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Developers Need Tools

Key feature of humans:
Ability to develop tools

Software development tools, e.g., code
completion, bug detection, automated repair
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How to build effective
developer tools?
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Traditional answer:
Symbolic reasoning
■ Manually crafted,

logic-based rules
■ Deterministic, precise reasoning
■ Based on formal PL semantics

Recent answer:
Neural reasoning
■ Models learned from data

(e.g., huge amounts of code)
■ Probabilistic reasoning
■ Based on “naturalness” of code

→ Needs heuristics
to be practical

→ Fails to understand
developer intention

→ Easily misses well-
known facts and rules

→ Hard to understand
and debug



4 - 5

Traditional answer:
Symbolic reasoning
■ Manually crafted,

logic-based rules
■ Deterministic, precise reasoning
■ Based on formal PL semantics

Recent answer:
Neural reasoning
■ Models learned from data

(e.g., huge amounts of code)
■ Probabilistic reasoning
■ Based on “naturalness” of code

Get the best of both worlds:
Neuro-symbolic developer tools
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A Bit of History

TabNine ChatGPTCopilot

2015 2020 2025
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A Bit of History

DeepBugs
(OOPSLA’18)

Bug detection
as a neural
classification
problem
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2015 2020 2025



6 - 1

Example: DeepBugs

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);
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Example: DeepBugs

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim); Incorrect order of arguments
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DeepBugs: Learning to Find Bugs

Train a model to distinguish correct from buggy code

Train machine
learning model

Buggy code

Correct code

Classifier

New code

Buggy/Correct
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DeepBugs: Learning to Find Bugs

Train a model to distinguish correct from buggy code

Train machine
learning model

Buggy code

Correct code

Classifier

New code

Buggy/Correct

Created via program
transformations
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A Bit of History

DeepBugs
(OOPSLA’18)

Bug detection
as a neural
classification
problem

NL2Type
(ICSE’19)

Neural type inference with
static validation

& TypeWriter
(FSE’20)

TabNine ChatGPTCopilot
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Example: TypeWriter

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]
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Example: TypeWriter

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

1) int
2) str
3) bool

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) List[str]
2) List[Any]
3) str

Predictions:

Top-most predictions:
Type errors
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Example: TypeWriter

def find_match(color):
"""
Args:
color (str): color to match on and return

"""
candidates = get_colors()
for candidate in candidates:
if color == candidate:
return color

return None

def get_colors():
return ["red", "blue", "green"]

1) int
2) str
3) bool

Predictions:

1) str
2) Optional[str]
3) None

Predictions:

1) List[str]
2) List[Any]
3) str

Predictions:

Correct predictions
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TypeWiter: Neural Type Prediction

Type pre-
dictionsIdentifiers

Comments
Code tokens

Guaranteed
correct type
annotations

Neural
model

Type
checker
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Motivation

Imagine you want to execute this code:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

# ...
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Motivation

Imagine you want to execute this code:
Missing variableMissing function

Missing variableMissing import
and attribute

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

# ...
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Why Execute Incomplete Code?

Enables various dynamic analyses

■ Check for exceptions and assertion violations

■ Compare two code snippets for semantic equivalence

■ Validate static analysis warnings

■ Validate and filter LLM-predicted code

■ ⟨Your favorite application here⟩
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Executing Ain’t Easy

Lots of incomplete code:

■ Code snippets from Stack Overflow

■ Code generated by language models

■ Code extracted from deep inside complex projects
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Executing Ain’t Easy

Lots of incomplete code:

■ Code snippets from Stack Overflow

■ Code generated by language models

■ Code extracted from deep inside complex projects

Can we automatically fill in the missing information?
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LExecutor

Learning-guided approach for executing arbitrary code
snippets

■ Predict missing values with neural model

■ Inject values into the execution

Underconstrained execution:
No guarantee that values are realistic
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Example: LExecutor

Let’s “lexecute” the motivating example:

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

# ...
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Example: LExecutor

Let’s “lexecute” the motivating example:
Non-empty list

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

# ...
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Example: LExecutor

Let’s “lexecute” the motivating example:
Non-empty listFunction that returns True

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")
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# ...
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Example: LExecutor

Let’s “lexecute” the motivating example:
Non-empty listFunction that returns True

Non-empty string

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

# ...
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Example: LExecutor

Let’s “lexecute” the motivating example:
Non-empty listFunction that returns True

Non-empty stringObject with
a method

if (not has_min_size(all_data)):

raise RuntimeError("not enough data")

train_len = round(0.8 * len(all_data))

logger.info(f"Extracting data with {config_str}")

train_data = all_data[0:train_len]

# ...



17

Overview of LExecutor

Context-value pairs Code context with
missing value

Likely runtime
valueTraining Prediction

Instrumentation

Neural model Runtime engine

Executable code Code to execute

Instrumented code Instrumented code
Execute

Train
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Code Instrumentation

■ Wrap reads of variables, reads of attributes, and
function calls

□ During training: Observe runtime values

□ During prediction: Inject missing values

■ AST-based source-to-source instrumentation

□ Drop-in replacement for original code

□ Same semantics, except for reads of values
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Example

Original code:

x = foo()

y = x.bar + z



19 - 2

Example
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Instrumented code:

x = _c_(536, _n_(535, "foo", lambda: foo))

y = _a_(538, _n_(537, "x", lambda: x), "bar") \

+ _n_(539, "z", lambda: z)
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Example

Original code:

x = foo()

y = x.bar + z

Instrumented code:

x = _c_(536, _n_(535, "foo", lambda: foo))

y = _a_(538, _n_(537, "x", lambda: x), "bar") \

+ _n_(539, "z", lambda: z)

Wrapper for variable reads

Wrapper
for calls

Wrapper for attribute reads

Lambda function to
postpone the read (to be
called by runtime engine)
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Neural Model: Data Representation

Code
context

ValueModel
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Neural Model: Data Representation

n ⟨sep⟩ k ⟨sep⟩ cpre ⟨mask⟩ cpost

Name used to
refer to a value

Kind of value
(variable, attribute,
or return value)

Code before/after
the reference to
the value

Code
context

ValueModel
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Neural Model: Data Representation

Concrete values abstracted into
23 classes, e.g.,

■ None, True, False

■ Negative/zero/positive integer

■ Empty/non-empty list

■ Callable

Code
context

ValueModel
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Train & Predict

■ Fine-tune a pre-trained CodeT5 model

■ During prediction:
For each use of a value

□ Read value and, if it exists, return it

□ If undefined, query the model and return its prediction
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Evaluation

■ Training data
□ 226k unique value-use events from five projects

■ Code snippets to execute
□ Open-source functions: 1,000 extracted from five projects

□ Stack Overflow snippets: 462 syntactically correct code snippets in

answers to 1,000 Python-related questions
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Accuracy

How accurate is the model at predicting realistic values?

Value abstraction

Fine-grained Coarse-grained

CodeT5 CodeBERT CodeT5 CodeBERT

Top-1 80.1% 79.5% 88.1% 87.3%
Top-3 88.4% 94.5% 92.1% 96.5%
Top-5 91.7% 96.8% 94.2% 98.2%

23 abstract classes
of values

12 abstract classes
of values
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Effectiveness at Covering Code (Open-source functions)

Variants of
LExecutor

State-of-the-art
unit test generator

Neural type prediction

Just run the code
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Effectiveness at Covering Code (Stack Overflow snippets)

Variants of
LExecutor

Neural type prediction

Just run the code
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Summary: LExecutor

Symbolic reasoning
■ Execute code using standard

PL semantics
■ Enables various dynamic

analyses

Neural reasoning
■ Fill-in missing information on

demand during the execution
■ Enables execution of otherwise

“unexecutable” code

■ Paper: “LExecutor: Learning-Guided Execution”

(FSE, 2023, Distinguished Paper Award)

■ Code: https://github.com/michaelpradel/LExecutor
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Automated Program Repair

■ Problem: Too many bugs, huge effort to fix them

■ State of the art: Learning-based repair

□ Neural model predicts a fix

□ Validation via test suite and/or static analysis

Automated Program Repair
Claire Le Goues, Michael Pradel, Abhik Roychoudhury
Communications of the ACM, 62(12), 2019
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Limitations of Current Tools

■ Fixed input: Lines around the bug location
□ Human developers: Actively gather additional information

■ Fixed algorithm: Repeatedly generate and validate
patches

□ Human developers: Complex interactions with various tools

Examples for current tools:
ChatRepair (Xia et al., 2023) and ITER (Ye et al., 2024)
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RepairAgent

New paradigm: LLM takes the decisions autonomously

■ Agent invokes developer tools:
LLM mimics human-like actions

■ Interaction via natural language:
LLM mimics human-like reasoning
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Example: RepairAgent

LLM agent Tools

You are an AI assistant
specialized in fixing bugs in
Java code. Your objective is to
autonomously understand and
fix the following bug:
[Details of failing test case]

Use the following tools:
[Details on available tools]
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Example: RepairAgent

Based on the failing test cases, it
seems that there is an issue with
the variable goog being
unexpectedly used. I should
analyze the code in
NameAnalyzer.java to
understand the context of this
variable and its usage.

Let’s call the ”read code” tool!

LLM agent Tools
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Example: RepairAgent

LLM agent Tools

NameAnalyzer.java:
...
} else if (n.isCall()) {
Node nameNode = n.getFirstChild();
NameInformation ns =

createNameInformation(t, nameNode, n);
if (ns != null && ns.onlyAffectsClassDef) {
JsName name = getName(ns.name, false);
if (name != null) {
refNodes.add(new ClassDefFctNode(
name, n, parent, parent.getParent()));

}
}

...
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Example: RepairAgent

After analyzing the code snippet in
NameAnalyzer.java, it appears that
the issue might be related to the
usage of the JsName object and the
refNodes list. The unexpected
variable goog error could be due to a
missing check or incorrect handling
of variables.

Let’s work under this hypothesis!

LLM agent Tools
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Example: RepairAgent

Now that the hypothesis about the
bug has been expressed, it’s time to
gather more information to proceed
with fixing the bug.

Let’s search the code base for
keywords JsName and refNodes!

LLM agent Tools
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Example: RepairAgent

LLM agent Tools

Too many results.

Please try something else.
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Example: RepairAgent

I should focus on a specific
method or code snippet related to
JsName and refNodes to gather
more targeted information.

Let’s find API usages similar to
getName(ns.name, false)!

LLM agent Tools
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Example: RepairAgent

Search results:

getName(ns.name, true)

getName(nameNode.getString(), false)

getName(WINDOW, true)

...

LLM agent Tools
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Example: RepairAgent

Based on the extracted similar
function calls, it seems that there
are variations in the parameters
passed to getName. I should
consider changing the parameters
to resolve the bug.

Let’s apply and test this fix!

- JsName name = getName(ns.name, false);

+ JsName name = getName(ns.name, true);

LLM agent Tools
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Example: RepairAgent

With this fix, all tests pass.

We are done!

LLM agent Tools
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Overview of RepairAgent

Middleware

Query agent with
dynamic prompt

Command to
execute next

Invoke
command

Raw tool
output

LLM agent Tools

1 3

2 4
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Dynamic Prompt

Prompt isn’t fixed, but changes over time

■ Static parts:

□ Role, goals, guidelines, output format

■ Dynamic parts:

□ Available tools

□ Gathered information

□ Last executed command and its result
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Tools

Category Tools

Read and extract code Read range of lines
Get classes and methods

Search and generate code Search code base by keyword
Predict method body via LLM

Testing and patching Run test suite
Apply a patch

Control Express or discard hypothesis
Declare success

See paper for complete list of 14 tools.
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Guidance via Finite State Machine
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Evaluation

■ OpenAI’s GPT-3.5-0125

■ All 835 bugs from Defects4J v1.2 and v2

□ Including multi-line, multi-file bugs

■ Measures of success

□ Plausible fixes

□ Correct fixes

□ Cost per bug
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Effectiveness

Bug type RepairAgent ChatRepair ITER SelfAPR
Single-line 110 133 36 83
Multi-line 46 29 14 24
Multi-file 3 0 4 3
Total 164 162 57 110

Correct bug fixes:
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Effectiveness
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Examples

Found this field by
searching the code base

if (cfa != null) {

for (Node finallyNode : cfa.finallyMap.get(parent)) {

- cfa.createEdge(fromNode, Branch.UNCOND, finallyNode);

+ cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);

}

}
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Examples

Found condition via
LLM-based code completion

Separator sep = (Separator) elementPairs.get(0);

+ if (sep.iAfterParser == null &&

+ sep.iAfterPrinter == null) {

PeriodFormatter f = toFormatter(...);

sep = sep.finish(f.getPrinter(), f.getParser());

return new PeriodFormatter(sep, sep);

+ }
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Costs

Avg. per bug:
270k tokens,
USD 0.14
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Summary: RepairAgent

Symbolic reasoning
■ Test executions
■ FSM-based guidance
■ Static code search

Neural reasoning
■ LLM-driven decision making
■ LLM-based code completion
■ NL as “glue language”

■ Paper: “RepairAgent: An Autonomous, LLM-Based Agent for Program

Repair” (arXiv, 2024)
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Conclusions and Open Challenges

Neuro-symbolic developer tools are here to stay

■ LExecutor: Learning-guided execution

□ Future work: Dynamic analysis applications

■ RepairAgent: Autonomous, LLM-based repair

□ Future work: Autonomous agents for other SE tasks

■ General open challenge: Better interfaces between
neural and symbolic reasoning
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Template

■ aa
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