 9},

{’type’: ’number’,

’not’: {’multipleOf’: 2}}]}

<:

{’allOf’:[

{’type’: ’number’,

’multipleOf’: 3},

{’type’: ’number’,

’not’: {’multipleOf’: 4}}]}

Rule subschema array checks two array schemas. The left array size bounds
should be within the size bounds of the right array. Additionally, the
schema of every item specified in the former needs to be a subschema of
the corresponding specification in the latter. If a schema is not explicitly
provided, the schema provided by additionalItems is used. Recall that
canonicalization adds in a default additionalItems schema if it was not
specified. Additionally, if the right side specifies that the items must be
unique, then the left needs to either specify the same or implicitly enforce
this. For example,

{’type’: ’array’,

’items’: [{’enum’: [0]}, {’enum’: [1]}]}
<: {’type’: ’array’,

’uniqueItems’: true]}

The allDisjointItems predicate checks for this by first obtaining the set of
all the effective item schemas: every item schema for an index within the
specified min/max bounds, and additionalItems if any allowed indices
are unspecified. It then verifies that the conjunction of all pairs of effective
items schemas are uninhabited.

Rule subschema object checks two object schemas. It first verifies that the
number of properties of both sides have the appropriate relation, and that

5.4 implementation 121

the left side requires all the keys that the right side requires. Next, for every
regular expression pattern p1 on the left, if there is an overlapping regular
expression pattern p2 on the right, it checks that the corresponding schemas
are subschemas. This check can be done separately for one pattern at a
time thanks to the fact that canonicalization eliminates overlapping pattern
properties.

5.4 implementation

We implemented our subschema checker as an open-source Python li-
brary.2 The implementation builds upon the jsonschema library3 to validate
schemas before running our subtype checking, the greenery library4 for
computing intersections of regular expressions, and the jsonref library5 for
resolving JSON schema references.

5.5 evaluation

This section evaluates our JSON subschema checker, which we refer to as
jsonSubSchema. It addresses the following research questions:

RQ1 How effective is jsonSubSchema in finding real bugs?

RQ2 How correct and complete is jsonSubSchema?

RQ3 How does our approach compare against prior work?

RQ4 How efficient is jsonSubSchema?

5.5.1 Experimental Setup

We evaluate our approach on four datasets of pairs of JSON schemas
listed in Table 5.2. The datasets cover different application domains and
different ways of using JSON schemas. Snowplow is a service for data
collection and aggregation for live-streaming of event data [Snob]. The
service aggregates data from various sources and uses JSON schemas to
specify data models, configurations of several components, etc. [Sno14].
We apply jsonSubSchema to 112 pairs of schemas that have consecutive

2 https://github.com/IBM/jsonsubschema
3 https://github.com/Julian/jsonschema
4 https://github.com/qntm/greenery
5 https://github.com/gazpachoking/jsonref

https://github.com/IBM/jsonsubschema
https://github.com/Julian/jsonschema
https://github.com/qntm/greenery
https://github.com/gazpachoking/jsonref

122 from documentation to subtype checking

Table 5.2: Dataset details.

Project Description Schemas Versions Schema Pairs

Snowplow
[Sno14]

Data collection
& live-streaming
of events

290 361 112

Lale [Lal] Automated
machine
learning library

1,444 NA 2,818+28

Washington
Post [Wp2]

Content creation
and
management

2,604 28 2,060

Kubernetes
[Kuba]

Containerized
applications

86,461 124 6,460

Total 11,478

versions and check whether the schema evolution is in line with semantic
versioning. Lale is a Python library for type-driven automated machine
learning [Lal]. It uses JSON schemas to describe the inputs and outputs of
ML operators, as well as standard ML datasets. We apply jsonSubSchema
to 2,818 schema pairs to find type errors in ML pipelines, and additionally,
to 28 schema pairs with a known subtype relationship to validate the
correctness of our approach. The Washington Post dataset is a collection
of schemas describing content used by the Washington Post within the
Arc Publishing content creation and management system [Wp2]. The final
dataset comprises JSON schemas extracted from the OpenAPI specifications
for Kubernetes [Kuba], a system for automating deployment, scaling, and
management of containerized applications [Kubb]. For the last two datasets,
we apply jsonSubSchema across each pair of consecutive versions of the
same schema that introduces some change, to spot whether the change may
impact the compatibility of the corresponding systems.

The total number of schema pairs is 11,478. Many of the schemas are of
non-trivial size, with an average of 56KB and a maximum of 1,047KB. We use
the first two datasets to evaluate the bug detection abilities of our approach
(RQ1), the last three datasets to evaluate the correctness, completeness
(RQ2 and RQ3), and efficiency (RQ4). To validate the correctness of the
canonicalization and simplification steps of jsonSubSchema, we also use the
official test suite for JSON Schema draft-04 [Jsoc]. It contains 146 schemas

5.5 evaluation 123

and 531 JSON data instances that fully cover the JSON Schema language. All
experiments used Ubuntu 18.04 (64-bit) on an Intel Core i7-4600U (2.10GHz)
machine with 12GB RAM.

5.5.2 RQ1: Effectiveness in Detecting Bugs

To evaluate the usefulness of jsonSubSchema for detecting bugs, we consider
two real-world usage scenarios where the correctness of some software
requires a specific subschema relation to hold. Overall, the approach detects
43 bugs, most of which are already fixed.

schema evolution bugs in snowplow Snowplow maintains ver-
sioned schemas that specify data sources and configurations while the
system evolves [Sno14]. To ensure backward compatibility of clients and
to avoid unnecessary updates of client code, the project adopts seman-
tic versioning [Sem] to schemas using version numbers of the form ma-
jor.minor.patch [Snoa]. For each schema evolution, we check whether the way
a schema evolves is consistent with the way the version number changes.
Specifically, a backward compatible schema fix corresponds to a patch in-
crement, a change that adds functionality in a backward-compatible way to
a minor increment, and a change that breaks backward compatibility to a
major increment.

Our approach detects five schema evolution bugs, summarized in the top
part of Table 5.3. We summarize multiple similar bugs into a single one
for space reasons. For example, in Snow-1 (Figure 5.12), two object proper-
ties changed their names. This change breaks backward compatibility for
old data, hence, the major version number should have been incremented.
The developers of Snowplow confirmed all reported bugs in Table 5.3 and
acknowledged that specifically Snow-1 and Snow-2 are severe and require
immediate attention. One developer wrote that “Our long-term plan is to
implement an automatic algorithm to recognize versioning and clarify/for-
malise specification for known corner-cases”. Our approach provides this
kind of tool, and could help avoid schema evolution bugs in the future.

1
2

4
f

r
o

m
d

o
c

u
m

e
n

t
a

t
i
o

n
t

o
s

u
b

t
y

p
e

c
h

e
c

k
i
n

g

Table 5.3: 43 real-world bugs detected by jsonSubSchema.

Bug Id Description Bug Report Status

Latent bugs in Iglu Central Snowplow schema versions

Snow-1 Breaking change. Wrong increment of Patch version; should increment Major
version instead.

Confirmed

Snow-2 Wrong version. Wrong update of Minor and Patch versions; should
increment Patch instead.

Confirmed

Snow-3 Spurious version increment. Increment of Major version; should increment
Patch instead.

Confirmed

Snow-4–5 Spurious version increment. Increment of Minor version; should increment
Patch instead.

Confirmed

Schemas of machine learning operators in Lale

Lale-1–2 Classifiers output either string or numeric labels; output schemas should be
union of arrays not array of unions.

Fixed

Lale-3–14 Classifiers should allow output labels to be strings or numeric instead of
numeric only.

Fixed

Lale-15–32 Classifiers should allow output labels to be Booleans, beside strings or
numeric.

Fixed

Lale-33 Using the empty schema in a union is too permissive and implies the empty
schema, which validates everything.

Fixed

Lale-34–38 Using the empty schema as an output schema causes problems when used
as input to the next operator.

Fixed

5.5 evaluation 125

{’properties’: {

’event’: {’type’: ’object’},

’error’: {’type’: ’string’},

...}

’required’: [’event’, ’error’],

’additionalProperties’: false}

Version 1.0.0

{’properties’: {

’payload’: {’type’: ’object’},

’failure’: {’type’: ’string’},

...}

’required’: [’payload’, ’failure’],

’additionalProperties’: false}

Version 1.0.1

Figure 5.12: Snow-1: A schema evolution bug in Snowplow

{’type’: ’array’,

’items’: {

’anyOf’:[

{’type’: ’number’},

{’type’: ’string’}]}}

Wrong schema

{’anyOf’: [

{’type’: ’array’,

’items’: {’type’: ’number’}},

{’type’: ’array’,

’items’: {’type’: ’string’}}]}

Correct schema

Figure 5.13: Lale-1: Wrong schema for an ML operator in Lale

incorrect ml pipelines in lale As a second real-world usage
scenario, we apply jsonSubSchema to check interfaces in Lale [Hir+19]
machine-learning pipelines before running those pipelines. Our approach
detects 38 bugs that we summarize in the lower part of Table 5.3. All bugs
have been fixed in response to finding them with jsonSubSchema.

For example, in Lale-1 (Figure 5.13), a subschema check reveals that the
output of several classifiers could either be numeric or string labels, but
no inter-mixing of the two kinds. When introducing new operators into an
ML pipeline, checking for such mistakes can save hours of training time for
ML pipelines that fail due to incompatible input-output data, and prevent
running a pipeline with incorrect data.

5.5.3 RQ2: Correctness and Completeness

Given the complexity of JSON Schema, ensuring the correctness of our
subschema checker is non-trivial. We aim for soundness, giving a correct
answer whenever not returning “unknown”, while being as complete as
possible, i.e., trying to cover as many JSON Schema features as possible.
The following evaluates to what extent our approach achieves this.

126 from documentation to subtype checking

canonicalization and simplification Together, canonicalization
and simplification aim at transforming a given schema into a simpler yet
semantically equivalent schema. To check this property, we use the official
JSON Schema test suite to validate the JSON instances in the suite against
their corresponding schemas before and after the two transformations steps.
Specifically, for schema s and its associated JSON data d in the JSON Schema
test suite, we check whether:

∀s, ∀d, valid(d, s)⇔ valid
(
d, simple(canonical(s))

)
In all cases except one where jsonSubSchema yields a canonicalized schema,
this new schema passes all relevant tests in the JSON schema test suite. This
single case is due to an ambiguity of the specification of JSON schema and
hence a mismatch between our own interpretation and the interpretation of
the JSON schema validator of the semantics of the allOf connector when
combined with the additionalProperties object constraint.

correctness of subtype checking To evaluate the correctness of
jsonSubSchema, we compare its results against a ground truth. Specifically,
we gather pairs of schemas, along with their expected subtype relationship,
in three ways. First, we randomly sample pairs that are textually different
and manually assess their subtype relationship. Second, we sample con-
secutive versions of schemas from the Washington Post and Kubernetes
datasets, and then manually assess their subtype relationship. Third, we
gather 28 schema pairs from Lale, where the ground truth is whether or
not the corresponding ML operator throws an exception when training on
the corresponding dataset. By checking the schemas statically, our subtype
checker can avoid such runtime errors.

In total, we gather 298 pairs with a ground truth subtype relationship,
and our approach produces correct results for all of them, as summarized
in Table 5.4. The <:, :>, ≡, and 6≡ symbols represent the test performed on
each pair. For example, for each pair 〈s, t〉 in the <: row, the ground truth
indicates whether s <: t holds (positive, P) or not (negative, N). The jsonSub-
Schema part of the table shows the results of applying our subschema
checker to each pair. The TP, TN, FP, and FN columns show the true
positives, true negatives, false positives, and false negatives, respectively.
For example, TN means that the tool produces the correct result (T for
true) and that the ground truth indicates that the relationship being tested
should not hold (N for negative).

5.5 evaluation 127

Table 5.4: Effectiveness of jsonSubSchema and comparison to the existing is-
Subset tool.

jsonSubSchema isSubset

Pairs Fail TP TN FP FN Fail TP TN FP FN

<: 35 0 29 6 0 0 10 9 0 6 10

:> 35 0 31 4 0 0 10 21 0 4 0

≡ 100 0 100 0 0 0 50 27 0 0 23

6≡ 100 0 63 37 0 0 0 63 0 37 0

Lale 28 0 12 16 0 0 7 3 10 0 8

Total 298 0 235 63 0 0 77 123 10 47 41

completeness of subtype checking As mentioned in Section 5.3,
there are some cases that jsonSubSchema does not decide. The following
evaluates to what extent the approach covers the JSON Schema features
that occur in real-world schemas. To this end, we apply the approach to
8,548 schemas pairs and count how often it refuses to give an answer.

Table 5.5 shows the cases when jsonSubSchema fails on our dataset. The
subschema check fails for 4.24% of the pairs. The table shows three kinds
of failures that happen in practice due to limitations of our approach. The
first and most dominant failure reason is recursive schemas. This is not an
inherent limitation of jsonSubSchema, but could be addressed by improving
our implementation. The second case is negating object schemas. As seen in
Table 5.5, only 0.34% of schema pairs fail due to the absence of this feature.
In fact, the original schemas do not use negated schemas at all; instead, they
were introduced as part of jsonSubSchema canonicalization (Section 5.3.1)
where oneOf constraints are re-written into disjunction of conjunctions with
negations. As mentioned in Section 5.3, JSON schema is not closed under
union or negation of object schemas. The third case is when string or object
schemas use “regular expressions” with non-regular extensions for textual
patterns using the keywords pattern and patternProperties, respectively.
Inclusion in non-regular languages (e.g., regular expressions with positive
and negative look-around) is undecidable and beyond our scope.

128 from documentation to subtype checking

Table 5.5: Reasons for incompleteness in practice.

Failure reason Count %

Recursive $ref 453 3.95%

Negated object schema 29 0.25%

Non-regular regex pattern 5 0.04%

Total 487 4.24%

5.5.4 RQ3: Comparison to Existing Work

To our knowledge, we are the first to address the problem of JSON sub-
schema checking for a large subset of JSON Schema, and there is no aca-
demic work that we can compare against. The closest developer tool we
could find is isSubset [Hag19], a tool that states the same goal as ours:
“Given a schema defining the output of some process A, and a second
schema defining the input of some process B, will the output from A be
valid input for process B?” We use the most recent version (1.0.6).

We run isSubset on the schema pairs with ground truth from Section 5.5.3.
The right part of Table 5.4 shows the results. isSubset produces a non-
negligible number of true positives, which means it indeed captures some
of the semantic of the subtyping relation. However, isSubset also produces
47 false positives and 41 false negatives, i.e., gives a wrong answer to a
subtype query. Overall, the existing tool gives a wrong answer in 40% of
the cases where the tool does not fail.

To better understand isSubset’s limitations, we inspected their code
and tested it on simple schemas. Although the tool performs some sim-
ple semantic checks, e.g., it correctly reports {’type’:’integer’} <: {

’type’:’number’}, it lacks the ability to capture the richness of JSON
schema in many ways. For instance, it is oblivious to uninhabited schemas
like {’type’:’string’, ’enum’:[1]}, and it fails to detect that {’type’:[
’string’,’null’]} is equivalent to {’type’:[’null’, ’string’]}.

5.5.5 RQ4: Efficiency

To evaluate how fast our subschema checker is in practice, we measure the
time taken by subschema checks on a sample of 798 pairs of non-equal
schemas from Table 5.2. We took every time measurement ten times and

5.6 contributions and conclusions 129

0 100 200 300 400 500
Size of pairs of schema files in KB

0

2

4

6

8

10

12

14

16

Ru
nt
im

e
in
 se

co
nd

s

Figure 5.14: Efficiency of subschema checking.

report the average. Figure 5.14 shows the size of pairs of schema files in KB
against the time subschema checking takes in seconds.

In most cases, our subschema checker terminates within a few seconds for
moderately sized schemas, with time increasing roughly linearly with the
schema file size. However, our subschema approach is lazy and terminates
on the first violation of a subtyping rule. On one pair of schemas in our
dataset, eliminated from the figure for scaling sake, it took around 2.8
minutes to terminate, which is not optimal for production. We will explore
how to improve on this, for instance, by on-demand canonicalization.

5.6 contributions and conclusions

JSON schemas serve as documentation for their corresponding APIs. This
chapter, therefore, supplements the thesis of this dissertation by leveraging
JSON schemas to build a subtype checker, which eventually detects a new
class of data-related bugs.

Our jsonSubSchema addresses a class of data compatibility bugs in
applications that describe their data using JSON schemas, a class of bugs
beyond the reach of classical static bug detectors (Chapter 2). The core of
the approach is a novel subtype checker for such schemas. It addresses
the various language features of JSON Schema by first canonicalizing and
simplifying schemas, and by then type checking pairs of schema fragments
that each describe data of a single type. The subtype checker successfully
answers the subtype question for 96% of schemas that occur in the wild,
clearly outperforming the best existing work. Applying the approach to

130 from documentation to subtype checking

detect data compatibility bugs in popular web APIs and ML pipelines
reveals 43 previously unknown bugs, most of which have already been
fixed. We envision our work to contribute to more reliable software in
data-intensive applications across different domains.

In summary, this chapter makes the following contributions:

• Formulating the problem of detecting data compatibility bugs as
JSON subschema checking.

• A canonicalizer and simplifier that converts a given schema into a
schema that is simpler to check yet permits the same set of documents.

• A subschema checker for canonicalized JSON schemas that uses
separate subschema checking rules for each basic JSON type.

• Empirical evidence that the approach outperforms the state of the
art, and that it reveals real-world data compatibility bugs in different
domains.

6
N E U R A L B U G - F I N D I N G : A F U T U R I S T I C O U T L O O K

Static analysis has been used for decades to find software bugs (Chapter 2).
Recent work [PS18; Vas+19; Wan+19; WCB14] shows that learning neural
bug detection models from code examples could be a viable alternative to
manually designing and implementing a program analysis. So far, these
learning-based bug detectors have been most successful for bugs that are
particularly hard to find for traditional analyses, e.g., name-related bugs
or mismatches between comments and code. In contrast, it is unclear how
learned bug detectors compare with traditional program analysis in a head-to-head
comparison. In this chapter, we present neural bug finding, the first study
to examine the effectiveness and challenges of using machine learning for
general purpose static bug detection. Neural bug finding, as presented in
this chapter, has the potential and advantage of utilizing the NL channel in
source code, which is often neglected by classical bug detection approaches
and the benefit of learning a bug detector end-to-end from data, without
the need for coding sophisticated analysis frameworks. We perform a
direct comparison of neurally learned and traditionally programmed bug
detectors for 20 recurring bug patterns and draw on several conclusions
and challenges for future work.

6.1 motivation

Static bug detectors find software bugs early during the development
process by searching a code base for instances of common bug patterns.
These tools, which we here call bug detectors, often consist of a scalable static
analysis framework and an extensible set of checkers that each search for
instances of a specific bug pattern. Examples of bug detectors include the

131

132 neural bug-finding : a futuristic outlook

pioneering FindBugs tool [HP04], its successor SpotBugs1, Google’s Error
Prone tool [Aft+12], and the Infer tool by Facebook [Cal+15].

Despite the overall success of static bug detection tools, there still remains
a lot of potential for improvement. A recent study that applied state-of-
the-art bug detectors to a set of almost 600 real-world bugs shows that
over 95% of the bugs are currently missed [HP18a]. The main reason is
that various different bug patterns exist, each of which needs a different
bug detector. These bug detectors must be manually created, typically by
program analysis experts, and they require significant fine-tuning to find
actual bugs without overwhelming developers with spurious warnings.
Bug detectors often require hundreds of lines of code each, even for bug
patterns that seem trivial to find at first sight and when being built on top
of a static analysis framework.

Recent work proposes to learn bug detectors from data instead of man-
ually designing and implementing them [Har+18; Li+19; Li+18; PS18;
Wan+19]. The main idea is to train a classifier that distinguishes between
buggy and correct code examples, and to then query this classifier with
previously unseen code. We call this line of work neural bug finding because
these approaches reason about source code using deep neural networks.
Neural bug finding has been shown to be successful for kinds of bugs that
are hard to find for traditional bug detectors, e.g., bugs related to identifier
names [PS18] or security vulnerabilities [Li+18]. However, these approaches
are either designed and tuned for specific bug kinds [Li+18; PS18; Wan+19]
or intended for general defect prediction, i.e., they predict only that some
code fragment is buggy, but not what kind of bug it is [Har+18; Li+19]. In
contrast, it is unclear how learned bug detectors compare with traditional
program analyses in a head-to-head comparison. Learning bug detectors
from source code examples has the potential of utilizing the dual modality
of source code: (i) The algorithmic channel expressed through the syntax
and structure of the code and (ii) The NL modality embedded in identifiers
and types names, often picked by programmers to express their intentions
and understanding. Specifically, the NL modality is a new dimension to
exploit for general purpose bug detection, which is often under-utilized by
traditional bug detectors.

This chapter presents an empirical study of the opportunities and chal-
lenges in neural bug detection. The study compares a set of fully au-
tomatically learned bug detector with more traditionally created, static

1 https://spotbugs.github.io

https://spotbugs.github.io

6.2 methodology 133

analysis-based bug detectors that are used in practice. We address the
following questions:

• Does the effectiveness of neural bug finding come close to the existing,
manually created bug detectors?

• When and why does neural bug detection work?

• How do properties of the training and validation, e.g., their size and
composition, influence neural bug detection?

• What pitfalls do exist when evaluating neural bug finding models?

Answering these questions will help assess the opportunities provided by
neural bug detection and will guide future work to address relevant open
challenges.

To study learned bug detectors in a head-to-head comparison with tra-
ditional bug detection, we use an existing, traditionally developed bug
detector as a generator of training data. To this end, we run the existing
bug detector on a corpus of code to obtain warnings about specific kinds of
bugs. Using these warnings and their absence as a ground truth, we then
train a neural model to distinguish code with a particular kind of warning
from code without such a warning. For example, we train a model that
predicts whether a piece of code uses reference equality instead of value
equality for comparing objects in Java. This setup allows us to assess to
what extent neural bug finding can imitate existing bug detectors.

One potential drawback of using an existing bug detector as the data
generator is that some warnings may be spurious and that some bugs
may be missed. To mitigate this problem, we focus on bugs flagged by
bug detectors that are enabled in production in a major company and
that empirically show false positive rates below 10% [Sad+15]. Another
drawback is that the learned bug detectors are unlikely to outperform
the static analyzers they learn from. However, the purpose of this work
is to study whether training a model for neural bug finding is feasible,
whereas we leave the problem of obtaining training data beyond existing
static analyzers as future work.

6.2 methodology

Our approach applies machine learning (ML), specifically deep learning,
to source code and learns a model that predicts whether a given piece

134 neural bug-finding : a futuristic outlook

Corpus
of code

Buggy
examples

Non-buggy
examples

Vectorized &
labeled examples

Neural model

Data
collection Processing

New
code

Vectorized
code

Processing Query

Training

Prediction

Figure 6.1: Overview of neural bug finding.

of code suffers from a specific bug or not. Figure 6.1 gives an overview
of the neural bug finding approach. As training and validation data, we
gather hundreds of thousands of code examples, some of which are known
to contain specific kinds of bugs, from a corpus of real-world software
projects (Section 6.2.1). To feed these code examples into a neural model, we
abstract and vectorize the source code of individual methods (Section 6.2.2).
A particularly interesting challenge is how to select examples of buggy and
non-buggy code for training the bug detection model, which we address in
Section 6.2.3. Finally, Section 6.2.4 describes how we train recurrent neural
network (RNN) models that predict different kinds of bugs.

6.2.1 Gathering Data

To study the capability of neural bug finding, we need some kind of or-
acle that provides examples of buggy and non-buggy code to train ML
models. One could potentially collect such data from existing bug bench-
marks [Cif+09; JJE14; Lu+05; Tom+19]. Unfortunately, such bug benchmarks
provide at most a few hundreds of buggy code examples, which is a rela-
tively small number for training neural networks. Other directions include
mining existing code repositories for pull requests and commits that fix
bugs or generating training data by injecting bugs, e.g., via mutations.

In this work, we obtain examples of buggy and non-buggy code by
running a state-of-the-art static analyzer as an oracle on a large corpus
of code, and by collecting warnings produced by the static analyzer. We
use Error Prone [Aft+12] as the oracle, a state-of-the-art static bug finding

6.2 methodology 135

tool for Java, which is developed and used by Google, and made available
as open-source. We run Error Prone on the Qualitas Corpus [Tem+10],
a curated set of 112 open-source Java projects and collect all warnings
and errors reported by Error Prone along with their corresponding kinds
and code locations. To simplify terminology, we call all problems reported
by Error Prone a “bug”, irrespective of whether a problem affects the
correctness, maintainability, performance, etc. of code.

Table 6.1 shows the bug kinds we consider in this work. Error Prone
warnings flag class-level problems, e.g., mutable enums; method-level prob-
lems, e.g., missing annotations, such as the @Override annotation (Id 1

in Table 6.1); and statement-level and expression-level issues, such as ex-
pressions with confusing operator precedence (Id 9 in Table 6.1). Since most
of the warnings are at the method level or at the expression level, our study
focuses on learning to predict those bugs, ignoring class-level bugs. After
removing class-level bugs, Table 6.1 includes the 20 most common kinds of
bugs reported by Error Prone on the Qualitas corpus.

To illustrate that finding these bugs with traditional means is non-trivial,
the last column of Table 6.1 shows how many non-comment, non-empty
lines of Java code each bug detector has. On average, each bug detector has
170 lines of code, in addition to th 156k lines of general infrastructure and
test code in the Error Prone project. These numbers show that manually
creating bug detectors is a non-trivial effort that would be worthwhile to
complement with learned bug detectors.

6.2.2 Representing Methods as Vectors

6.2.2.1 Code as Token Sequences

The next step is to model source code in a manner that enables us to apply
machine learning to it to learn patterns of buggy and non-buggy code.
Among the different approaches, we here choose to represent code as a se-
quence of tokens. This representation is similar to natural languages [Col+11;
Hin+12] and has seen various applications in programming and software
engineering tasks, such as bug detection [Wan+16], program repair [BS16;
Gup+17], and code completion [RVY14].

1
3

6
n

e
u

r
a

l
b

u
g

-
f

i
n

d
i
n

g
:

a
f

u
t

u
r

i
s

t
i
c

o
u

t
l

o
o

k

Table 6.1: Top 20 warnings reported by Error Prone on the Qualitas Corpus.

Id Warning Count Description LoC

1 MissingOverride 268,304 Expected @Override because method overrides
method in supertype; including interfaces

111

2 BoxedPrimitiveConstructor 3,769 valueOf or autoboxing provides better time and
space performance

268

3 SynchronizeOnNonFinalField 2,282 Synchronizing on non-final fields is not safe if the
field is updated

66

4 ReferenceEquality 1,680 Compare reference types using reference equality
instead of value equality

282

5 DefaultCharset 1,550 Implicit use of the platform default charset, can
result in unexpected behavior

515

6 EqualsHashCode 590 Classes that override equals should also override
hashCode

106

7 UnsynchronizedOverridesSynchronized 517 Thread-safe methods should not be overridden by
methods that are not thread-safe

125

8 ClassNewInstance 486 Class.newInstance() bypasses exception
checking

254

9 OperatorPrecedence 362 Ambiguous expressions due to unclear precedence 118

10 DoubleCheckedLocking 204 Double-checked locking on non-volatile fields is
unsafe

305

(Continued on next page)

6.
2

m
e

t
h

o
d

o
l

o
g

y
1

3
7

Table 6.1: Top 20 warnings reported by Error Prone on the Qualitas Corpus.

Id Warning Count Description LoC

11 NonOverridingEquals 165 A method that looks like Object.equals but does not
actually override it

179

12 NarrowingCompoundAssignment 158 Compound assignments like x += y may hide
dangerous casts

167

13 ShortCircuitBoolean 116 Prefer the short-circuiting boolean operators && and ||

to & and |

88

14 IntLongMath 111 Expression of type int may overflow before being
assigned to a long

127

15 NonAtomicVolatileUpdate 80 Update of a volatile variable is non-atomic 142

16 WaitNotInLoop 77 Object.wait() and Condition.await() must be called
in a loop to avoid spurious wakeups

76

17 ArrayToString 56 Calling toString on an array does not provide useful
information (prints its identity)

256

18 MissingCasesInEnumSwitch 53 Switches on enum types should either handle all values,
or have a default case

86

19 TypeParameterUnusedInFormals 46 A method’s type parameter is not referenced in the
declaration of any of the formal parameters

135

20 FallThrough 45 switch case may fall through 96

Total 280,651 3,402

138 neural bug-finding : a futuristic outlook

Let M be the set of all non-abstract Java methods in our corpus of code.
For each method m ∈ M, we extract the sequence of tokens sm from the
method body, starting at the method definition and up to length n. Let S
be the set of all sequences extracted from all methods M. Extracted tokens
include keywords such as for, if, and void; separators such as ;, (), and
,; identifiers such as variable, method, and class names; and finally, literals
such as 5 and "abc". Each token ti = (lex, t, l), where 1 ≤ i ≤ n, is a tuple
of the lexeme itself, its type t, and the line number l at which t occurs in
the source file. We ignore comments. As a default, we choose a sequence
length of n = 50 in our experiments.

As an alternative to a token sequence-based code representation, we
could model code, e.g., as abstract syntax trees (ASTs), control-flow graphs
(CFGs), or program-dependence graphs (PDGs). Recent work has started to
explore the potential of graph-based code representations [ABK17; Alo+18a;
Alo+18b; Bro+18; DTR18]. We here focus on a simpler, sequence-based code
representation, because it has been found to provide a reasonable baseline
and to avoid favoring any of the more specialized ways of modeling code.

6.2.2.2 Representing Tokens

To enable the ML model to learn and generalize patterns from source code,
we abstract the extracted token sequences in such a way that discovered
patterns are reusable across different pieces of code. One challenge is that
source code has a huge vocabulary due to identifiers and literals chosen
by developers [BJR19]. To mitigate this problem, we extract a vocabulary
V consisting of the most frequent keywords, separators, identifiers, and
literals from all code in our corpus. In addition to the tokens in the corpus,
we include two special tokens: UNK, to represent any occurrence of a token
beyond the most frequent tokens, and PAD to pad short sequences. In
our experiments, we set |V| = 1000 which covers 82% of all keywords,
separators, identifiers, and literals in our corpus.

We convert the sequences of tokens of a given code example to a real-
valued vector by representing each token t through its one-hot encoding.
The one-hot encoding function H(t) returns a vector of length |V|, where
all elements are zero except one that represents the specific token t. To allow
the learned models to generalize across similar tokens, we furthermore learn
an embedding function E that maps H(t) to Re, where e is the embedding
size. Based on these two functions, we represent a sequence of tokens s ∈ S
through a real-valued vector vs as follows:

6.2 methodology 139

Definition 6.2.1 (Source Code Vector) For a sequence of tokens s ∈ S that is
extracted from the source code of method m ∈ M, where the length of s is n and
s = t1, t2, . . . , tn, the vector representation of s is

vs = [E(H(t1)), E(H(t2)), . . . , E(H(tn))]

6.2.3 Buggy and Non-Buggy Examples

The training and validation data consists of two kinds of code examples:
buggy and non-buggy examples. We focus on methods as code examples,
i.e., our neural bug detectors predict whether a method contains a particular
kind of bug. Let K be the set of all bug kinds that the oracle can detect and
W be the set of all warnings reported by it on the Qualitas corpus. Each
warning w ∈W is represented as w = (k, l, m) where k ∈ K is the bug kind
flagged at line number l in method m. For each kind of bug k ∈ K, we
consider two subsets of M:

• The set Mkbug
of methods flagged by the oracle to suffer from bug

kind k.

• The set MknBug of methods for which the oracle does not report any
bug of kind k.

Based on these two sets, we select a subset of the methods as examples
to train and validate our models, as described in the following. After
selecting the methods, we produce two sets of sequences, Skbug

and SknBug ,
as described in Section 6.2.2.

6.2.3.1 Selecting Non-Buggy Examples

One strategy for selecting non-buggy examples is to randomly sample from
all methods that are not flagged as buggy for a bug of kind k. However, we
found this naive approach to bias the learned model towards the presence
or absence of specific tokens related to k, but not necessarily sufficient to
precisely detect k. For example, when training a model to predict a problem
with binary expressions (Id 9 in Table 6.1), using the naive approach to select
non-buggy examples would result in a model that learns to distinguish
source code sequences that contain binary expressions from sequences
that do not. In other words, it would simply flag any binary expression as
potentially buggy.

140 neural bug-finding : a futuristic outlook

To address this problem, we selectively pick non-buggy examples that
are similar to the buggy examples, but that do not suffer from the same
programming error k. For example, if a warning kind k flags binary ex-
pressions, we would like SknBug to be mostly composed of sequences that
include binary expressions but that do not suffer from k. To select such
similar examples in an automated manner, we perform two steps. First, we
convert each sequence into a more compact vector that summarizes the
tokens in the sequence. Second, we query all non-buggy examples for those
similar to a given buggy example using a nearest neighbor algorithm. The
following explains these two steps in more detail.

The first step converts sequence vectors to frequency vectors. Let vs =
[t1, t2, . . . , tn] be a vector of n tokens corresponding to code sequence s. We
convert vs into a vector of frequencies vfreq

s of all words in V. In other words,
we compute:

vfreq
s = [count(ti1 , s), count(ti2 , s), . . . , count(ti|V| , s)]

for some fixed ordering i1, i2, . . . , i|V| of the vocabulary V, and where
count(t, s) returns the number of occurrences of t in s. We exclude the
special tokens UNK and PAD when computing vfreq

s .
Before searching the space of non-buggy examples using the token-

frequency vectors, we counteract the effect of tokens with very high fre-
quencies. Examples of these tokens include new, =, return, and separators,
all of which are likely to appear across many different sequences of source
code but are less relevant for selecting non-buggy examples. To counteract
their influence, we apply term frequency-inverse document frequency (TF-IDF),
which offsets the number of occurrences of each token in the frequency
vectors by the number of sequences this token appears in. TF-IDF is widely
used in information retrieval and text mining to reflect how important a
word is to a document in a corpus of documents, while accommodating for
the fact that some words occur more frequently than others.

As the second step, to search the space of non-buggy code sequences
in our data set, we use an efficient, high-dimensional search technique
called approximated nearest neighbor (ANN). We use ANN to search the
vector representations of all non-buggy methods for a subset SANN

knBug
of non-

buggy examples that are similar to the multi-dimensional space of sequence
vectors in Skbug

.

Definition 6.2.2 (ANN Non-Buggy Examples) For every buggy code example
skbug

∈ Skbug
of bug kind k ∈ K, the ANN of skbug

is ANNsearch(skbug
, SknBug)

6.2 methodology 141

where ANNsearch(x, Y) returns the ANN of x in Y. Therefore, the set of non-buggy
nearest neighbors sequences of Skbug

is:

SANN
knBug

=
{

s′ ∈ SknBug | s′ = ANNsearch(s, SknBug)

∀s ∈ Skbug

}
ANN uses locality sensitive hashing to perform this high-dimensional

space search, which is much more efficient than exhaustively computing
pair-wise distances between all vectors.

6.2.3.2 Selecting Buggy Examples

When selecting sequences SknBug of non-buggy examples, we need to con-
sider whether the location of the bug is within the first n tokens of the
method. A warning w = (k, lw, m) that flags line lw in method m could
fall beyond the sequence sm extracted from m if the last token of sm,
tn = (lex, t, ltn) has ltn < lw. In other words, it could be that a warning
flagged at some method by the oracle occurs at a line beyond the extracted
sequence of that method because we limit the sequence length to n tokens.
In such a case, we remove this example from the set of buggy examples of
bug kind k and we use it as a non-buggy example.

6.2.4 Learning Bug Detection Models

The remaining step in our neural bug finding approach is training the
ML model. Based on the vector representation of buggy and non-buggy
examples of code sequences, we formulate the bug finding problem as
binary classification.

Definition 6.2.3 (Bug Finding Problem) Given a previously unseen piece of
code C, the problem Pk : C → [0, 1] is to predict the probability that C suffers from
bug kind k, where 0 means certainly not buggy and 1 means that C certainly has a
bug of kind k.

We train a model to find a bug of kind k in a supervised setup based on
two types of training examples: buggy examples (vbug, 1) and non-buggy
examples (vnBug, 0), where vbug and vnBug are the vector representations of
buggy and non-buggy code, respectively. During prediction, we interpret
a predicted probability lower than 0.5 as “not buggy”, and as “buggy”
otherwise.

142 neural bug-finding : a futuristic outlook

Since we model source code as a sequence of tokens, we employ recurrent
neural networks (RNNs) as models. In particular, we use bi-directional RNN
with Long Short Term Memory (LSTM) [GSC99] units. As the first layer,
we have an embedding layer that reduces the one-hot encoding of tokens
into a smaller embedding vector of length 50. For the RNN, we use one
hidden bi-directional LSTM layer of size 50. We apply a dropout of 0.2 to
the hidden layer to avoid overfitting. The final hidden states of the RNN
are fed through a fully connected layer to an output layer of dimension 1,
and the sigmoid activation function is applied to the output. For the loss
function, we choose binary cross entropy, and we train the RNN using the
Adam optimizer. Finally, we use a dynamically calculated batch size based
on the size of the training data (10% of the size of the training set with a
maximum of 300).

6.2.5 Different Evaluation Settings

We study four different ways of combining training and validation data,
summarized in Table 6.2. These four ways are combinations of two variants
of selecting code examples. On the one hand, we consider balanced data,
i.e., with an equal number of buggy and non-buggy examples. On the other
hand, we consider a stratified split, which maintains a distribution of buggy
and non-buggy examples similar to that in all the collected data, allowing
us to mimic the frequency of bugs in the real-world. For instance, assume
the total number of samples collected for a specific warning kind is 200

samples, of which 50 (25%) are buggy and 150 (75%) are not buggy. If we
train the model with 80% of the data and validate on the remaining 20%,
then a stratified split means the training set has 160 samples, of which 40

(25%) are buggy and 120 (75%) are not buggy, and the validation set has 40

samples, of which 10 (25%) are buggy and 30 (75%) are not buggy.
Evaluation setups BS and BANNS correspond to the scenario of using

balanced data for training and stratified split for validation. In setup BS,
we randomly sample the non-buggy examples to build a balanced training
set, while in setup BANNS we use our novel approximated nearest neighbor
(ANN) search to find non-buggy examples (Section 6.2.3). Since for many of
the kinds of warnings the number of collected buggy examples is relatively
small for a deep learning task, we additionally evaluate a third setup, SS,
where we utilize all non-buggy data available by doing a stratified split for
training and validation. Finally, setup BB represents the most traditional

6.3 implementation 143

Table 6.2: Setups used to evaluate the neural bug finding models.

Experiment Training Validation

BS Balanced Stratified

BANNS Balanced (ANN sampling) Stratified

SS Stratified Stratified

BB Balanced Balanced

setup for binary classifiers, which uses balanced training and balanced
validation sets.

6.3 implementation

We use the JavaParser2 to parse and tokenize all Java methods in the
Qualitas corpus. Tokenized methods, warnings generated by Error Prone,
their kinds, and locations are stored in JSON files for processing by the
models. Python scikit-learn3 is used to compute the TD-IDF of all examples
and NearPy4 is used to find the ANN of each buggy example. To implement
the recurrent neural networks, we build upon Keras5 and Tensorflow6.

6.4 results

We study neural bug finding by posing the following research questions:

• RQ1: How effective are neural models at identifying common kinds
of programming errors?

• RQ2: Why does neural bug finding sometimes work?

• RQ3: Why does neural bug finding sometimes not work?

• RQ4: How does the composition of the training data influence the
effectiveness of a neural model?

2 http://javaparser.org
3 https://scikit-learn.org
4 http://pixelogik.github.io/NearPy
5 https://keras.io
6 https://www.tensorflow.org

http://javaparser.org
https://scikit-learn.org
http://pixelogik.github.io/NearPy
https://keras.io
 https://www.tensorflow.org

144 neural bug-finding : a futuristic outlook

• RQ5: How does the amount of training data influence the effectiveness
of a neural model?

• RQ6: What pitfalls exist when evaluating neural bug finding?

6.4.1 Experimental Setup

For each experiment, we split all available data into 80% training data and
20% validation data, and we report the results with the validation set. Each
experiment is repeated five times, and we report the average results. For the
qualitative parts of our study, we systematically inspected at least ten, often
many more, validation samples from each warning kind. All experiments
are performed on a machine with 48 Intel Xeon E5-2650 CPU cores, 64GB
of memory, and an NVIDIA Tesla P100 GPU.

6.4.2 RQ1: How effective are neural models at identifying common kinds of
programming errors?

To study the effectiveness of the neural bug finding models, we measure
their precision, recall, and F1-score. For a specific bug kind, precision is the
percentage of actual bugs among all methods that the model flags as buggy,
and recall is the percentage of bugs detected by the model among all actual
bugs. The F1-score is the harmonic mean of precision and recall.

We first look at Experiment BANNS, which uses balanced training data
selected using ANN and an imbalanced validation set. The results of this
and the other experiments are shown in Table 6.3. Across the 20 kinds
of warnings we study, precision ranges between 73.5% down to 0.04%,
while recall ranges between 97.76% and 43.6%. The relatively high recall
shows that neural bug finders find a surprisingly high fraction of all bugs.
However, as indicated by the low precision for many warnings kinds, the
models also tend to report many spurious warnings.

6.
4

r
e

s
u

l
t

s
1

4
5

Table 6.3: Precision, recall, and F1-score of the neural bug finding models of the top 20 warnings reported by Error Prone.
Results are obtained by training with 80% of available data and validating on the remaining 20%. Table also shows
the total number of examples available in the data set. Warnings are in descending order by their total number of
buggy examples.

Experiment BS Experiment BANNS Experiment SS Experiment BB

Nb. of examples Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

Id Warning kind Buggy nBuggy % % % % % % % % % % % %

1 MissingOverride G
268,304 501,937 69.74 86.05 76.97 73.53 77.70 75.48 79.78 74.97 77.28 82.34 84.25 83.24

2 BoxedPrimitiveConstructor L
3,769 767,112 12.00 96.47 21.23 17.47 93.93 29.20 93.62 92.02 92.67 95.51 94.26 94.85

3 Sync.OnNonFinalField G
2,282 653,856 20.19 98.73 33.18 24.14 97.76 38.57 71.05 79.43 74.88 96.28 99.74 97.97

4 ReferenceEquality G
1,680 746,285 1.48 89.17 2.90 1.55 83.21 3.05 78.94 39.40 52.08 85.01 90.40 87.51

5 DefaultCharset G
1,550 747,192 2.18 95.35 4.27 4.06 80.00 7.69 75.61 60.58 66.57 91.83 94.56 93.13

6 EqualsHashCode G
590 673,446 8.20 99.49 14.91 8.79 85.25 15.89 39.71 5.93 10.06 98.38 100.00 99.17

7 Unsync.OverridesSync. G
517 657,303 0.36 82.14 0.72 0.28 68.93 0.55 61.26 16.89 25.27 85.74 77.05 80.73

8 ClassNewInstance G
486 742,585 0.80 94.23 1.59 2.56 85.36 4.97 88.04 79.59 83.46 91.41 93.97 92.44

9 OperatorPrecedence L
362 716,691 0.51 92.22 1.02 0.49 75.56 0.98 70.10 20.28 30.00 89.91 88.67 89.17

10 DoubleCheckedLocking G
204 297,959 2.80 97.56 5.40 5.05 95.61 9.24 95.80 83.41 88.84 98.30 95.53 96.77

(Continued on next page)

1
4

6
n

e
u

r
a

l
b

u
g

-
f

i
n

d
i
n

g
:

a
f

u
t

u
r

i
s

t
i
c

o
u

t
l

o
o

k

Table 6.3: Precision, recall, and F1-score of the neural bug finding models of the top 20 warnings reported by Error Prone.
Results are obtained by training with 80% of available data and validating on the remaining 20%. Table also shows
the total number of examples available in the data set. Warnings are in descending order by their total number of
buggy examples.

Experiment BS Experiment BANNS Experiment SS Experiment BB

Nb. of examples Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

Id Warning kind Buggy nBuggy % % % % % % % % % % % %

Nb. of examples Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

11 NonOverridingEquals L
165 488,094 2.04 93.33 3.94 2.97 77.58 5.61 90.01 87.88 88.63 95.22 97.95 96.49

12 NarrowingCompoundAssign. L
158 660,390 0.29 88.12 0.58 0.34 79.38 0.68 53.04 31.25 38.11 92.72 92.22 92.45

13 ShortCircuitBoolean L
116 616,037 0.09 82.61 0.18 0.10 73.91 0.20 72.22 31.30 39.70 78.21 91.82 83.78

14 IntLongMath L
111 531,502 0.23 79.09 0.47 0.30 81.82 0.59 59.52 7.27 12.60 90.82 100.00 94.95

15 NonAtomicVolatileUpdate G
80 369,501 0.07 71.25 0.15 0.04 71.25 0.08 0.00 0.00 0.00 80.24 83.60 81.00

16 WaitNotInLoop G
77 469,210 0.27 97.33 0.53 0.30 86.67 0.59 83.17 49.33 61.52 89.75 100.00 94.57

17 ArrayToString L
56 554,213 0.07 96.36 0.13 0.04 61.82 0.08 20.00 1.82 3.33 96.36 96.67 96.18

18 MissingCasesInEnumSwitch G
53 430,701 0.10 85.45 0.20 0.05 43.64 0.10 0.00 0.00 0.00 81.97 94.64 87.09

19 TypeParam.UnusedInFormals L
46 321,451 0.41 86.67 0.81 0.69 93.33 1.35 0.00 0.00 0.00 92.70 93.33 92.50

20 FallThrough L
45 615,140 0.08 93.33 0.15 0.43 82.22 0.84 63.33 20.00 30.09 83.44 92.29 87.13

Median 0.46 92.78 0.92 0.59 80.91 1.17 70.58 31.28 38.91 91.12 94.12 92.48

6.4 results 147

In Experiment SS, we use a much larger, but imbalanced, training set.
Table 6.3 also shows the results of this experiment. One can observe a clear
improvement of precision over Experiment BANNS for many of the models.
This improvement in precision is due to the richer and larger training
set, which trains the model with many more non-buggy examples than
Experiment BANNS, making it more robust against false positives. However,
the increased precision comes at the cost of decreasing recall compared
to Experiment BANNS. For example, the neural model that predicts double
checked locking bugs (Id 10 in Table 6.3) has its recall dropping from 95.6%
to 83.4% when using the full training data available. Yet, the reduced recall
is offset by a huge increase in precision, causing the median F1-score to
grow from 1.17% in Experiment BANNS to 38.91% in Experiment SS.

The effectiveness of neural bug finders varies heavily across bug
patterns, reaching precision and recall values above 90% for some
bug patterns, but struggling to be on par with traditional bug
detectors for many other patterns.

6.4.3 RQ2: Why does neural bug finding work?

To answer this question and also RQ3, we systematically inspect true posi-
tives, true negatives, false positives, and false negatives for each model. We
discuss our observations by splitting the warning kinds into two groups,
based on whether the information provided to the neural model is, in
principle, sufficient to accurately detect the kind of bug.

6.4.3.1 Bug Kinds with Sufficient Available Information

The first group includes all bug kinds where the bug pattern could, in
principle, be precisely and soundly detected based on the information
we provide to the neural model. Recall that we feed the first 50 tokens
of a method into the model, and no other information, such as the class
hierarchy or other methods in the program. In other words, the model
is given enough information to reason about local bugs, which involve
a property of one or a few statements, one or a few expressions, or the
method signature. We mark all warning kinds in this group with a L (for
local) in Table 6.3. Intuitively, these warning kinds correspond to what
traditional lint-like tools may detect based on a local static analysis.

148 neural bug-finding : a futuristic outlook

We now discuss examples of true positives, i.e., correctly identified bugs,
among the warnings reported by models trained for warning kinds in the
first group.

boxed primitive constructor (id 2) This bug pattern includes any
use of constructors of primitive wrappers, such as new Integer(1) and
new Boolean(false). The neural bug finder for this warning achieves high
precision and recall of 93.6% and 92% respectively (Table 6.3, Experiment SS).
The following is an instance of this bug, which is detected by the neural
model:

1 public int compareTo(java.lang.Object o) {
2 return new Integer(myX).compareTo(new Integer(((NodeDisplayInfo)o).myX)); }

Inspecting these and other bug kinds shows that, in essence, the model
learns to identify specific subsequences of tokens, such as new Boolean and
new Integer, as a strong signal for a bug.

operator precedence (id 9) This warning is about binary expres-
sions that either involve ungrouped conditionals, such as x || y && z, or a
combination of bit operators and arithmetic operators, such as x + y << 2.
Such expressions are confusing to many developers and should be avoided
or made more clear by adding parentheses. The following is a true positive
detected by our neural model.

1 @Override
2 public int nextPosition() {
3 assert (positions != null && nextPos < positions.length) || startOffsets != null &&

nextPos < startOffsets.length;
4 ... }

Overall, the neural model achieves 70% precision and 20.28% recall. The
fact that the model is relatively successful shows that neural bug finders
can learn to spot non-trivial syntactic patterns. Note that the space of buggy
code examples for this warning kind is large, because developers may
combine an arbitrary number of binary operators and operands in a single
statement. Given that the model is trained on very few buggy examples,
290 (80% of 362), the achieved precision and recall are promising.

The models learn syntactic patterns commonly correlated with par-
ticular kinds of bugs and identify specific tokens and token se-
quences, such as calls to particular APIs.

6.4 results 149

6.4.3.2 Bug Kinds with Only Partial Information

The second group of bug kinds contains bug patterns that, in principle,
require more information than available in the token sequences we give
to the neural models to be detected soundly and precisely. For example,
detecting these kinds of bugs requires information about the class hierarchy
or whether a field used in a method is final. We mark these bug kinds
with a G (for global) in Table 6.3. The bug kinds include bugs that require
type and inheritance information, e.g., missing override annotations (Id 1),
missing cases in enum switch (Id 18), default Charset (Id 5), and un-
synchronized method overriding a synchronized method (Id 7). They also
include bugs for which some important information is available only outside
the current method, such as synchronized on non-final field (Id 3) and
equals-hashcode (Id 6). Note that although detecting these bugs requires
information beyond the sequence of tokens extracted from the methods,
the bug location lies within the sequence of tokens. Somewhat surprisingly,
neural bug finding also works for some of these bug patterns, achieving
precision and recall above 70% in some cases, which we describe in the
following.

missing @override (id 1) This warning is for methods that override a
method of an ancestor class but that do not annotate the overriding methods
with @Override. Although the supertype information that is required to ac-
curately detect this problem is not available to the neural model, the model
provides high precision and recall. Inspecting true positive predictions
and training examples reveals that the model learns that many overriding
methods override methods of common Java interfaces and base classes.
Examples include the toString() method from the Object base class and
the run() method from the Runnable interface. In fact, both method names
appear in the data set as buggy 44,789 and 21,767 times, respectively. In
other words, the models successfully learns to identify common instances
of the bug pattern, without fully learning the underlying bug pattern.

default charset (id 5) This warning flags specific API usages that
rely on the default Charset of the Java VM, which is discouraged for lack
of portability. The “pattern” to learn here are specific API names, which
implicitly use the default Charset. The following instance is a true positive
detected by the neural model:

150 neural bug-finding : a futuristic outlook

1 private void saveTraining() {
2 BufferedWriter writer = null;
3 try {
4 writer = new BufferedWriter(new FileWriter(SAVE_TRAINING));
5 ...

As we show in RQ3, this bug is more subtle than it looks. Correctly detecting
this problem requires, in some cases, information on the type of receiver
objects, on which the APIs are called.

double checked locking (id 10) This bug is about a lazy initial-
ization pattern [Laz] where an object is checked twice for nullness with
synchronization in-between the null checks, to prevent other threads from
initializing the object concurrently. The following is a true positive reported
by our neural model.7

1 private SimpleName pointcutName = null;
2 ...
3 public SimpleName getName() {
4 if (this.pointcutName == null) {
5 synchronized (this) {
6 if (this.pointcutName == null) {
7 ...
8 return this.pointcutName; }

While the method with the bug contains parts of the evidence for the bug, it
is missing the fact that the field pointcutName is not declared as volatile.
So how does the model for this bug pattern achieve the surprisingly high
precision and recall of 95.8% and 83.41%, respectively (Experiment SS)?
We find that the correct pattern of double checked locking almost never
occurs in the data set. Even the ANN search for non-buggy examples yields
sequences that are indeed similar, e.g., sequences that have a null check
followed by a synchronized block, but that do not exactly match the lazy
initialization pattern. Given the data set, the model learns that a null check,
followed by a synchronized block, followed by a another null check is likely
to be buggy. In practice, this reasoning seems mostly accurate, because the
idiom of double checked locking is hard to get right even for experienced
programmers [Dou].

7 Note that our approach extracts the token sequence from the method body, i.e., starting from
line 3. The object declaration at line 1 is shown for completeness only.

6.4 results 151

Neural bug finding picks up signals in code that differ from the
information that traditional bug detectors consider. This behavior
causes the learned models to sometimes “work” even when not all
of the information that is required to decide whether some code
contains a bug, is available; e.g., by identifying common instances
of the general bug pattern while ignoring side conditions.

6.4.4 RQ3: Why does neural bug finding sometimes not work?

To answer this question, we systematically inspect false positives and false
negatives for each model. We present one example for each case and provide
insights why the models mis-classify them.

6.4.4.1 Spurious Warnings

Spurious warnings, i.e., false positives, occur when a model predicts a
non-existing bug.

default charset (id 5) In RQ2, we showed that finding this bug pat-
tern entails learning specific API names, e.g., FileWriter. Another common
API that raises this warning is String.getBytes(), which also relies on
the platform default Charset. Because this API is strongly present in the
training examples, the model learns that sequences that have the getBytes

token are likely to be buggy. However, whether an occurrence of this token
is erroneous depends on whether it is the relevant method call or not, and
on the receiver object on which the method is called. The following is a
false positive for this bug kind, where a method with the same name is
declared for a user defined type.

1 public class UnwovenClassFile implements IUnwovenClassFile {
2 ...
3 public byte[] getBytes() {
4 return bytes; }
5 ...

6.4.4.2 Missed Bugs

The neural models inevitably have false negatives, i.e., they fail to detect
some instances of the bug patterns.

152 neural bug-finding : a futuristic outlook

non-overriding equals (id 11) This pattern flags methods which
look like Object.equals, but are in fact different. A method overriding
Object.equals must have the parameter passed to it strictly of type Object,
a requirement for proper overload resolution. Therefore, any method that
looks like boolean equals(NotObjectType foo) {...} should be flagged
buggy. The following, is an instance of a false negative for this warning
kind.

1 boolean equals(NodeAVL n) {
2 if (n instanceof NodeAVLDisk) {
3 return this == n ||
4 (getPos() == ((NodeAVLDisk) n).getPos()); }
5 return false; }

The reason why the model misses this bug is that it fails to distinguish
between “boolean equals(Object” and any other sequence “boolean
equals(NotObjectType”. We believe that this failure is not an inherent
limitation of the neural model, but can rather be attributed to the scarcity
of our training data. In total, we have 165 examples of this bug in our data
set, and for training the model, we use 80% of the data, i.e., around 132

examples. Given this amount of data, the recall for this bug reaches 87.88%
(Experiment SS).

Neural bug finding suffers from false positives and false negatives.
The main reason is that predictions are made from partially incom-
plete information, e.g., due to the absence of fully qualified identifier
names and types. This information is usually available to traditional
bug detectors. The number of learning examples also influences the
learned model.

6.4.5 RQ4: How does the composition of the training data influence the effective-
ness of a neural model?

To answer this question, we compare the results from Experiments BS,
BANNS, and SS. Comparing Experiments BS and BANNS in Table 6.3 shows
that using ANN to select non-buggy samples for training increases the
precision of the trained models in most of the cases. The reason is that
having similar code examples, some of which are labeled as buggy while
others are labeled non-buggy, helps the model to define a more accurate
border between the two classes. Recent work on selecting inputs for testing
neural networks is based on a similar observation [KFY18]. At the same
time, using ANN also causes a drop in recall, mainly because the model

6.4 results 153

faces a more difficult learning task. For example, using ANN to train the
model for bug pattern 2 improves precision by 5.5% but degrades recall by
2.5%.

Comparing Experiments BANNS and SS shows that adding more non-
buggy examples to the training set decreases the recall by a value between
2% (bug pattern 2) up to a complete erasure of the recall (bug pattern 19).
On the positive side, the additional data added in Experiment SS signifi-
cantly improves the precision of all models. For example, the model of bug
pattern 16 improves precision by 83%.

The composition of the training data has a huge impact. Balanced
training data (Experiments BS and BANNS) favors recall over preci-
sion, while adding more non-buggy training data (Experiment SS)
favors precision.

6.4.6 RQ5: How does the amount of training data influence the effectiveness of a
neural model?

Figure 6.2 addresses this question by plotting precision and recall of the
different models over the number of buggy examples that a model is
trained on in Experiments BANNS and SS. All four plots show a generally
increasing effectiveness, both in terms of precision and recall, for warning
kinds where more data is available. For example, the models for bug
patterns 2 and 3 reach high precision and recall in both experiments due
to the availability of more examples. Perhaps surprisingly, though, some
models are effective even with much a smaller number of warnings. For
example, for bug patterns 11 and 16, the neural models achieve precision
and recall above 77%, even though only 165 and 77 buggy examples are
available, respectively.

More training data improves the effectiveness of a learned model,
but surprisingly small data sets, e.g., of only 77 buggy examples,
can yield reasonably effective models.

6.4.7 RQ6: What pitfalls exist when evaluating neural bug finding?

In binary classification problems, the usual setup for training and validation
is to use balanced data sets. However, bugs of a specific kind are rare in
real-world code. Therefore, evaluating neural bug finding and any bug

154 neural bug-finding : a futuristic outlook

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

P
re

c
is

io
n

Number of buggy examples

2
3

45
6

789
1011121314151617181920

(a) Experiment BANNS precision

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

R
e
c
a
ll

Number of buggy examples

2
3

4
5

6

7

8

9

10

1112
13

14

15

16

17

18

19

20

(b) Experiment BANNS recall

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

P
re

c
is

io
n

Number of buggy examples

2

3

4
5

6

7

8

9

10
11

12

13

14

15

16

17

1819

20

(c) Experiment SS precision

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

R
e
c
a
ll

Number of buggy examples

2

3

4

5

6

7

8

9

10
11

1213

14

15

16

171819

20

(d) Experiment SS recall

Figure 6.2: Effect of number of buggy examples on precision and recall for each
warning kind. The plots use the ids from Table 6.3. Bug Id 1 is not
shown due to the huge difference in x-axis scale.

finding technique using a balanced data setup yields misleading results, as
described in the following.

Table 6.3 shows the results of Experiment BB, which uses balanced data
for both training and validation. The first glimpse at the results is very
encouraging, as they show that neural bug finding works pretty well.
Unfortunately, these numbers are misleading. The reason for the spuriously
good results is that the neural models overfit to the presence, or absence, of
particular tokens, which may not necessarily be strong indicators of a bug.

As an example, consider bug pattern 6, which flags classes that override
the Object.equals method but that fail to also override Object.hashCode.
In Table 6.3, Experiment BB, the neural model predicting this warning is
almost perfect with 100% recall and 98.38% precision. However, a closer
look into this model and manual inspection of the training and validation
examples reveal that the neural model has simply learned to predict that

6.5 threats to validity 155

the sequence of tokens "public boolean equals (Object . . . " is always
buggy. This explains why the model achieves a recall of 100%. But why is
precision also quite high at 98%? It turns out that randomly sampling 590

non-buggy examples (corresponding to the number of buggy examples)
from 673,446 non-buggy methods is likely to yield mostly methods that do
not contain the sequence "public boolean equal . . . ". In other words, the
unrealistic setup of training and validation data misleads the model into an
over-simplified task, and hence the spuriously good results.

Comparing the results from Experiments BS and BB further reveals the
fragility of Experiment BB’s setup. In Experiment BS, the training set is
constructed as in Experiment BB, but the validation set contains a lot more
samples, most of them are actually not buggy. Because the models learned
in Experiment BB do not learn to handle non-buggy examples similar to the
buggy examples, their precision is low. That is why for the same warning
kind, e.g. bug pattern 6, the precision in Experiment BS is only 8% instead
of the 98.38% in Experiment BB.

Even though bug detection can be seen as binary classification tasks,
evaluating its effectiveness with balanced validation data can be
highly misleading.

6.5 threats to validity

Our training and validation subjects might bias the results towards these
specific projects, and the findings may not generalize beyond them. We try
to mitigate this problem by using the Qualitas corpus, which consists of a
diverse set of 112 real-world projects.

We use warnings reported by a static analyzer as a proxy for bugs. The
fact that some of these warnings may be false positives and that some actual
bugs may be missed, creates some degree of noise in our ground truth. By
building upon an industrially used static analyzer tuned to have less than
10% false positives [Sad+15], we try to keep this noise within reasonable
bounds. Future research on collecting and generating buggy and non-buggy
code examples will further mitigate this problem.

Finally, the qualitative analysis of the validation results is subject to
human error. To mitigate this, two of the authors discussed and validated
all the findings.

156 neural bug-finding : a futuristic outlook

6.6 implications for this dissertation and future work

Comparing neural bug finding head-to-head with traditional bug finders
reveals that learned bug detectors show potential but still have a long way to
go to be on par with their traditional counter-parts. We see empirically that
neural models can learn syntactic code patterns, and hence these models
are indeed capable of finding local bugs that do not require inter-procedural
or type-based reasoning. At the same time, neural bug detectors often fail
to detect a bug or report spurious warnings.

Our results emphasize another long-standing challenge in machine learn-
ing: Data is important. Our results demonstrate that both the amount of
training data as well as how to sample the training data has a huge influ-
ence on the effectiveness of the learned bug finding models. Collecting data
for neural bug finding remains an open problem, which seems worthwhile
addressing in future work.

To make neural bug finding applicable to wider range of bugs, our work
reveals the need for richer ML models that utilize information beyond the
source code tokens, e.g., type hierarchy, data- and control-flow, and inter-
procedural analysis. How to effectively feed such information into neural
models is closely related to the ongoing challenge of finding suitable source
code representations for machine learning. Future work should investigate
how general purpose neural bug finding could benefit from such richer and
more complex models.

Finally, combining API-specific knowledge, e.g., informal specification in
NL or documentation, is also a natural extension to our work presented here.
As shown in Chapter 4, crosschecking documentation against the runtime
behavior of an API yields an effective and novel bug detection techniques.
Similarly, future work based on this dissertation should examine how to
augment neural static bug finding models with information extracted from
documentation and other NL resources, beyond the source code itself.

6.7 contributions and conclusions

This chapter explores the opportunities and challenges of creating bug de-
tectors via deep learning, a potential complement and may be an alternative
to traditional bug detectors. We systematically study the effectiveness of
neural bug finding based on warnings obtained from a traditional static bug
detection tool. The neural bug finding approach proposed in this chapter
presents a futuristic outlook for an alternative way to building static bug

6.7 contributions and conclusions 157

finders: By learning a bug detector end-to-end from data. This idea builds
on our thesis statement that learning from programs is an effective way
to tackle several software engineering problems. Although the approach
suffers from shortcomings, it represents early efforts addressing an open
and challenging problem with a lot of untapped future work (Section 6.6
and Section 8.2).

In summary, studying neural bug detection models for 20 common kinds
of programming errors shows that

• Learned bug detectors identify instances of some bug patterns with
a precision of up to 73% and a recall of 97%. At the same time, the
learned models struggle to find bugs of other bug patterns, which
traditional analyses find easily.

• Neural bug finding works when the models learn to identify com-
mon syntactic patterns correlated with bugs, particular API misuses,
or common instances of a more general bug pattern. That is, the
learned models use signals in the code which are different from the
information that traditional bug detectors consider.

• The size and composition of the training data a neural bug finding
model is learned from have a huge impact on the model’s effectiveness.
More training data yields more effective models, but obtaining enough
examples to train an effective neural model for finding specific bug
kinds is difficult. Moreover, it is important to select buggy and correct
examples that resemble each other except for the presence of a bug.

• Following a naive approach for validating a learned bug detector on
balanced data may lead to very misleading results.

7
R E L AT E D W O R K

In this chapter, we discuss research work closely related to that presented
in this dissertation. The literature described here is not intended to be
comprehensive, rather, it highlights important related work and positions
the dissertation against existing work. We begin by discussing work which
focuses on various forms of software documentation, and their use in
software engineering tasks. Then, we present existing work that focuses on
API documentation and its use in practice. After that, we discuss work at
the intersection of applying machine learning to program analysis tasks
and software engineering tasks. Then, we discuss several dimensions of
existing work on traditional bug detection including static and dynamic
analyses, as well as anomaly detection and specification mining. Finally, we
give an account of work related to static subtype checking and the usage of
JSON Schema.

7.1 exploiting natural language in software engineering

The central thesis of this dissertation is that leveraging software documen-
tation provides means to equip traditional bug detection techniques with
additional capabilities. Researchers and practitioners have long tried to
utilize different sources of natural language to aid developers in several
of their software engineering tasks, such as mining specifications from
NL, finding inconsistencies between documentation and source code, and
automatically generating NL descriptions and comments from programs
source code.

159

160 related work

7.1.1 Mining Specifications from Natural Language

Several pieces of work mine specifications or rules from natural language
in API documentation, source code comments, or requirements documents.
Pandita et al. [Pan+12] propose a combination of natural language pro-
cessing (NLP) and heuristics to infer pre- and post-conditions from API
documentation. Similarly, aComment [TZP11] infers interrupt-related pre-
and post-conditions for operating systems code from NL comments and
code. Doc2Spec [Zho+09a] infers resource specifications from the NL de-
scription of an API using NLP. Text2Policy [Xia+12] infers access control
policies from NL documents that describe functional requirements, a com-
bination of NLP and heuristic pattern-matching. C2S [Zha+20] translates
API documentation to formal specifications in the Java modeling language
(JML). The approach first builds a parallel corpus of API documentation
and JML specifications of the JDK methods. Then, it uses the associated
rules to synthesize specifications for new methods based on their documen-
tation. The work presented in this dissertation is orthogonal to the above.
Instead of mining natural language, we seek to enhance the documenta-
tion by learning concurrency specification based on source code properties
(Chapter 3), cross-check documentation vs. runtime behavior (Chapter 4),
and utilize documentation for subtype checking (Chapter 5).

Toradocu [Gof+16] and its follow-up JDoctor [Bla+18] extract executable
test oracles from documentation. Toradocu focuses on whether an exception
gets thrown, whereas our approach in Chapter 4 reasons about any behavior
encoded in the pre- and post-state of a called method. JDoctor alleviates
this limitation and infers pre- and post-conditions. The main differences
to our work are: (i) Instead of aiming for general pre- and post-conditions,
our work addresses an arguably simpler problem, namely predicting for
a specific execution of a method whether the behavior conforms to the
documentation, (ii) Instead of hard-coding heuristics, our approach learns
a model from data, allowing it to generalize to patterns not supported by a
finite set of heuristics, and (iii) Instead of locally reasoning about individual
words or sentences and what condition they correspond to, our proposed
technique globally reasons about all parts of the documentation and the
full pre- and post-state of a call together. Swami [MB19] derives both test
inputs and test assertions from structured NL specification of a program.
Their approach relies on four patterns of NL specifications and shows that
they work well for a complex subject application; yet it remains unclear
whether the approach generalizes to other software.

7.1 exploiting natural language in software engineering 161

Phan et al. [Pha+17] propose a learning-based approach to translate
source code to documentation of exceptional behavior and vice versa using
statistical machine translation (SMT). It is yet unknown if such technique
can generate specific documentation specification, e.g., related to the con-
currency behavior of a class like our work in Chapter 3.

7.1.2 Inconsistencies Between Documentation and Code

Other techniques aim at detecting discrepancies or inconsistencies between
source code and its documentation, e.g., to detect outdated or wrong doc-
umentation. iComment [Tan+07] finds inconsistencies between comments
and code through a template-based inference of programming rules. tCom-
ment [Tan+12] identifies inconsistencies between method-level comments
and a method body. That approach focuses on null values and exceptions
they may cause. DocRef [ZS13] combines NLP with island parsing to detect
hundreds of API documentation and code inconsistencies. On a similar line
of work, Ratol and Robillard [RR17] pinpoint comments that risk becoming
inconsistent when changing identifier names in the code. CPC [Zha+20]
propagates comments to other program elements, e.g., from a method to
its callers. Using the newly propagated comments, the approach detects
inconsistencies between the new comments and their corresponding source
code entities. Combining that approach with our work in Chapter 4 could
provide not only a much larger dataset to learn from, but also more com-
ments to check against runtime behavior. Zhou et al. [Zho+17] generate
first order logic formulas (FOL) from an API source code and another set
of FOLs from the documentation by utilizing NLP techniques, such as part
of speech (POS) tagging. After that, they feed the two sets of formulas into
an SMT solver to detect four different kinds of inconsistencies in the API
parameters documentation.

The common theme among the above approaches is that they are purely
static, i.e., they analyze the source code of an API and compare it against
the API documentation through pattern matching and NLP techniques.
Our approach in Chapter 3 is similar in that it also extracts features from
source code statically. However, it differs in various aspects: (i) It tackles an
understudied problem in documentation: thread safety of object oriented
classes, (ii) It does not compare code against documentation, rather, it
learns from source code only, and (iii) It relies on automatic learning,
without using any hand-crafted rules or heuristics. Moreover, our approach
for crosschecking documentation versus runtime presented in Chapter 4

162 related work

distinguishes itself from the above by utilizing the runtime behavior of
the API instead of its source code, and it also utilizes learning instead of
template-based patter matching.

7.1.3 Learning from Natural Language

Recently, researchers started to tackle several software engineering problems
by applying machine learning to programs. Several of such approaches
utilize NL in source code, e.g., documentation to infer type signatures of
JavaScrip [MPP19] and Python functions [Pra+20], or utilize the source code
itself to recover meaningful and useful NL information, e.g., JavaScript
identifier names in obfuscated JavaScript code [VCD17]. We give a more
detailed account of various applications of machine learning in program
analysis in Section 7.3.

7.2 api documentation in practice

API documentation has received a lot of attention because it is pervasive,
often rich in information, and represents the entry point for new developers
when they learn about a new API.

7.2.1 Studies of API Documentation

Monperrus et al. [Mon+12] analyzed hundreds of Java API documentation
items and identified 23 different directives which occur throughout the
analyzed documentation. Lethbridge, Singer, and Forward [LSF03] study
how documentation is used in practice. They find that documentation
is often outdated and inconsistent. Similarly, Aghajani et al. [Agh+19]
analyzed hundreds of software artifacts related to documentation such as
Stack Overflow questions, pull requests, issues, and mailing lists; and built
a taxonomy of documentation issues. They identify several issues related to
the correctness, completeness, staleness, and usability of the documentation.
In their follow-up work, Aghajani et al. [Agh+20] surveyed developers and
practitioners regarding the documentation issues they identified earlier and
confirmed that developers are very interested in tool support for automatic
generation and maintenance of documentation. Another study focuses on
problems that developers face when learning a new API [Rob09]. Their
results include that many APIs need more and better documentation. Such
studies help guide future work on API documentation. Our contributions in

7.3 machine learning and program analysis 163

Chapter 3 and Chapter 4 for inferring concurrency specification from source
code and cross-checking documentation vs. runtime behavior, respectively,
provide automated techniques to alleviate some of issues raised by those
studies.

7.2.2 Enhancing the Usage of API Documentation

Improving documentation and how developers use it is one of the active
areas of research. McBurney et al. [McB+17] investigate how to prioritize
documentation effort based on source code attributes and textual analysis.
Treude and Robillard [TR16] augment API documentation with relevant and
otherwise missing information from Stack Overflow. APIBot is a bot created
to answer NL questions by developers based on the available documenta-
tion [Tia+17]. Other work finds relevant tutorial fragments for an API to
help developers better understand that API [Jia+17]. Our work in Chapter 3

contributes to improving and adding otherwise missing documentation, yet
we tackle the so far understudied problem of inferring concurrency-related
documentation. Additionally, in Chapter 4 we propose an approach to auto-
matically reason about documentation w.r.t. the observed program runtime
behavior.

7.3 machine learning and program analysis

The main thesis of this dissertation is that learning from programs and
their documentation provide means to improving traditional bug finding
and prevention techniques. Our learning based approaches presented in
Chapters 3, 4, and 6 relate to a recent stream of machine learning-based
program analyses. We give an account on some of the work related to ours
while we refer the reader to the work of Allamanis et al. [All+18] which
provide a more detailed view of the different lines of work related to the
idea of applying ML to program analysis.

7.3.1 Program Representation for Learning

A challenge for any ML-based program analysis is how to represent a
program for the learning task. Work on this problem includes graph-based
representations [ABK17; Bro+18], embeddings learned from sequences of
API calls [DTR18], embeddings learned from paths through ASTs [Alo+18a;
Alo+18b], and embeddings for edits of code [Yin+18]. A hybrid represen-

164 related work

tation comprised of symbolic execution and concrete execution traces has
been proposed recently [WS20] with its authors arguing that it is more
effective than, for instance, representations learned from source code only.
In Chapter 4, we represent the runtime state of the program execution
by a token-based sequence of the key-value pairs of the program serial-
ized object. In Chapter 6, we opt for a simple representation for programs
source code, the sequence of their source code tokens. Future work could
possibly explore whether our learning based approaches proposed in this
dissertation could benefit from other, possibly richer, representations of
programs.

graph kernels Our technique in Chapter 3 uses a novel graph rep-
resentation for the program source code, the field-focused graph, and a
classical graph embeddings, the Weisfeiler-Lehman graph kernels [She+11].
Kondor and Lafferty [KL02] and Gärtner, Flach, and Wrobel [GFW03] in-
troduced the concept of graph kernels, and various other kinds of graph
kernels have been proposed since then, e.g., random-walk kernels [KTI03],
shortest-path kernels [BK05], and subtree kernels [RG03]. These graph
kernels have been mainly used in bioinformatics [Bor+05], in chemoinfor-
matics [Ral+05; Swa+05], and in web mining [WM03], e.g., to find similar
web pages and to analyze social networks.

Some existing work utilizes graph kernels for software engineering tasks.
Wagner et al. [Wag+09] analyze process trees with graph kernels to identify
malware. Another approach [And+11] uses Markov chains constructed from
instruction traces of executables [And+11]. Furthermore, graph kernels have
been applied to statically identify malware by applying a neighborhood
hash graph kernel on call graphs [Gas+13] and by using graph edit dis-
tance on API dependency graphs [Zha+14]. Our TSFinder proposed in
Chapter 3 tackles a different problem: the lack of documentation regarding
multi-threaded behavior. Another difference is the kind of information that
TSFinder extracts from classes and then feeds into graph kernels. Finally, to
the best of our knowledge, our experimental setup is orders of magnitude
larger than any other study that utilizes graph kernels in the context of
program analysis.

7.3.2 Learning to Find Bugs

Learned models are becoming increasingly popular for bug finding, moti-
vated by the advances in ML and the observation by Ray et al. [Ray+16] that

7.3 machine learning and program analysis 165

buggy code is less frequent than non-buggy code. DeepBugs exploits identi-
fier names, e.g., of variables and methods, to find buggy code [PS18]. Vasic
et al. [Vas+19] use pointer networks to jointly find and fix variable mis-use
bugs. Weston, Chopra, and Bordes [WCB14] train a memory network to
predict whether a piece of code may cause a buffer overrun [Cho+17]. Wang
et al. [Wan+19] use graph neural networks (GNN) [Sca+09] to detect three
kinds of bug patterns. A broader set of coding mistakes that may cause
vulnerabilities is considered in other learning-based work [Li+18].

These approaches focus on neural models that detect specific kinds of bug,
in the order of two or three kinds at most. Our work in Chapter 6 contributes
a broader study of neural bug finding and a head-to-head comparison with
a state-of-the-art bug detector. A study related to ours applies different
learning techniques to the bug detection problem [Cha+17]. The authors of
that study use a data set that includes seeded bugs, whereas we use real
bugs. Another difference is that most of their study uses manually extracted
features of code, whereas we learn models fully automatically, without any
feature engineering. Their preliminary results with neural networks are
based on a bit-wise representation of source code, which they find to be
much less effective than we show sequence of tokens-based models to be.

7.3.3 Learning from Source Code

To exploit the observation of Hindle et al. [Hin+12] that source code is repet-
itive, even more than natural language, researchers and practitioners apply
machine learning to source code for a variety of tasks. Some of the machine
learning-based program analyses, beyond bug detection, include predicting
types [Hel+18; MPP19; Pra+20; RVK15], improving or predicting identifier
names [All+15; Liu+19; RVK15; VCD17], detecting clones [Whi+16; ZH18],
searching code [GZK18; Sac+18], predicting code edits [Tuf+19; Yin+18;
Zha+18], reasoning about code edits [Hoa+20], classifying code [Mou+16;
Zha+19], automatically fixing bugs [Bad+19; Gup+17; Har+18], and gener-
ating unit tests assertion statements [Wat+20]. Those approaches, similar to
Chapters 3 and 6, are purely static, in contrast to our dynamic approach
in Chapter 4.

7.3.4 Learning from Program Execution

Beside learning from source code, researchers also examine learning from
different aspects of program execution. Vanmali, Last, and Kandel [VLK02]

166 related work

train a model that, given the input, predicts the output of a program. Such
a model can serve as a test oracle for one specific program, but in contrast
to our work in Chapter 4 does not generalize across programs. Piech et
al. [Pie+15] learn program embeddings based on input-output relations
gathered during executions, and use the embeddings to provide feedback
on student code. Wang, Singh, and Su [WSS17] learn an embedding of
programs from dynamically gathered sequences of program states, and use
the embedding to classify programs based on the mistakes they contain.
Tsimpourlas, Rajan, and Allamanis [TRA20] describe a neural model that
classifies traces of test executions as failing or passing. In contrast to DocRT,
their approach does not leverage NL information and uses traces with all
calls that happen within the software under test. All the above work shares
the idea to learn from program executions, but uses a different approach
and has a different purpose than our crosschecking documentation versus
runtime in Chapter 4. The direction of learning from program executions is
a new one and several ideas, such as the kind of runtime information and
how to represent it, are yet to be explored further.

7.4 traditional bug detection techniques

Software developers have long relied on several techniques to help them
detect and prevent bugs in programs before they put a program in pro-
duction or ship it to end users. Among the different techniques, we focus
here on the two most relevant families of bug detection mechanisms: static
analysis and dynamic analysis. In Chapter 2, we analyze the effectiveness of
state-of-the-art static bug detectors. Moreover, the approaches we propose
in Chapters 3, 5, and 6 are static while the approach presented in Chapter 4

is dynamic.

7.4.1 Static Analysis

The lint tool [Joh78], originally presented in 1978, is one of the pioneers
on static bug detection. Since then, static bug detection has received sig-
nificant attention by researchers and industry, including work on finding
API misuses [Ngu+09; Pra+12; WZ09], name-based bug detection [PG11],
security bugs [Bro+17], and on detecting performance bugs [PH13]. These
approaches, similar to our work in Chapter 6, target various kinds of soft-
ware bugs. Ours, however, is different in that it does not rely on any static
analysis, but just utilizes warnings produced by static checkers to collect

7.4 traditional bug detection techniques 167

data to train a machine learning model. Yet, our technique does not come
on par with such mature tools yet in terms of its precision and recall, which
calls for more research in this direction. Furthermore, our work in Chap-
ter 5 takes a different approach to static bug detection by introducing and
utilizing a static subtype checker which finds data incompatibility bugs, a
class of bugs usually not detected by the above static bug finders.

Additionally, there are various static analyses of concurrent code, e.g.,
to find deadlocks [AWS05; Nai+09; WTE05], atomicity violations [FQ03],
locking policies [FF00], and conflicting objects [PG03]. One strength of our
approach in Chapter 3 compared to existing static analyses of concurrent
code is the use of a relatively simple static analysis and complementing it
with graph-based machine learning.

real-world deployments of static analyses Several static bug
detection approaches have been adopted by major industry players. Bessey
et al. [Bes+10] report their experiences from commercializing static bug
detectors. Ayewah and Pugh [AP10] and Ayewah et al. [Aye+08] share
lessons learned from applying FindBugs, the predecessor of the SpotBugs
tool considered in our study in Chapter 2, at Google. More recent tools
deployed in industry include Error Prone [Aft+12], which is used at Google
and serves as an oracle for our work in Chapter 6, and Infer [Cal+15],
which is used at Facebook. Rice et al. [Ric+17] describe the success of
deploying a name-based static checker at Google too. Those industrial
bug finders, namely Error Prone, Infer, and SpotBugs, are evaluated in
our study in Chapter 2. Moreover, those rule-based approaches involve
significant manual effort for creating and tuning the bug detectors, whereas
in Chapter 6, our bug detectors are learned from examples only.

prioritizing static analysis warnings Since many bug detectors
suffer from a large number of warnings, some of which are false positives,
an important question is which warnings to inspect first. Work on prioritiz-
ing analysis warnings addresses this question based on the frequency of
true and false positives [KE03], the version history of a program [KE07],
and statistical models based on features of warnings and code [Rut+08].
These efforts are orthogonal to the bug detection problem addressed in this
dissertation, and could possibly be combined with several of the approaches
presented here.

168 related work

7.4.2 Dynamic Analysis

Automated test generation has received wide attention, and there are var-
ious techniques for unit-level testing, e.g., random-based [Ciu+08; CS04;
Pac+07], search-based [FA11], or based on symbolic [CDE08; Kin76] and
concolic [GKS05; SMA05] execution [CS13; Thu+11; Xie+05]. Automated
testing has also been applied, e.g., to concurrent software [CLP17; PG12]
and to graphical user interfaces [CNS13; CGO15; GFZ12; Pra+14]. Most of
the existing test generators focus on generating test inputs that cover as
much behavior of the software under test as possible. Our work in Chap-
ter 4 provides a novel way for detecting bugs by learning to crosscheck an
API documentation against its observed runtime behavior and hence, it
provides an orthogonal contribution that could be combined with these test
generators.

dynamic analysis for concurrency The analysis of concurrent
software has been an active topic for several years. Analyses that target
thread-safe classes are particularly related to our work. ConTeGe [PG12]
and Ballerina [Nis+12] have pioneered test generation for such classes.
Other test generators improve upon them by considering coverage infor-
mation [CLP17; TC16], by steering test generation based on sequential test
executions [SR14; SR15; SRJ15], by comparing thread-safe classes against
their superclasses [PG13], or by targeting tests that raise exceptions [STR16].
SpeedGun [PHG14] detects performance regression bugs in thread-safe
classes. ConCrash [BPT17] creates tests that reproduce previously observed
crashes. LockPeeker [Lin+16] tests API methods to find latent locking bugs.

Beyond thread-safe classes, various dynamic analyses to find concurrency
bugs have been proposed, such as data race detectors [Cho+02; FF09; OC03;
Sav+97], analyses to detect atomicity violations [AHB03; FF04; Lu+06; WS06;
XBH05], and analyses to find other kinds of concurrency anomalies [LC09;
PG01]. While these techniques analyze a given execution, another direc-
tion is to influence the schedule of an execution to increase the chance to
trigger concurrency-related misbehavior. Work on influencing schedules
includes random-based scheduling [Bur+10; Ede+02], systematic explo-
ration of schedules [Mus+08; Vis+03], and forcing schedules to trigger
previously identified, potential bugs [Jos+09; Sen08]. All these approaches
find correctness or performance bugs in thread-safe classes or general
concurrency-related bugs. Instead, our work in Chapter 3 addresses the

7.4 traditional bug detection techniques 169

orthogonal problem of inferring whether a class is even supposed to be
thread-safe.

the test oracle problem Various approaches to address the test
oracle have been proposed, as surveyed by Barr et al. [Bar+15]. Commonly
used approaches include regression testing [LW90; Rot+01], differential
testing [McK98], specification mining [ABL02; Dal+06; LZ05; PG09; Sho+07;
Yan+06], and metamorphic testing [CCY20; Seg+16]. Our work in Chapter 6

differs from these lines of work by exploiting NL information and by
learning an oracle from a large number of executions.

7.4.3 Studies of Bug Detection Techniques

One of the contributions of this dissertations is the study of static bug
finders and their effectiveness, presented in Chapter 2. In this section
we examine the most relevant studies which also look at how static and
dynamic bug detection techniques perform in practice.

studies of static bug detection Most existing studies of static
bug detectors focus on precision, i.e., how many of all warnings reported
by a tool point to actual bugs [RAF04; Wag+05; Zhe+06]. To address that
question, the tools are applied to code bases and then all warnings, possibly
after some automated filtering, are manually inspected. In contrast, our
study in Chapter 2 asks the opposite question: What is the recall of static
bug detectors, i.e., how many of all (known) bugs are found? The reason
why most existing studies neglect this question is that answering it requires
knowing bugs that have been found independently of the studied bug
detectors. Another difference to existing studies is our choice of static bug
detectors: To the best of our knowledge, this is the first study to evaluate
the effectiveness of Error Prone, Infer, and SpotBugs.

The most related existing work is a study by Thung et al. [Thu+12;
Thu+15] that also focuses on the recall of static bug detectors. Our work
differs in the methodology used to answer this question: We manually
validate whether the warnings reported by a tool correspond to a specific
bug in the code, instead of checking whether the lines flagged by a tool
include the faulty lines. This manual validation leads to significantly differ-
ent results than the previous study because many warnings coincidentally
match a faulty line but are actually unrelated to the specific bug. While
they conclude that between 64% and 99% of all bugs are partially or fully

170 related work

detected, we find that only 4.5% of all studied bugs are found. The main
reason for this difference is that some of the bug detectors used by Thung
et al. report a large number of warnings. For example, a single tool alone
reports over 39,000 warnings for the Lucene benchmark (265,821 LoC),
causing many lines to be flagged with at least one warning with error
rate 0.15. Since their methodology fully automatically matches source code
lines and lines with warnings, most bugs appear to be found. Instead, we
manually check whether a warning indeed corresponds to a particular bug
to remove false matches. Another difference is that our study focuses on a
more recent, improved, and industrially used static bug detectors. Thung et
al.’s study considers what might be called the first generation of static bug
detectors for Java, e.g., PMD and CheckStyle. While these tools contributed
significantly to the state-of-the-art when they were initially presented, it has
also been shown that they suffer from severe limitations, in particular, large
numbers of false positives. Huge advances in static bug detection have been
made since then. Our study focuses on a novel and improved generation
of static bug detectors, including tools that have been adopted by major
industry players and that are in wide use.

Rahman et al. [Rah+14] compare the benefits of static bug detectors and
statistical bug prediction. To evaluate whether an approach would have
detected a particular bug, their study compares the lines flagged with
warnings and the lines changed to fix a bug, which roughly corresponds to
the first step of our methodology and lacks a manual validation whether
a warning indeed points to the bug. Johnson et al. [Joh+13] conducted
interviews with developers to understand why static bug detectors are
(not) used. The study suggests that better ways of presenting warnings to
developers and integrating bug detectors into the development workflow
would increase the usage of these tools.

studies of dynamic bug detection The effectiveness of test gen-
eration techniques has been studied as well [Alm+17; Sha+15]. One of
these studies [Sha+15] also considers bugs in Defects4J and finds that most
test generators detect less than 20% of these bugs. Our work in Chapter 4

complements those studies by systematically studying neural bug find-
ing. Finally, Legunsen et al. [Leg+16] study to what extent checking API
specifications via runtime monitoring reveals bugs. All these studies are
complementary to ours, as we focus on static bug detectors. Future work
could study how different bug finding techniques complement each other.

7.4 traditional bug detection techniques 171

studies and datasets of bugs and bug fixes An important step
toward improving bug detection is to understand real-world bugs. To this
end, studies have considered several kinds of bugs, including bugs in the
Linux kernel [Cho+01], concurrency bugs [Lu+08], and correctness and per-
formance bugs [Oca+13; SP16] in JavaScript. Pan, Kim, and Jr [PKJ09] study
bug fixes and identify recurring, syntactical patterns. BugBench [Lu+05]
consists of 17 bugs in C programs. Cifuentes et al. [Cif+09] significantly
extend this benchmark, resulting in 181 bugs that are sampled from four
categories, e.g., buffer overflows. They use the benchmark to compare four
bug detectors using an automatic, line-based matching to measure recall.
Future work could apply our semi-manual methodology in Chapter 2 to
their bug collection to study whether our results generalize to C programs.

Defects4J [JJE14], the dataset we use in our study in Chapter 2, consists
of several hundreds real-world Java bugs along with their real fixes by the
developers. These bugs have been manually curated and their fixes have
been minimized to isolate the bug fix from any non-relevant code change.
More recently, Tomassi et al. [Tom+19] introduced the BugSwarm dataset.
BugSwarm provides orders of magnitude more bugs than Defects4J [JJE14]
but was developed and released after we concluded our study and it was
not available to us at that time. Future work could extend our study by
using the BugSwarm dataset and studying the generalization of our results.

7.4.4 Defect Prediction

Orthogonal to bug detection is the problem of defect prediction [FN99;
Zim+09]. Instead of pinpointing specific kinds of errors, as our work, it
predicts whether a given software component will suffer from any bug at all.
Li et al. [Li+19] and Wang, Liu, and Tan [WLT16] propose neural network-
based models for this task. Harer et al. [Har+18] train a convolution neural
network (CNN) to classify methods as vulnerable or not based on heuristics
built on labels from a static analyzer, similar to what we do in Chapter 6.
These approaches and some of our work (Chapters 4 and 6) share the idea
of formulating bug detection as a classification problem. However, our
neural bug finding approach in Chapter 6 tackles a much more challenging
problem: Classifying a specific piece of code as buggy or not w.r.t to a
specific bug kind, i.e., it tries to predict the bug kind instead of predicting
just buggy or not. Moreover, our work in Chapter 4 does not analyze source
code, instead, our model learns to cross-validate runtime behavior against
documentation.

172 related work

unbalanced data Machine learning models for software defect predic-
tion [Son+11] suffer from data imbalance [WY13] as we also note in Chap-
ter 6. Skewed training data is usually tackled by different approaches such
as sampling techniques [Kam+07], cost-sensitive learning [Sun+07], or en-
semble learning [SSZ12]. Under-, over-, or synthetic-sampling [Ben+18;
Kam+07] have been applied to alleviate data imbalance in software defect
prediction. Our approach in Chapter 6 leverages approximated nearest
neighbor (ANN) sampling of non-buggy examples, a form of guided under-
sampling.

7.5 anomaly detection and specification mining

Another line of work related to that presented in this dissertation focuses
on mining patterns from source code, runtime, and other software artifacts.
The mining process is often termed anomaly detection when its purpose
is to detect outliers or anti-patterns. When the mining aims at extracting
frequent patterns, practitioners call it specification mining.

7.5.1 Specification Mining

Specification mining automatically extracts a formal specification from
source code or from programs executions. Mined specification include tem-
poral specifications of API usages [GS08; Ngu+09; WZ09; Yan+06; ZZM08;
Zho+09b], finite-state specifications of method calls [ABL02; LCR11; PG09;
WML02], algebraic specifications [HRD08], locking disciplines [Ern+16],
exception-handling rules [TX09], semantic code-change patterns [Ngu+19],
and implicit programming rules [LZ05]. One benefit of mined specifications
is to use them as documentation. Our TSFinder presented in Chapter 3

can be seen as a form of specification mining. In contrast to existing tech-
niques, our work focuses on concurrency documentation and uses machine
learning to learn from known examples how to infer this specification
(documentation).

7.5.2 Anomaly Detection

Anomaly detection approaches search for code or runtime behavior that
stands out and therefore, may be buggy or malicious. Monperrus, Bruch,
and Mezini [MBM10] learn objects usage patterns to detect likely miss-
ing method calls in specific code locations. Bugram uses a statistical lan-

7.6 json schema and subtype checking 173

guage model that warns about uncommon n-grams of source code to-
kens [Wan+16]. Salento learns a probabilistic model of API usages and
warns about unusual usages [MCJ17]. Gruska, Wasylkowski, and Zeller
[GWZ10] and Wasylkowski, Zeller, and Lindig [WZL07] mine objects and
interfaces usage models, respectively, and label outliers as potential usage
anomalies. Zhang et al. [Zha+14] mine contextual API dependency graphs
to detect Android malware. Ray et al. [Ray+16] explain why this is possible
and show that buggy code is less natural than non-buggy code.

To detect anomalies at runtime, several approaches track and mine dif-
ferent runtime artifacts, e.g., heap properties [CG06] and properties of
objects and variables at instrumented code locations [HL02], to detect
buggy software. Moreover, other mining techniques are used to detect ab-
normal or malicious behavior, e.g., based on finite-state automata of system
calls [Sek+01], abstract execution paths from stack traces [Fen+03], and
execution graph of system calls [GRS04]. Our work in Chapter 4 could be
viewed as a kind of runtime anomaly detection where execution behav-
ior combined with documentation are used as features to detect unlikely
behavior or wrong documentation. However, ours differs from the above
mentioned approaches in that it leverages NL documentation and similar
to our work in Chapter 6, it learns from buggy and non-buggy examples.

7.6 json schema and subtype checking

In this section, we discuss work related to the JSON Schema subtype
checking presented in Chapter 5.

7.6.1 JSON Schema Subtyping and Formalism

Practitioners have significant interest in reasoning about the subtype relation
of JSON schemas. In Chapter 5, we present an experimental comparison
against isSubset [Hag19], which is the closest tool to our work and was
developed concurrently with ours. Another closely related tool [Jsob] relies
on simple syntactic checks. That work considers a change as a breaking
change whenever a node is removed from the schema. As illustrated in
Section 5.2.3, removing nodes (or replacing them by others) may yield not
only subtypes but even equivalent schemas. Yet another existing tool [Jsoa]
checks whether two schemas are equivalent but does not address the
subtyping problem. We are not aware of any research efforts done in the

174 related work

direction of defining and checking the subtype relation on JSON schemas
(subschema).

Pezoa et al. [Pez+16] formally define the syntax and semantics of JSON
Schema, including the JSON validation problem. An alternative formulation
of JSON validation uses a logical formalism [Bou+17]. Baazizi et al. [Baa+17]
address the problem of inferring schemas for irregular JSON data, but their
work does not use the JSON Schema standard we are targeting here. None
of the above pieces of work addresses the subschema problem.

There are other schema definition languages for JSON besides JSON
Schema, e.g., Avro [Apa]. Protobuf [Pro] is Google’s data exchange format,
which borrows several features from JSON schema. Our work might help
define subtype relations for these alternative languages.

The Swagger (OpenAPI) specification [Swab] uses JSON Schema to define
the structure of RESTful APIs. The swagger-diff tool [Swaa] aims at finding
breaking API changes through a set of syntactic checks, but does not
provide the detailed checks that we do. Our work in Chapter 5 could be
integrated as part of the pipeline to check for subtle backward compatibility
breaking-changes.

7.6.2 Applications of Subschema Checks

One application of JSON subschema is for statically reasoning about break-
ing changes of web APIs. A study of the evolution of such APIs shows that
breaking changes are frequent [Li+13]. Another study reports that breaking
changes of web APIs cause distress among developers [EZG15]. Since JSON
schemas and related specifications are widely used to specify web APIs,
our approach can identify breaking changes statically instead of relying on
testing.

Data validation for industry-deployed machine learning pipelines is cru-
cial as such pipelines are usually retrained regularly with new data. To
validate incoming data, Google TFX [Bay+17] synthesizes a custom data
schema based on statistics from available data and uses this schema to vali-
date future data instances fed to the TensorFlow pipeline [Bre+19]. Amazon
production ML pipelines [Sch+18] offer a declarative API that lets users
manually define desired constraints or properties of data. Then data quality
metrics, such as completeness and consistency, are measured on real-time
data with respect to the pre-defined constraints, and anomalies are reported.
Both systems are missing an explicit notion of schema subtyping. For in-
stance, TFX uses versioned schemas to track the evolution of inferred data

7.6 json schema and subtype checking 175

schemas, and reports back to the user whether to update to a more (or less)
permissive schema based on the historical and new data instances [Bay+17].
Lale uses JSON schemas to specify both correct ML pipelines and their
search space of hyperparameters [Hir+19]. The ML Bazaar also specifies
ML primitives via JSON [Smi+19]. Another type-based system for building
ML pipelines is described in [PKN16]. This kind of system can benefit from
JSON subschema checking to avoid running and deploying incompatible
ML pipelines.

7.6.3 Type Systems for XML, JavaScript, and Python

Semantic subtyping [CF05] handles Boolean connectives on types by using
a disjunctive normal form similar to that in Chapter 5. It was developed in
the context of CDuce, a functional language for working with XML [BCF03].
Subschema checking for XML, called schema containment, is also addressed
in [TH03]. XDuce is a static language for processing XML documents using
XML schemas as types [HP03] which makes use of “regular expression
types” [HVP05]. Our work differs in working on JSON, not XML, which
has a different feature set. Moreover, these approaches treat XML as tree
automata, shown to be less expressive than JSON Schema [Pez+16].

Both JavaScript and Python have a convenient built-in syntax for JSON
documents. Furthermore, there are type systems retrofitted onto both
languages [BAT14; Vit+14]. Therefore, a reasonable question to ask is
whether JSON schema subtype queries could be decided by expressing
JSON schemas in those languages and then using the subtype checker of
those type systems. Unfortunately, this is not the case, since JSON Schema
contains several features that those type systems cannot express, such as
negation, multipleOf on numbers, and pattern on strings.

8
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we conclude this dissertation by summarizing the high level
contributions and highlighting important future work in several directions.

8.1 summary of contributions

This dissertation shows that learning from programs and their documen-
tation provides an effective means to prevent and detect software bugs.
Our contributions include techniques that find bugs and inconsistencies
in programs and their documentation. More concretely, this dissertation
contributes the following:

1. An extensive study of the recall of state-of-the-art static bug finding
tools on a large set of real-world bugs. Our study reveals the low
recall of modern static bug detectors and the eminent need to improve
them. In particular, the current tools fail to detect several bugs that
require domain-specific knowledge to be detected correctly.

2. TSFinder, an effective learning-based approach to infer concurrency
specifications, i.e., thread-safety documentation, of object-oriented
classes. Our approach provides otherwise missing documentation
which could impact the correctness and performance of the underly-
ing software, when used incorrectly.

3. DocRT, a learning-based approach to crosscheck the documentation
of an API against its observed exceptional runtime behavior. Our
approach successfully detects a large set of known bugs in addition to
finding several new ones in both the documentation and implementa-
tion of APIs.

177

178 conclusions and future work

4. jsonSubSchema, an algorithm that leverages the JSON Schema de-
scriptions of APIs for static subtype checking. This approach detects a
new class of data-compatibility bugs which affects applications across
several domains including the Web and machine learning libraries.

5. Neural bug finding, a futuristic approach for creating static bug de-
tectors by learning end-to-end from examples only. This promising
approach, though not on par yet with traditional bug detection tech-
niques, shows potential and opens the door for several directions in
future work, as we discuss next.

8.2 future work

As shown in Chapter 7, finding bugs in programs is an ever going research
problem. Applying machine learning to solve some of the challenges for
traditional program analyses already started to gain momentum [All+18].
Along the same line, the work presented in this dissertation reveals several
potential directions for future work and lessons learned which we identify
and highlight in the following.

• Software documentation is under-utilized. Documentation is an important
source of valuable information for the software development process.
We need to design new methods to automatically leverage the knowl-
edge embedded in software documentation to improve the quality of
the programs we use in our everyday life.

• Software documentation suffers from several shortcomings. Developers
struggle with unclear, incomplete, stale, and inconsistent documenta-
tion which eventually reflects on the quality of software they develop.
We need to develop more efficient and automated tools to improve
software documentation.

• Learning from programs is promising, but has a long way to go. This is an
ongoing research problem with a lot of interesting work. However,
the current state-of-the-art is far from being perfect. We need richer
representations of programs, whether source code or runtime behavior,
to enable more effective learning and unlock more applications of
machine learning to program analysis.

• Data for learning from programs is still an open problem. This is a chal-
lenge for any machine learning application. However, one would

8.2 future work 179

think that it is not the case for software engineering tasks because of
the abundance of available open-source code. In part, this is true for
unsupervised learning tasks, but it is not the case for supervised ones
like our work in Chapters 3, 4, and 6. Many interesting software engi-
neering tasks would require a lot of labeled data to enable machine
learning solutions.

• A fair experimental setup for ML-based program analysis is tricky. We have
seen in Chapter 6 that the data splits for training and validation have
huge impact on the accuracy, precision, and recall of learned models
of source code. Therefore, researchers and practitioners should be
more careful when designing their experimental setups to evaluate
ML models for programs.

• Learning from programs and their documentation is promising. This is
the central thesis of this dissertation. We argue that there is a lot of
potential to be unlocked in this direction. One of the main motiva-
tions to pursue this idea is that programs are closely coupled with
their documentation although they are two different communication
channels: One is intended for humans and the other is more geared
towards machines. But as programs are mostly written by humans,
this dissertation has shown that both mediums can benefit each other.

B I B L I O G R A P H Y

[Aft+12] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sun-
daresan Krishnan. “Building Useful Program Analysis Tools
Using an Extensible Java Compiler”. In: 12th IEEE International
Working Conference on Source Code Analysis and Manipulation,
SCAM 2012, Riva del Garda, Italy, September 23-24, 2012. 2012,
14.

[AWS05] Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. “Detecting
Potential Deadlocks with Static Analysis and Run-Time Mon-
itoring”. In: Haifa Verification Conference. Vol. 3875. Springer,
2005, 191.

[Agh+19] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza. “Software Documenta-
tion Issues Unveiled”. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 2019, 1199.

[Agh+20] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura
Moreno, Gabriele Bavota, Michele Lanza, and David C. Shep-
herd. “Software Documentation: The Practitioners’ Perspec-
tive”. In: Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering. ICSE ’20. Seoul, South Korea:
Association for Computing Machinery, 2020, 590–601.

[ABK17] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud
Khademi. “Learning to Represent Programs with Graphs”. In:
CoRR abs/1711.00740 (2017).

[All+18] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and
Charles Sutton. “A survey of machine learning for big code
and naturalness”. In: ACM Computing Surveys (CSUR) 51.4
(2018), 81.

[All+15] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles
A. Sutton. “Suggesting accurate method and class names”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015. 2015, 38.

181

182 bibliography

[Alm+17] Mohammad Moein Almasi, Hadi Hemmati, Gordon Fraser,
Andrea Arcuri, and Janis Benefelds. “An Industrial Evaluation
of Unit Test Generation: Finding Real Faults in a Financial
Application”. In: 39th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice Track, ICSE-
SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017. 2017, 263.

[Alo+18a] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. “A
General Path-Based Representation for Predicting Program
Properties”. In: PLDI. 2018.

[Alo+18b] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
“code2vec: Learning Distributed Representations of Code”. In:
CoRR arXiv:1803.09473 (2018).

[ABL02] Glenn Ammons, Rastislav Bodík, and James R. Larus. “Min-
ing specifications”. In: Symposium on Principles of Programming
Languages (POPL). ACM, 2002, 4.

[And+11] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and
Terran Lane. “Graph-based malware detection using dynamic
analysis”. In: Journal in Computer Virology 7.4 (2011), 247.

[Apa] Apache Avro. url: http://avro.apache.org/.

[AHB03] Cyrille Artho, Klaus Havelund, and Armin Biere. “High-level
data races”. In: Software Testing, Verification and Reliability 13.4
(2003), 207.

[AP10] Nathaniel Ayewah and William Pugh. “The Google FindBugs
fixit”. In: Proceedings of the Nineteenth International Symposium
on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July
12-16, 2010. 2010, 241.

[Aye+08] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler,
John Penix, and William Pugh. “Using Static Analysis to Find
Bugs”. In: IEEE Software 25.5 (2008), 22.

[Baa+17] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and
Carlo Sartiani. “Counting types for massive JSON datasets”. In:
Symposium on Database Programming Languages (DBPL). 2017,
9:1.

[BJR19] Hlib Babii, Andrea Janes, and Romain Robbes. “Modeling
Vocabulary for Big Code Machine Learning”. In: CoRR (2019).

http://avro.apache.org/

bibliography 183

[Bad+19] Johannes Bader, Andrew Scott, Michael Pradel, and Satish
Chandra. “Getafix: Learning to Fix Bugs Automatically”. In:
OOPSLA. 2019.

[Bar+15] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz,
and Shin Yoo. “The Oracle Problem in Software Testing: A
Survey”. In: IEEE Trans. Software Eng. 41.5 (2015), 507.

[Bay+17] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel,
Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir,
Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens
Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke,
Jarek Wilkiewicz, Xin Zhang, and Martin Zinkevich. “TFX:
A TensorFlow-Based Production-Scale Machine Learning
Platform”. In: Conference on Knowledge Discovery and Data
Mining (KDD). Halifax, NS, Canada, 2017, 1387.

[Ben+18] Kwabena Ebo Bennin, Jacky Keung, Passakorn Phannachitta,
Akito Monden, and Solomon Mensah. “Mahakil: Diversity
based oversampling approach to alleviate the class imbalance
issue in software defect prediction”. In: IEEE Transactions on
Software Engineering 44.6 (2018), 534.

[BCF03] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch.
“CDuce: an XML-centric general-purpose language”. In: In-
ternational Conference on Functional Programming (ICFP). 2003,
51.

[Bes+10] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan
Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott
McPeak, and Dawson R. Engler. “A few billion lines of code
later: Using static analysis to find bugs in the real world”. In:
Communications of the ACM 53.2 (2010), 66.

[BS16] Sahil Bhatia and Rishabh Singh. “Automated Correction for
Syntax Errors in Programming Assignments using Recurrent
Neural Networks”. In: CoRR abs/1603.06129 (2016).

[BPT17] Francesco A. Bianchi, Mauro Pezze, and Valerio Terragni. “Re-
producing Concurrency Failures from Crash Stacks”. In: FSE.
2017.

[BAT14] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. “Un-
derstanding TypeScript”. In: European Conference on Object-
Oriented Programming (ECOOP). 2014, 257.

184 bibliography

[Bla+18] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessan-
dra Gorla, Michael D. Ernst, Mauro Pezzè, and Sergio Delgado
Castellanos. “Translating code comments to procedure specifi-
cations”. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, Ams-
terdam, The Netherlands, July 16-21, 2018. Ed. by Frank Tip and
Eric Bodden. ACM, 2018, 242.

[Boj+17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. “Enriching Word Vectors with Subword Information”.
In: TACL 5 (2017), 135.

[BK05] Karsten M. Borgwardt and Hans-Peter Kriegel. “Shortest-Path
Kernels on Graphs”. In: Proceedings of the Fifth IEEE International
Conference on Data Mining. ICDM ’05. Washington, DC, USA:
IEEE Computer Society, 2005, 74.

[Bor+05] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer,
S. V. N. Vishwanathan, Alex J. Smola, and Hans-Peter Kriegel.
“Protein Function Prediction via Graph Kernels”. In: Bioinfor-
matics 21.1 (2005), 47.

[Bou+17] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj
Vrgoc. “JSON: Data model, Query languages and Schema
specification”. In: Symposium on Principles of Database Systems
(PODS). 2017, 123.

[Bra+02] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael
Himsolt, and M. Scott Marshall. “GraphML Progress Report
Structural Layer Proposal”. In: Graph Drawing: 9th International
Symposium, GD 2001 Vienna, Austria, September 23–26, 2001
Revised Papers. Ed. by Petra Mutzel, Michael Jünger, and Se-
bastian Leipert. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, 501.

[Bre+19] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven Whang,
and Sudip Roy. “Data Validation for Machine Learning”. In:
Conference on Systems and Machine Learning (SysML). 2019.

[Bro+18] M. Brockschmidt, M. Allamanis, A. L. Gaunt, and O. Polozov.
“Generative Code Modeling with Graphs”. In: ArXiv e-prints
(2018).

bibliography 185

[Bro+17] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson R.
Engler, Ranjit Jhala, and Deian Stefan. “Finding and Preventing
Bugs in JavaScript Bindings”. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017. 2017, 559.

[Bur+10] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi,
and Santosh Nagarakatte. “A randomized scheduler with prob-
abilistic guarantees of finding bugs”. In: Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS). 2010, 167.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs”. In: Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, 2008, 209.

[CS13] Cristian Cadar and Koushik Sen. “Symbolic execution for
software testing: three decades later”. In: Commun. ACM 56.2
(2013), 82.

[Cal+15] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik
Gabi, Pieter Hooimeijer, Martino Luca, Peter O’Hearn, Irene
Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. “Mov-
ing fast with software verification”. In: NASA Formal Methods
Symposium. Springer. 2015, 3.

[CF05] Giuseppe Castagna and Alain Frisch. “A Gentle Introduction
to Semantic Subtyping”. In: Symposium on Principles and Practice
of Declarative Programming (PPDP). 2005, 198.

[Cha+17] Timothy Chappelly, Cristina Cifuentes, Padmanabhan Krish-
nan, and Shlomo Gevay. “Machine learning for finding bugs:
An initial report”. In: 2017 IEEE Workshop on Machine Learning
Techniques for Software Quality Evaluation (MaLTeSQuE). IEEE.
2017, 21.

[CCY20] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. “Metamor-
phic testing: a new approach for generating next test cases”.
In: arXiv preprint arXiv:2002.12543 (2020).

[CG06] Trishul M. Chilimbi and Vinod Ganapathy. “HeapMD: identify-
ing heap-based bugs using anomaly detection”. In: International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, 2006, 219.

186 bibliography

[Cho+02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert
O’Callahan, Vivek Sarkar, and Manu Sridharan. “Efficient and
Precise Datarace Detection for Multithreaded Object-Oriented
Programs”. In: Conference on Programming Language Design and
Implementation (PLDI). 2002, 258.

[Cho+17] Min je Choi, Sehun Jeong, Hakjoo Oh, and Jaegul Choo.
“End-to-End Prediction of Buffer Overruns from Raw Source
Code via Neural Memory Networks”. In: CoRR abs/1703.02458

(2017).

[CNS13] Wontae Choi, George Necula, and Koushik Sen. “Guided GUI
Testing of Android Apps with Minimal Restart and Approxi-
mate Learning”. In: Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). 2013, 623.

[Cho+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and
Dawson R. Engler. “An Empirical Study of Operating System
Errors”. In: Symposium on Operating Systems Principles (SOSP).
2001, 73.

[CLP17] Ankit Choudhary, Shan Lu, and Michael Pradel. “Efficient
Detection of Thread Safety Violations via Coverage-Guided
Generation of Concurrent Tests”. In: International Conference on
Software Engineering (ICSE). 2017, 266.

[CGO15] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro
Orso. “Automated Test Input Generation for Android: Are We
There Yet? (E)”. In: 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015. 2015, 429.

[Cif+09] Cristina Cifuentes, Christian Hoermann, Nathan Keynes, Lian
Li, Simon Long, Erica Mealy, Michael Mounteney, and Bern-
hard Scholz. “BegBunch: Benchmarking for C bug detection
tools”. In: Proceedings of the 2nd International Workshop on Defects
in Large Software Systems: Held in conjunction with the ACM SIG-
SOFT International Symposium on Software Testing and Analysis
(ISSTA 2009). ACM. 2009, 16.

[Ciu+08] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand
Meyer. “ARTOO: adaptive random testing for object-oriented
software”. In: International Conference on Software Engineering
(ICSE). ACM, 2008, 71.

bibliography 187

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool
for Checking ANSI-C Programs”. In: Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004). Ed. by
Kurt Jensen and Andreas Podelski. Vol. 2988. Lecture Notes in
Computer Science. Springer, 2004, 168.

[Col+11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa. “Natural language pro-
cessing (almost) from scratch”. In: Journal of machine learning
research 12.Aug (2011), 2493.

[CS04] Christoph Csallner and Yannis Smaragdakis. “JCrasher: an
automatic robustness tester for Java”. In: Software Practice and
Experience 34.11 (2004), 1025.

[Dal+06] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski,
and Andreas Zeller. “Mining object behavior with ADABU”.
In: Workshop on Dynamic Systems Analysis (WODA). ACM, 2006,
17.

[DTR18] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González.
“Path-based function embedding and its application to error-
handling specification mining”. In: Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018. 2018, 423.

[Ede+02] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and
Shmuel Ur. “Multithreaded Java program test generation”.
In: IBM Systems Journal 41.1 (2002), 111.

[Ern+16] Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto
Spoto, and Javier Thaine. “Locking discipline inference and
checking”. In: Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016. 2016, 1133.

[EZG15] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross.
“Web API growing pains: Loosely coupled yet strongly tied”.
In: Journal of Systems and Software (JSS) 100 (2015), 27.

[Fen+03] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and Weibo
Gong. “Anomaly detection using call stack information”. In:
2003 Symposium on Security and Privacy, 2003. 2003, 62.

188 bibliography

[FN99] Norman E Fenton and Martin Neil. “A critique of software
defect prediction models”. In: IEEE Transactions on software
engineering 25.5 (1999), 675.

[FF04] Cormac Flanagan and Stephen N. Freund. “Atomizer: a dy-
namic atomicity checker for multithreaded programs”. In: Sym-
posium on Principles of Programming Languages (POPL). ACM,
2004, 256.

[FF09] Cormac Flanagan and Stephen N. Freund. “FastTrack: efficient
and precise dynamic race detection”. In: Conference on Program-
ming Language Design and Implementation (PLDI). ACM, 2009,
121.

[FF00] Cormac Flanagan and Stephen N. Freund. “Type-based race
detection for Java”. In: 2000, 219.

[FQ03] Cormac Flanagan and Shaz Qadeer. “A type and effect system
for atomicity”. In: ACM, 2003, 338.

[Fra+05] Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby,
and Bernhard Pfahringer. “WEKA - A Machine Learning Work-
bench for Data Mining”. In: The Data Mining and Knowledge
Discovery Handbook. 2005, 1305.

[FA11] Gordon Fraser and Andrea Arcuri. “EvoSuite: automatic test
suite generation for object-oriented software”. In: SIGSOFT-
/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-19) and ESEC’11: 13th European Soft-
ware Engineering Conference (ESEC-13), Szeged, Hungary, Septem-
ber 5-9, 2011. 2011, 416.

[GS08] Mark Gabel and Zhendong Su. “Javert: Fully Automatic Mining
of General Temporal Properties from Dynamic Traces”. In:
Symposium on Foundations of Software Engineering (FSE). ACM,
2008, 339.

[GZ13] Francis Galiegue and Kris Zyp. JSON Schema draft 04. 2013.

[GRS04] Debin Gao, Michael K. Reiter, and Dawn Song. “Gray-Box
Extraction of Execution Graphs for Anomaly Detection”. In:
Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security. CCS ’04. Washington DC, USA: Association
for Computing Machinery, 2004, 318–329.

bibliography 189

[GFW03] Thomas Gärtner, Peter Flach, and Stefan Wrobel. “On graph
kernels: Hardness results and efficient alternatives”. In: Learn-
ing Theory and Kernel Machines. Springer, 2003, 129.

[Gas+13] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. “Structural Detection of Android Malware Using Em-
bedded Call Graphs”. In: Proceedings of the 2013 ACM Workshop
on Artificial Intelligence and Security. AISec ’13. Berlin, Germany:
ACM, 2013, 45.

[GSC99] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learn-
ing to forget: Continual prediction with LSTM”. In: (1999).

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART:
directed automated random testing”. In: Conference on Program-
ming Language Design and Implementation (PLDI). ACM, 2005,
213.

[Gof+16] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro
Pezzè. “Automatic generation of oracles for exceptional be-
haviors”. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany,
July 18-20, 2016. Ed. by Andreas Zeller and Abhik Roychoud-
hury. ACM, 2016, 213.

[GFZ12] Florian Gross, Gordon Fraser, and Andreas Zeller. “Search-
Based System Testing: High Coverage, No False Alarms”. In:
International Symposium on Software Testing and Analysis (ISSTA).
2012, 67.

[GWZ10] Natalie Gruska, Andrzej Wasylkowski, and Andreas Zeller.
“Learning from 6,000 projects: Lightweight cross-project
anomaly detection”. In: International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2010, 119.

[GZK18] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. “Deep Code
Search”. In: ICSE. 2018.

[Gup+17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish She-
vade. “DeepFix: Fixing Common C Language Errors by Deep
Learning”. In: AAAI. 2017.

[HP18a] Andrew Habib and Michael Pradel. “How Many of All Bugs
Do We Find? A Study of Static Bug Detectors”. In: ASE. 2018.

190 bibliography

[HP18b] Andrew Habib and Michael Pradel. “Is This Class Thread-
Safe? Inferring Documentation using Graph-based Learning”.
In: ASE. 2018.

[HP19] Andrew Habib and Michael Pradel. “Neural Bug Find-
ing: A Study of Opportunities and Challenges”. In: CoRR
abs/1906.00307 (2019).

[Hab+19] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael
Pradel. “Type Safety with JSON Subschema”. In: CoRR
abs/1911.12651 (2019).

[Hag19] Petter Haggholm. is-json-schema-subset. 2019. url: https://
github.com/haggholm/is-json-schema-subset.

[HL02] Sudheendra Hangal and Monica S. Lam. “Tracking down soft-
ware bugs using automatic anomaly detection”. In: International
Conference on Software Engineering (ICSE). ACM, 2002, 291.

[HB07] Zaïd Harchaoui and Francis Bach. “Image classification with
segmentation graph kernels”. In: Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE. 2007, 1.

[Har+18] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P.
Reale, Rebecca L. Russell, Louis Y. Kim, and Sang Peter Chin.
“Learning to Repair Software Vulnerabilities with Generative
Adversarial Networks”. In: Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada. 2018, 7944.

[Hel+18] V. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis. “Deep
Learning Type Inference”. In: FSE. 2018.

[HRD08] Johannes Henkel, Christoph Reichenbach, and Amer Diwan.
“Developing and debugging algebraic specifications for Java
classes”. In: ACM Transactions on Software Engineering and
Methodology 17.3 (2008), 1.

[HRD07] Johannes Henkel, Christoph Reichenbach, and Amer Diwan.
“Discovering Documentation for Java Container Classes”. In:
IEEE Transactions on Software Engineering 33.8 (2007), 526.

[Hin+12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and
Premkumar T. Devanbu. “On the naturalness of software”. In:
34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland. 2012, 837.

https://github.com/haggholm/is-json-schema-subset
https://github.com/haggholm/is-json-schema-subset

bibliography 191

[Hir+19] Martin Hirzel, Kiran Kate, Avraham Shinnar, Subhrajit Roy,
and Parikshit Ram. Type-Driven Automated Learning with Lale.
2019.

[Hoa+20] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall.
“CC2Vec: Distributed Representations of Code Changes”. In:
ICSE. 2020.

[HP03] Haruo Hosoya and Benjamin C. Pierce. “XDuce: A Statically
Typed XML Processing Language”. In: Transactions on Internet
Technology (TOIT) 3.2 (2003), 117.

[HVP05] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. “Reg-
ular Expression Types for XML”. In: Transactions on Program-
ming Languages and Systems (TOPLAS) 27.1 (2005), 46.

[HP04] David Hovemeyer and William Pugh. “Finding bugs is easy”.
In: Companion to the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). ACM, 2004,
132.

[Snoa] Introducing SchemaVer for semantic versioning of schemas. url:
https : / / snowplowanalytics . com / blog / 2014 / 05 / 13 /

introducing - schemaver - for - semantic - versioning - of -

schemas/.

[Tsba] JBoss Platform issue 1416472. url: https://bugzilla.redhat.
com/show_bug.cgi?id=1416472.

[Jia+17] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. “An Un-
supervised Approach for Discovering Relevant Tutorial Frag-
ments for APIs”. In: Proceedings of the 39th International Confer-
ence on Software Engineering. ICSE ’17. Buenos Aires, Argentina:
IEEE Press, 2017, 38.

[Joh+13] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and
Robert Bowdidge. “Why don’t software developers use static
analysis tools to find bugs?” In: Proceedings of the 2013 Inter-
national Conference on Software Engineering. IEEE Press. 2013,
672.

[Joh78] S. C. Johnson. Lint, a C Program Checker. Murray Hill: Bell
Telephone Laboratories, 1978.

https://snowplowanalytics.com/blog/2014/05/13/introducing-schemaver-for-semantic-versioning-of-schemas/
https://snowplowanalytics.com/blog/2014/05/13/introducing-schemaver-for-semantic-versioning-of-schemas/
https://snowplowanalytics.com/blog/2014/05/13/introducing-schemaver-for-semantic-versioning-of-schemas/
https://bugzilla.redhat.com/show_bug.cgi?id=1416472
https://bugzilla.redhat.com/show_bug.cgi?id=1416472

192 bibliography

[Jos+09] Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen.
“CalFuzzer: An Extensible Active Testing Framework for Con-
current Programs”. In: Conference on Computer Aided Verification.
Springer, 2009, 675.

[Jsoa] JSON Schema Compare. 2017. url: https : / / github . com /

mokkabonna/json-schema-compare.

[Jsob] JSON Schema Diff Validator. 2017. url: https://bitbucket.
org/atlassian/json-schema-diff-validator.

[Jsoc] JSON Schema Test Suite. 2012. url: https://github.com/json-
schema-org/JSON-Schema-Test-Suite.

[JJE14] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: a
database of existing faults to enable controlled testing studies
for Java programs”. In: International Symposium on Software
Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26,
2014. 2014, 437.

[Jus+14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst,
Reid Holmes, and Gordon Fraser. “Are mutants a valid sub-
stitute for real faults in software testing?” In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM. 2014, 654.

[Kam+07] Yasutaka Kamei, Akito Monden, Shinsuke Matsumoto, Takeshi
Kakimoto, and Ken-ichi Matsumoto. “The effects of over and
under sampling on fault-prone module detection”. In: First
International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007). IEEE. 2007, 196.

[KTI03] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. “Marginal-
ized Kernels Between Labeled Graphs”. In: Proceedings of the
Twentieth International Conference on International Conference on
Machine Learning. ICML’03. Washington, DC, USA: AAAI Press,
2003, 321.

[KFY18] Jinhan Kim, Robert Feldt, and Shin Yoo. “Guiding Deep
Learning System Testing using Surprise Adequacy”. In: CoRR
abs/1808.08444 (2018).

[KE07] Sunghun Kim and Michael D. Ernst. “Which warnings should
I fix first?” In: European Software Engineering Conference and
Symposium on Foundations of Software Engineering (ESEC/FSE).
ACM, 2007, 45.

https://github.com/mokkabonna/json-schema-compare
https://github.com/mokkabonna/json-schema-compare
https://bitbucket.org/atlassian/json-schema-diff-validator
https://bitbucket.org/atlassian/json-schema-diff-validator
https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://github.com/json-schema-org/JSON-Schema-Test-Suite

bibliography 193

[Kin76] J. C. King. “Symbolic Execution and Program Testing”. In:
Communications of the ACM 19.7 (1976), 385.

[KL02] Risi Imre Kondor and John D. Lafferty. “Diffusion Kernels on
Graphs and Other Discrete Input Spaces”. In: Proceedings of the
Nineteenth International Conference on Machine Learning. ICML
’02. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002, 315.

[KE03] Ted Kremenek and Dawson R. Engler. “Z-Ranking: Using
Statistical Analysis to Counter the Impact of Static Analysis
Approximations”. In: International Symposium on Static Analysis
(SAS). Springer, 2003, 295.

[Kuba] Kubernetes JSON Schemas. 2019. url: https://github.com/
instrumenta/kubernetes-json-schema.

[Lak75] George Lakoff. “Hedges: A study in meaning criteria and the
logic of fuzzy concepts”. In: Contemporary research in philosophi-
cal logic and linguistic semantics. Springer, 1975, 221.

[Lal] Lale: Python library for semi-automated data science. 2019. url:
https://github.com/ibm/lale.

[Laz] Lazy initialization. url: http : / / www . javapractices . com /

topic/TopicAction.do?Id=34.

[LCR11] Choonghwan Lee, Feng Chen, and Grigore Rosu. “Mining Para-
metric Specifications”. In: International Conference on Software
Engineering (ICSE). 2011, 591.

[Leg+16] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Rosu,
and Darko Marinov. “How good are the specs? a study of the
bug-finding effectiveness of existing Java API specifications”.
In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016. 2016, 602.

[LSF03] Timothy C. Lethbridge, Janice Singer, and Andrew Forward.
“How Software Engineers Use Documentation: The State of the
Practice”. In: IEEE Software 20.6 (2003), 35.

[LW90] Hareton K. N. Leung and Lee White. “Insights into testing
and regression testing global variables”. In: Journal of Software
Maintenance 2.4 (1990), 209.

https://github.com/instrumenta/kubernetes-json-schema
https://github.com/instrumenta/kubernetes-json-schema
https://github.com/ibm/lale
http://www.javapractices.com/topic/TopicAction.do?Id=34
http://www.javapractices.com/topic/TopicAction.do?Id=34

194 bibliography

[Li+13] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. “How Does
Web Service API Evolution Affect Clients?” In: International
Conference on Web Services (ICWS). 2013, 300.

[Li+19] Yi Li, Shaohua Wang, Tien N. Nguyen, and Son Van Nguyen.
“Improving Bug Detection via Context-Based Code Represen-
tation Learning and Attention-Based Neural Networks”. In:
OOPSLA. 2019.

[Li+18] Zhen Li, Shouhuai Xu Deqing Zou and, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. “VulDeePecker:
A Deep Learning-Based System for Vulnerability Detection”.
In: NDSS. 2018.

[LZ05] Zhenmin Li and Yuanyuan Zhou. “PR-Miner: Automatically
Extracting Implicit Programming Rules and Detecting Vio-
lations in Large Software Code”. In: European Software Engi-
neering Conference and Symposium on Foundations of Software
Engineering (ESEC/FSE). ACM, 2005, 306.

[Lin+16] Z. Lin, H. Zhong, Y. Chen, and J. Zhao. “LockPeeker: Detecting
latent locks in Java APIs”. In: 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). 2016, 368.

[Lio96] J. L. Lions. ARIANE 5 Flight 501 Failure. Report by the Inquiry
Board. European Space Agency. 1996.

[Liu+19] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young
Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves Le
Traon. “Learning to spot and refactor inconsistent method
names”. In: Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019. 2019, 1.

[Lu+06] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. “AVIO:
detecting atomicity violations via access interleaving invari-
ants”. In: Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2006, 37.

[Lu+05] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and
Yuanyuan Zhou. “Bugbench: Benchmarks for evaluating bug
detection tools”. In: Workshop on the Evaluation of Software Defect
Detection Tools. 2005.

bibliography 195

[Lu+08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
“Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics”. In: Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2008, 329.

[LC09] Brandon Lucia and Luis Ceze. “Finding concurrency bugs
with context-aware communication graphs”. In: Symposium on
Microarchitecture (MICRO). ACM, 2009, 553.

[MPP19] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel.
“NL2Type: inferring JavaScript function types from natural
language information”. In: Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019. 2019, 304.

[Mar+17] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng
Xuan, and Martin Monperrus. “Automatic repair of real bugs
in java: A large-scale experiment on the defects4j dataset”. In:
Empirical Software Engineering 22.4 (2017), 1936.

[McB+17] P. W. McBurney, S. Jiang, M. Kessentini, N. A. Kraft, A. Armaly,
M. W. Mkaouer, and C. McMillan. “Towards Prioritizing Docu-
mentation Effort”. In: IEEE Transactions on Software Engineering
PP.99 (2017), 1.

[McC04] Steve McConnell. Code Complete: A Practical Handbook of Software
Construction, Second Edition. Microsoft Press, 2004.

[McK98] William M. McKeeman. “Differential Testing for Software”. In:
Digital Technical Journal 10.1 (1998), 100.

[MS96] Maged M Michael and Michael L Scott. “Simple, fast, and
practical non-blocking and blocking concurrent queue algo-
rithms”. In: Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing. ACM. 1996, 267.

[Mik+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado,
and Jeffrey Dean. “Distributed Representations of Words and
Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neu-
ral Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States. 2013,
3111.

196 bibliography

[MBM10] Martin Monperrus, Marcel Bruch, and Mira Mezini. “Detect-
ing Missing Method Calls in Object-Oriented Software”. In:
European Conference on Object-Oriented Programming (ECOOP).
Springer, 2010, 2.

[Mon+12] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira
Mezini. “What should developers be aware of? An empirical
study on the directives of API documentation”. In: Empir. Softw.
Eng. 17.6 (2012), 703.

[MB19] Manish Motwani and Yuriy Brun. “Automatically generating
precise Oracles from structured natural language specifica-
tions”. In: Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019. 2019, 188.

[Mou+16] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. “Convolu-
tional Neural Networks over Tree Structures for Programming
Language Processing”. In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. 2016, 1287.

[MCJ17] Vijayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine.
“Bayesian Specification Learning for Finding API Usage Er-
rors”. In: FSE. 2017.

[Mus+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. “Find-
ing and Reproducing Heisenbugs in Concurrent Programs”.
In: Symposium on Operating Systems Design and Implementation.
USENIX, 2008, 267.

[Nai+09] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay.
“Effective static deadlock detection”. In: International Conference
on Software Engineering (ICSE). IEEE, 2009, 386.

[New15] Sam Newman. Building Microservices: Designing Fine Grained
Systems. O’Reilly, 2015.

[Ngu+19] Hoan Anh Nguyen, Tien N. Nguyen, Danny Dig, Son Nguyen,
Hieu Tran, and Michael Hilton. “Graph-based mining of in-
the-wild, fine-grained, semantic code change patterns”. In:
Proceedings of the 41st International Conference on Software Engi-
neering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 2019,
819.

bibliography 197

[Ngu+09] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Ja-
far M. Al-Kofahi, and Tien N. Nguyen. “Graph-based mining
of multiple object usage patterns”. In: European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2009, 383.

[Nis+12] Adrian Nistor, Qingzhou Luo, Michael Pradel, Thomas R.
Gross, and Darko Marinov. “BALLERINA: Automatic Gen-
eration and Clustering of Efficient Random Unit Tests for
Multithreaded Code”. In: International Conference on Software
Engineering (ICSE). 2012, 727.

[Tsbb] NX issue 239. url: https : / / track . radensolutions . com /

issue/NX-239.

[OC03] Robert O’Callahan and Jong-Deok Choi. “Hybrid dynamic
data race detection”. In: Symposium on Principles and Practice of
Parallel Programming (PPOPP). ACM, 2003, 167.

[Oca+13] Frolin S. Ocariza Jr., Kartik Bajaj, Karthik Pattabiraman, and
Ali Mesbah. “An Empirical Study of Client-Side JavaScript
Bugs”. In: Symposium on Empirical Software Engineering and
Measurement (ESEM). 2013, 55.

[Pac+07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and
Thomas Ball. “Feedback-Directed Random Test Generation”.
In: International Conference on Software Engineering (ICSE). IEEE,
2007, 75.

[Pal+11] Nicolas Palix, Gaël Thomas 0001, Suman Saha, Christophe
Calvès, Julia L. Lawall, and Gilles Muller. “Faults in linux: ten
years later”. In: Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 2011,
305.

[PKJ09] Kai Pan, Sunghun Kim, and E. James Whitehead Jr. “Toward
an understanding of bug fix patterns”. In: Empirical Software
Engineering 14.3 (2009), 286.

[Pan+12] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen
Oney, and Amit M. Paradkar. “Inferring method specifications
from natural language API descriptions”. In: 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland. Ed. by Martin Glinz, Gail C. Murphy, and
Mauro Pezzè. IEEE Computer Society, 2012, 815.

https://track.radensolutions.com/issue/NX-239
https://track.radensolutions.com/issue/NX-239

198 bibliography

[PSW76] David L. Parnas, John E. Shore, and David Weiss. “Abstract
types defined as classes of variables”. In: Conference on Data:
Abstraction, Definition and Structure. 1976, 149.

[Pea+17] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui
Abreu, Michael D Ernst, Deric Pang, and Benjamin Keller.
“Evaluating and improving fault localization”. In: Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference
on. IEEE. 2017, 609.

[Pez+16] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte,
and Domagoj Vrgoč. “Foundations of JSON Schema”. In: Inter-
national Conference on World Wide Web (WWW). 2016, 263.

[Pha+17] H. Phan, H. A. Nguyen, T. N. Nguyen, and H. Rajan. “Sta-
tistical Learning for Inference between Implementations and
Documentation”. In: 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering: New Ideas and Emerging Technologies
Results Track (ICSE-NIER). 2017, 27.

[Pie+15] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuk-
sombati, Mehran Sahami, and Leonidas J. Guibas. “Learn-
ing Program Embeddings to Propagate Feedback on Student
Code”. In: Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. 2015,
1093.

[PH13] Jacques A. Pienaar and Robert Hundt. “JSWhiz: Static anal-
ysis for JavaScript memory leaks”. In: Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO 2013, Shenzhen, China, February 23-27, 2013. 2013,
11:1.

[PKN16] Martin Pilat, Tomas Kren, and Roman Neruda. “Asynchronous
Evolution of Data Mining Workflow Schemes by Strongly
Typed Genetic Programming”. In: International Conference on
Tools with Artificial Intelligence (ICTAI). 2016, 577.

[Pou04] Kevin Poulsen. Software Bug Contributed to Blackout. SecurityFo-
cus. 2004.

[PG09] Michael Pradel and Thomas R. Gross. “Automatic Generation
of Object Usage Specifications from Large Method Traces”. In:
International Conference on Automated Software Engineering (ASE).
2009, 371.

bibliography 199

[PG13] Michael Pradel and Thomas R. Gross. “Automatic Testing of
Sequential and Concurrent Substitutability”. In: International
Conference on Software Engineering (ICSE). 2013, 282.

[PG11] Michael Pradel and Thomas R. Gross. “Detecting anomalies in
the order of equally-typed method arguments”. In: International
Symposium on Software Testing and Analysis (ISSTA). 2011, 232.

[PG12] Michael Pradel and Thomas R. Gross. “Fully Automatic and
Precise Detection of Thread Safety Violations”. In: Conference on
Programming Language Design and Implementation (PLDI). 2012,
521.

[PHG14] Michael Pradel, Markus Huggler, and Thomas R. Gross. “Per-
formance Regression Testing of Concurrent Classes”. In: In-
ternational Symposium on Software Testing and Analysis (ISSTA).
2014, 13.

[PS18] Michael Pradel and Koushik Sen. “DeepBugs: A learning ap-
proach to name-based bug detection”. In: PACMPL 2.OOPSLA
(2018), 147:1.

[Pra+14] Michael Pradel, Parker Schuh, George Necula, and Koushik
Sen. “EventBreak: Analyzing the Responsiveness of User In-
terfaces through Performance-Guided Test Generation”. In:
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). 2014, 33.

[Pra+12] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R.
Gross. “Statically Checking API Protocol Conformance with
Mined Multi-Object Specifications”. In: International Conference
on Software Engineering (ICSE). 2012, 925.

[Pra+20] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chan-
dra. “TypeWriter: Neural Type Prediction with Search-based
Validation”. In: ESEC/SIGSOFT FSE. 2020.

[PG01] Christoph von Praun and Thomas R. Gross. “Object Race De-
tection”. In: Conference on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA). 2001, 70.

[PG03] Christoph von Praun and Thomas R. Gross. “Static conflict
analysis for multi-threaded object-oriented programs”. In: Con-
ference on Programming Languages Design and Implementation.
ACM, 2003, 115.

200 bibliography

[Kubb] Production-Grade Container Orchestration. url: https : / /

kubernetes.io/.

[Pro] Protocol Buffers. url: https : / / developers . google . com /

protocol-buffers.

[Rah+14] Foyzur Rahman, Sameer Khatri, Earl T Barr, and Premkumar
Devanbu. “Comparing static bug finders and statistical pre-
diction”. In: Proceedings of the 36th International Conference on
Software Engineering. ACM. 2014, 424.

[Ral+05] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre
Baldi. “Graph kernels for chemical informatics”. In: Neural
networks 18.8 (2005), 1093.

[RG03] Jan Ramon and Thomas Gärtner. “Expressivity versus effi-
ciency of graph kernels”. In: Proceedings of the first international
workshop on mining graphs, trees and sequences. 2003, 65.

[RR17] Inderjot Kaur Ratol and Martin P. Robillard. “Detecting fragile
comments”. In: Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017. 2017, 112.

[Ray+16] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane,
Zhaopeng Tu, Alberto Bacchelli, and Premkumar T. Devanbu.
“On the "naturalness" of buggy code”. In: Proceedings of the
38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016. 2016, 428.

[RVK15] Veselin Raychev, Martin T. Vechev, and Andreas Krause. “Pre-
dicting Program Properties from "Big Code".” In: Principles of
Programming Languages (POPL). 2015, 111.

[RVY14] Veselin Raychev, Martin T. Vechev, and Eran Yahav. “Code com-
pletion with statistical language models”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. 2014,
44.

[RW12] Eric Redmond and Jim R. Wilson. Seven Databases in Seven
Weeks. The Pragmatic Bookshelf, 2012.

[Tsbc] RESTEasy issue 1669. url: https : / / issues . jboss . org /

browse/RESTEASY-1669.

https://kubernetes.io/
https://kubernetes.io/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://issues.jboss.org/browse/RESTEASY-1669
https://issues.jboss.org/browse/RESTEASY-1669

bibliography 201

[Ric+17] Andrew Rice, Edward Aftandilian, Ciera Jaspan, Emily John-
ston, Michael Pradel, and Yulissa Arroyo-Paredes. “Detecting
Argument Selection Defects”. In: Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).
2017.

[Rob09] Martin P. Robillard. “What Makes APIs Hard to Learn? An-
swers from Developers”. In: IEEE Software 26.6 (2009), 27.

[Rod+16] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati,
Juan Carlos Trabucco, Luigi Canali, and Gianraffaele Percan-
nella. “REST APIs: A Large-Scale Analysis of Compliance with
Principles and Best Practices”. In: International Conference on
Web Engineering (ICWE). 2016, 21.

[Rot+01] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Har-
rold. “Prioritizing test cases for regression testing”. In: IEEE
Transactions on Software Engineering 27.10 (2001), 929.

[RAF04] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. “A
Comparison of Bug Finding Tools for Java”. In: International
Symposium on Software Reliability Engineering (ISSRE). IEEE
Computer Society, 2004, 245.

[Rut+08] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebas-
tian Elbaum, and Gregg Rothermel. “Predicting accurate and
actionable static analysis warnings: an experimental approach”.
In: International Conference on Software Engineering (ICSE). 2008,
341.

[Sac+18] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim,
Koushik Sen, and Satish Chandra. “Retrieval on source code: a
neural code search”. In: Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming
Languages. ACM. 2018, 31.

[Sad+15] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söder-
berg, and Collin Winter. “Tricorder: Building a Program Anal-
ysis Ecosystem”. In: Proceedings of the 37th International Confer-
ence on Software Engineering - Volume 1. ICSE ’15. Florence, Italy:
IEEE Press, 2015, 598.

[SR14] Malavika Samak and Murali Krishna Ramanathan. “Multi-
threaded Test Synthesis for Deadlock Detection”. In: Conference
on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA). 2014, 473.

202 bibliography

[SR15] Malavika Samak and Murali Krishna Ramanathan. “Synthe-
sizing tests for detecting atomicity violations”. In: ESEC/FSE.
2015, 131.

[SRJ15] Malavika Samak, Murali Krishna Ramanathan, and Suresh
Jagannathan. “Synthesizing racy tests.” In: PLDI. 2015, 175.

[STR16] Malavika Samak, Omer Tripp, and Murali Krishna Ra-
manathan. “Directed synthesis of failing concurrent execu-
tions”. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Ams-
terdam, The Netherlands, October 30 - November 4, 2016. 2016,
430.

[Sav+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas E. Anderson. “Eraser: A Dynamic Data
Race Detector for Multithreaded Programs”. In: ACM Transac-
tions on Computer Systems 15.4 (1997), 391.

[Sca+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini. “The graph neural network
model”. In: IEEE Transactions on Neural Networks 20.1 (2009),
61.

[Sch+18] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Ce-
likel, Felix Biessmann, and Andreas Grafberger. “Automating
Large-scale Data Quality Verification”. In: Conference on Very
Large Data Bases (VLDB). 2018, 1781.

[SS02] Bernhard Schölkopf and Alexander J Smola. Learning with
kernels: Support vector machines, regularization, optimization, and
beyond. the MIT Press, 2002.

[Seg+16] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio
Ruiz-Cortés. “A survey on metamorphic testing”. In: IEEE
Transactions on software engineering 42.9 (2016), 805.

[Sek+01] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. “A fast
automaton-based method for detecting anomalous program
behaviors”. In: Symposium on Security and Privacy (SSP). IEEE,
2001, 144.

[SP16] Marija Selakovic and Michael Pradel. “Performance Issues
and Optimizations in JavaScript: An Empirical Study”. In:
International Conference on Software Engineering (ICSE). 2016, 61.

bibliography 203

[Sem] Semantic Versioning 2.0.0. url: https://semver.org/.

[Sen08] Koushik Sen. “Race directed random testing of concurrent
programs”. In: Conference on Programming Language Design and
Implementation (PLDI). ACM, 2008, 11.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic
unit testing engine for C”. In: European Software Engineering
Conference and International Symposium on Foundations of Software
Engineering (ESEC/FSE). ACM, 2005, 263.

[Sen+13] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Si-
mon Gibbs. “Jalangi: A Selective Record-Replay and Dynamic
Analysis Framework for JavaScript”. In: European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 2013, 488.

[Sha+15] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser,
Phil McMinn, and Andrea Arcuri. “Do Automatically Gen-
erated Unit Tests Find Real Faults? An Empirical Study of
Effectiveness and Challenges (T)”. In: 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015. 2015, 201.

[She+11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen,
Kurt Mehlhorn, and Karsten M. Borgwardt. “Weisfeiler-
Lehman Graph Kernels”. In: J. Mach. Learn. Res. 12 (2011),
2539.

[Sho+07] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pis-
toia. “Static specification mining using automata-based ab-
stractions”. In: International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2007, 174.

[Smi+19] Micah J. Smith, Carles Sala, James Max Kanter, and Kalyan
Veeramachaneni. The Machine Learning Bazaar: Harnessing the
ML Ecosystem for Effective System Development. 2019.

[Sno14] Snowplow Analytics. Central repository for storing JSON Schemas,
Avros and Thrifts. 2014. url: https://github.com/snowplow/
iglu-central.

[Son+11] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu.
“A general software defect-proneness prediction framework”.
In: IEEE transactions on software engineering 37.3 (2011), 356.

https://semver.org/
https://github.com/snowplow/iglu-central
https://github.com/snowplow/iglu-central

204 bibliography

[Sun+07] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang
Wang. “Cost-sensitive boosting for classification of imbalanced
data”. In: Pattern Recognition 40.12 (2007), 3358.

[SSZ12] Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. “Using coding-
based ensemble learning to improve software defect predic-
tion”. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 42.6 (2012), 1806.

[Swaa] Swagger::Diff. 2015. url: https://github.com/civisanalytics/
swagger-diff.

[Swab] Swagger/OpenAPI Specification. url: https://swagger.io/.

[Swa+05] S Joshua Swamidass, Jonathan Chen, Jocelyne Bruand, Peter
Phung, Liva Ralaivola, and Pierre Baldi. “Kernels for small
molecules and the prediction of mutagenicity, toxicity and
anti-cancer activity”. In: Bioinformatics 21.suppl 1 (2005), i359.

[TZP11] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. “aComment:
mining annotations from comments and code to detect inter-
rupt related concurrency bugs”. In: Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011. Ed. by Richard N. Taylor,
Harald C. Gall, and Nenad Medvidovic. ACM, 2011, 11.

[Tan+07] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou.
“/*icomment: bugs or bad comments?*/”. In: Proceedings of
the 21st ACM Symposium on Operating Systems Principles 2007,
SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007.
Ed. by Thomas C. Bressoud and M. Frans Kaashoek. ACM,
2007, 145.

[Tan+12] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens.
“@tComment: Testing Javadoc Comments to Detect Comment-
Code Inconsistencies”. In: Fifth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2012, Montreal,
QC, Canada, April 17-21, 2012. Ed. by Giuliano Antoniol, Anto-
nia Bertolino, and Yvan Labiche. IEEE Computer Society, 2012,
260.

[Tem+10] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li,
Markus Lumpe, Hayden Melton, and James Noble. “Qualitas
Corpus: A Curated Collection of Java Code for Empirical Stud-
ies”. In: Asia Pacific Software Engineering Conference (APSEC).
2010.

https://github.com/civisanalytics/swagger-diff
https://github.com/civisanalytics/swagger-diff
https://swagger.io/

bibliography 205

[TC16] Valerio Terragni and Shing-Chi Cheung. “Coverage-Driven
Test Code Generation for Concurrent Classes”. In: ICSE. 2016.

[Dou] The "Double-Checked Locking is Broken" Declaration. url:
http : / / www . cs . umd . edu / ~pugh / java / memoryModel /

DoubleCheckedLocking.html.

[Snob] The enterprise-grade event data collection platform. url: https:
//snowplowanalytics.com/.

[Wp2] The Washington Post ANS specification. 2015. url: https://
github.com/washingtonpost/ans-schema.

[TX09] Suresh Thummalapenta and Tao Xie. “Mining Exception-
Handling Rules as Sequence Association Rules”. In:
International Conference on Software Engineering (ICSE). IEEE,
2009, 496.

[Thu+11] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan
de Halleux, and Zhendong Su. “Synthesizing method
sequences for high-coverage testing.” In: OOPSLA. 2011, 189.

[Thu+12] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rah-
man, and Premkumar T. Devanbu. “To what extent could we
detect field defects? an empirical study of false negatives in
static bug finding tools”. In: Conference on Automated Software
Engineering (ASE). ACM, 2012, 50.

[Thu+15] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rah-
man, and Premkumar T. Devanbu. “To what extent could we
detect field defects? An extended empirical study of false neg-
atives in static bug-finding tools”. In: Autom. Softw. Eng. 22.4
(2015), 561.

[Tia+17] Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo.
“APIBot: question answering bot for API documentation”. In:
Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA,
October 30 - November 03, 2017. 2017, 153.

[Tom+19] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara
Bhowmick, Yen-Chuan Liu, Premkumar T. Devanbu, Bogdan
Vasilescu, and Cindy Rubio-González. “BugSwarm: Mining
and Continuously Growing a Dataset of Reproducible Failures
and Fixes”. In: Proceedings of the 41st International Conference

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
https://snowplowanalytics.com/
https://snowplowanalytics.com/
https://github.com/washingtonpost/ans-schema
https://github.com/washingtonpost/ans-schema

206 bibliography

on Software Engineering. ICSE ’19. Montreal, Quebec, Canada:
IEEE Press, 2019, 339–349.

[TH03] Akihiko Tozawa and Masami Hagiya. “XML Schema Contain-
ment Checking based on Semi-implicit Techniques”. In: Inter-
national Conference on Implementation and Application of Automata
(CIAA). 2003, 213.

[TR16] Christoph Treude and Martin P. Robillard. “Augmenting API
Documentation with Insights from Stack Overflow”. In: Proceed-
ings of the 38th International Conference on Software Engineering.
ICSE ’16. Austin, Texas: ACM, 2016, 392.

[TRA20] Foivos Tsimpourlas, Ajitha Rajan, and Miltiadis Allamanis.
“Learning to Encode and Classify Test Executions”. In: CoRR
(2020).

[Tuf+19] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele
Bavota, and Denys Poshyvanyk. “On learning meaningful code
changes via neural machine translation”. In: Proceedings of the
41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019. 2019, 25.

[VR+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren,
Patrick Lam, and Vijay Sundaresan. “Soot - a Java bytecode op-
timization framework”. In: Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON). IBM, 1999, 125.

[VLK02] Meenakshi Vanmali, Mark Last, and Abraham Kandel. “Using
a neural network in the software testing process”. In: Int. J.
Intell. Syst. 17.1 (2002), 45.

[Vas+19] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber,
and Rishabh Singh. “Neural Program Repair by Jointly Learn-
ing to Localize and Repair”. In: ICLR. 2019.

[VCD17] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar T. De-
vanbu. “Recovering clear, natural identifiers from obfuscated
JS names”. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017. 2017, 683.

[Vis+10] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor,
and Karsten M. Borgwardt. “Graph Kernels”. In: J. Mach. Learn.
Res. 11 (2010), 1201.

bibliography 207

[Vis+03] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon
Park, and Flavio Lerda. “Model Checking Programs”. In: Auto-
mated Software Engineering 10.2 (2003), 203.

[Vis+14] Bimal Viswanath, M. Ahmad Bashir, Mark Crovella, Saikat
Guha, Krishna P. Gummadi, Balachander Krishnamurthy, and
Alan Mislove. “Towards Detecting Anomalous User Behavior
in Online Social Networks.” In: USENIX Security. 2014, 223.

[Vit+14] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim
Baker. “Design and Evaluation of Gradual Typing for Python”.
In: Dynamic Languages Symposium (DLS). 2014, 45.

[Wag+09] C. Wagner, G. Wagener, R. State, and T. Engel. “Malware
analysis with graph kernels and support vector machines”.
In: 2009 4th International Conference on Malicious and Unwanted
Software (MALWARE). 2009, 63.

[Wag+05] Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter
Trischberger. “Comparing Bug Finding Tools with Re-
views and Tests”. In: International Conference on Testing of
Communicating Systems (TestCom). Springer, 2005, 40.

[WSS17] Ke Wang, Rishabh Singh, and Zhendong Su. “Dynamic
Neural Program Embedding for Program Repair”. In: CoRR
abs/1711.07163 (2017).

[WS20] Ke Wang and Zhendong Su. “Blended, Precise Semantic Pro-
gram Embeddings”. In: PLDI 2020. London, UK: Association
for Computing Machinery, 2020, 121–134.

[WS06] Liqiang Wang and Scott D. Stoller. “Accurate and efficient
runtime detection of atomicity errors in concurrent programs”.
In: Symposium on Principles and Practice of Parallel Programming,
(PPOPP). ACM, 2006, 137.

[WY13] Shuo Wang and Xin Yao. “Using class imbalance learning for
software defect prediction”. In: IEEE Transactions on Reliability
62.2 (2013), 434.

[WLT16] Song Wang, Taiyue Liu, and Lin Tan. “Automatically learning
semantic features for defect prediction”. In: ICSE. 2016, 297.

208 bibliography

[Wan+16] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin
Tan. “Bugram: bug detection with n-gram language models”.
In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016. 2016, 708.

[Wan+19] Yu Wang, Fengjuan Gao, Linzhang Wang, and Ke Wang.
“Learning a Static Bug Finder from Data”. In: CoRR
abs/1907.05579 (2019).

[WM03] Takashi Washio and Hiroshi Motoda. “State of the Art of
Graph-based Data Mining”. In: SIGKDD Explor. Newsl. 5.1
(2003), 59.

[WZ09] Andrzej Wasylkowski and Andreas Zeller. “Mining Temporal
Specifications from Object Usage”. In: International Conference
on Automated Software Engineering (ASE). IEEE, 2009, 295.

[WZL07] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig.
“Detecting object usage anomalies”. In: European Software En-
gineering Conference and Symposium on Foundations of Software
Engineering (ESEC/FSE). ACM, 2007, 35.

[Wat+20] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota,
and Denys Poshyvanyk. “On Learning Meaningful Assert
Statements for Unit Test Cases”. In: ICSE. 2020.

[WL68] Boris Weisfeiler and AA Lehman. “A reduction of a graph to a
canonical form and an algebra arising during this reduction”.
In: Nauchno-Technicheskaya Informatsia 2.9 (1968), 12.

[WCB14] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory
Networks”. In: CoRR abs/1410.3916 (2014).

[WML02] John Whaley, Michael C. Martin, and Monica S. Lam. “Auto-
matic Extraction of Object-Oriented Component Interfaces”. In:
Symposium on Software Testing and Analysis (ISSTA). ACM, 2002,
218.

[Whi+16] Martin White, Michele Tufano, Christopher Vendome, and
Denys Poshyvanyk. “Deep learning code fragments for code
clone detection”. In: ASE. 2016, 87.

[WTE05] Amy Williams, William Thies, and Michael D. Ernst. “Static
Deadlock Detection for Java Libraries”. In: European Conference
on Object-Oriented Programming (ECOOP). Springer, 2005, 602.

bibliography 209

[WO04] Henry Wong and Scott Oaks. Java Threads. 3rd edition. O’Reilly
Media, Inc., 2004.

[Xia+12] Xusheng Xiao, Amit M. Paradkar, Suresh Thummalapenta,
and Tao Xie. “Automated extraction of security policies from
natural-language software documents”. In: 20th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-20),
SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. Ed.
by Will Tracz, Martin P. Robillard, and Tevfik Bultan. ACM,
2012, 12.

[Xie+05] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin.
“Symstra: A Framework for Generating Object-Oriented Unit
Tests Using Symbolic Execution”. In: Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 2005, 365.

[XBH05] Min Xu, Rastislav Bodík, and Mark D. Hill. “A serializability
violation detector for shared-memory server programs”. In:
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2005, 1.

[Yan+06] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat,
and Manuvir Das. “Perracotta: Mining temporal API rules
from imperfect traces”. In: International Conference on Software
Engineering (ICSE). ACM, 2006, 282.

[Yin+18] Pengcheng Yin, Graham Neubig, Marc Brockschmidt Miltiadis
Allamanis and, and Alexander L. Gaunt. “Learning to Repre-
sent Edits”. In: CoRR 1810.13337 (2018).

[Zha+20] Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao, Minxue Pan,
Shiqing Ma, Lei Xu, Weifeng Zhang, Lin Tan, and Xiangyu
Zhang. “CPC: Automatically Classifying and Propagating Nat-
ural Language Comments via Program Analysis”. In: ICSE.
2020.

[Zha+19] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaix-
uan Wang, and Xudong Liu. “A Novel Neural Source Code
Representation based on Abstract Syntax Tree”. In: ICSE. 2019.

[Zha+14] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. “Semantics-
Aware Android Malware Classification Using Weighted Con-
textual API Dependency Graphs”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’14. Scottsdale, Arizona, USA: ACM, 2014, 1105.

210 bibliography

[Zha18] Zijun Zhang. “Improved Adam optimizer for deep neural
networks”. In: 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS). IEEE. 2018, 1.

[ZH18] Gang Zhao and Jeff Huang. “DeepSim: deep learning code
functional similarity”. In: Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. 2018,
141.

[Zha+18] Rui Zhao, David Bieber, Kevin Swersky, and Daniel Tarlow.
“Neural Networks for Modeling Source Code Edits”. In: (2018).

[Zhe+06] Jiang Zheng, Laurie A. Williams, Nachiappan Nagappan, Will
Snipes, John P. Hudepohl, and Mladen A. Vouk. “On the Value
of Static Analysis for Fault Detection in Software”. In: IEEE
Trans. Software Eng. 32.4 (2006), 240.

[ZC09] Michael Zhivich and Robert K. Cunningham. “The Real Cost
of Software Errors”. In: IEEE Security & Privacy 7.2 (2009), 87.

[ZS13] Hao Zhong and Zhendong Su. “Detecting API Documentation
Errors”. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications. OOPSLA ’13. Indianapolis, Indiana, USA: Associ-
ation for Computing Machinery, 2013, 803–816.

[ZZM08] Hao Zhong, Lu Zhang, and Hong Mei. “Inferring Specifications
of Object Oriented APIs from API Source Code”. In: Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2008, 221.

[Zho+09a] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. “Inferring
Resource Specifications from Natural Language API Docu-
mentation”. In: International Conference on Automated Software
Engineering (ASE). 2009, 307.

[Zho+09b] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei.
“MAPO: Mining and Recommending API Usage Patterns”. In:
European Conference on Object-Oriented Programming (ECOOP).
2009, 318.

bibliography 211

[Zho+17] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano
Panichella, and Harald Gall. “Analyzing APIs Documentation
and Code to Detect Directive Defects”. In: Proceedings of the
39th International Conference on Software Engineering. ICSE ’17.
Buenos Aires, Argentina: IEEE Press, 2017, 27.

[Zim+09] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall,
Emanuel Giger, and Brendan Murphy. “Cross-project defect
prediction: a large scale experiment on data vs. domain vs.
process”. In: European Software Engineering Conference and Sym-
posium on Foundations of Software Engineering (ESEC/FSE). ACM,
2009, 91.

[Zyp09] Kris Zyp. JSON Schema. 2009.

	Erklärung
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Terminology
	1.3 Learning from Programs and their Documentation
	1.4 Contents and Contributions
	1.5 List of Publications and Open-source Implementation

	2 The State of Static Bug Detectors
	2.1 Motivation
	2.2 Methodology
	2.2.1 Real-World Bugs
	2.2.2 Static Bug Detectors
	2.2.3 Experimental Procedure

	2.3 Implementation
	2.4 Experimental Results
	2.4.1 Properties of the Studied Bugs
	2.4.2 Warnings Reported by the Bug Detectors
	2.4.3 Candidates for Detected Bugs
	2.4.4 Validated Detected Bugs
	2.4.5 Comparison of Bug Detectors
	2.4.6 Reasons for Missed Bugs
	2.4.7 Assessment of Methodologies

	2.5 Threats to Validity
	2.6 Implications for this Dissertation and Future Work
	2.7 Contributions and Conclusions

	3 Inferring Thread Safety Documentation
	3.1 Motivation
	3.2 Challenges and Overview
	3.3 Extracting Field-Focused Graphs
	3.3.1 Static Analysis
	3.3.2 Field-focused Graphs

	3.4 Classifying Classes
	3.4.1 Background: Graph Kernels
	3.4.2 Training
	3.4.3 Classifying a New Class

	3.5 Implementation
	3.6 Evaluation
	3.6.1 RQ1: Existing Thread Safety Documentation
	3.6.2 RQ2: Effectiveness of TSFinder
	3.6.3 RQ3: Efficiency of TSFinder
	3.6.4 RQ4: Comparison with Alternative Approaches

	3.7 Limitations
	3.8 Contributions and Conclusions

	4 Learning to Crosscheck Documentation Vs. Runtime
	4.1 Motivation
	4.2 Approach
	4.2.1 Problem Statement
	4.2.2 Overview
	4.2.3 Collecting Projects from Maven
	4.2.4 Gathering NL Information
	4.2.5 Capturing Runtime Behavior
	4.2.6 Generating Buggy Examples
	4.2.7 Learning the DocRT Model

	4.3 Implementation
	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 RQ1: Effectiveness of Learned Model
	4.4.3 RQ2: Detecting Real-world Bugs
	4.4.4 RQ3: Efficiency

	4.5 Contributions and Conclusions

	5 From Documentation to Subtype Checking
	5.1 Motivation
	5.2 Problem Statement
	5.2.1 Background
	5.2.2 JSON Subschema Problem
	5.2.3 Challenges

	5.3 Algorithm
	5.3.1 JSON Schema Canonicalization
	5.3.2 Simplification of Canonicalized Schemas
	5.3.3 JSON Subschema Checking

	5.4 Implementation
	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 RQ1: Effectiveness in Detecting Bugs
	5.5.3 RQ2: Correctness and Completeness
	5.5.4 RQ3: Comparison to Existing Work
	5.5.5 RQ4: Efficiency

	5.6 Contributions and Conclusions

	6 Neural Bug-Finding: A Futuristic Outlook
	6.1 Motivation
	6.2 Methodology
	6.2.1 Gathering Data
	6.2.2 Representing Methods as Vectors
	6.2.3 Buggy and Non-Buggy Examples
	6.2.4 Learning Bug Detection Models
	6.2.5 Different Evaluation Settings

	6.3 Implementation
	6.4 Results
	6.4.1 Experimental Setup
	6.4.2 RQ1: How effective are neural models at identifying common kinds of programming errors?
	6.4.3 RQ2: Why does neural bug finding work?
	6.4.4 RQ3: Why does neural bug finding sometimes not work?
	6.4.5 RQ4: How does the composition of the training data influence the effectiveness of a neural model?
	6.4.6 RQ5: How does the amount of training data influence the effectiveness of a neural model?
	6.4.7 RQ6: What pitfalls exist when evaluating neural bug finding?

	6.5 Threats to Validity
	6.6 Implications for this Dissertation and Future Work
	6.7 Contributions and Conclusions

	7 Related Work
	7.1 Exploiting Natural Language in Software Engineering
	7.1.1 Mining Specifications from Natural Language
	7.1.2 Inconsistencies Between Documentation and Code
	7.1.3 Learning from Natural Language

	7.2 API Documentation in Practice
	7.2.1 Studies of API Documentation
	7.2.2 Enhancing the Usage of API Documentation

	7.3 Machine Learning and Program Analysis
	7.3.1 Program Representation for Learning
	7.3.2 Learning to Find Bugs
	7.3.3 Learning from Source Code
	7.3.4 Learning from Program Execution

	7.4 Traditional Bug Detection Techniques
	7.4.1 Static Analysis
	7.4.2 Dynamic Analysis
	7.4.3 Studies of Bug Detection Techniques
	7.4.4 Defect Prediction

	7.5 Anomaly Detection and Specification Mining
	7.5.1 Specification Mining
	7.5.2 Anomaly Detection

	7.6 JSON Schema and Subtype Checking
	7.6.1 JSON Schema Subtyping and Formalism
	7.6.2 Applications of Subschema Checks
	7.6.3 Type Systems for XML, JavaScript, and Python

	8 Conclusions and Future Work
	8.1 Summary of Contributions
	8.2 Future Work

	 Bibliography

