Program Testing and Analysis: Performance Profiling

Prof. Dr. Michael Pradel
Software Lab, TU Darmstadt
Outline

1. Introduction
2. CPU Time Profiling
3. Empirical Complexity

Partially based on these papers:

- Evaluating the accuracy of Java profilers,
 Mytkowicz et al., PLDI 2010
- Measuring empirical computational complexity,
 Goldsmith et al., ESEC/FSE 2007
Motivation

- **Performance**: Non-functional property

- **Important because**:
 - Users dislike slow applications
 - Related to monetary cost (e.g., in data centers or automated trading)
 - Related to energy consumption

- **Simple changes may yield huge improvements**
Performance Profiling

- **Profiling**: Dynamic analysis to measure performance

- Observe runtime behavior to
 - Measure performance of code
 - Understand performance bottlenecks

- Ultimate goal: Provide insights that help developer address bottlenecks
Performance

- Various quantities to measure:
 - Time (focus of this lecture), memory usage, network bandwidth

- **Absolute** performance
 - E.g., milliseconds (time) or megabyte (memory usage)

- **Relative** performance
 - Compare versions of same program
 - Compare different programs
 - Compare ways to execute the same program
Speedup vs. Improvement

Two representations of relative performance:

Speedup

\[s = \frac{t_{baseline}}{t_{measured}} \]

Improvement

\[i = \frac{t_{baseline} - t_{measured}}{t_{baseline}} \]

Example: A takes 10 seconds, B takes 15 seconds

- Speedup of A over B is \(\frac{15}{10} = 1.5 \) (A is 1.5x faster than B)
- A improves over B by \(\frac{15 - 10}{15} = 33\% \)
Scalability

- Related to performance, but not the same

- **Scalability:** How does performance change w.r.t. to some parameter

- **Typical parameters:**
 - Input size
 - Number of CPU cores
 - Available memory
Execution Time

What is ”time”? (See Unix ”time” command)

Elapsed time → CPU time → Other time

User CPU time → System CPU time → Disk I/O → Network I/O

What do we want to measure the execution time of?

- Entire program
- Code segment of interest
Quiz

<table>
<thead>
<tr>
<th>Program</th>
<th>Elapsed time</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4s</td>
<td>3s</td>
</tr>
<tr>
<td>B</td>
<td>7s</td>
<td>4s</td>
</tr>
</tbody>
</table>

Which of the following is true?

- A is 1.43x faster than B
- B has a speedup of 0.57x over A
- A has a speedup of 1.75x over B
- A improves the CPU-time consumption by 25%
- A improves the CPU-time consumption by 33%
Quiz

<table>
<thead>
<tr>
<th>Program</th>
<th>Elapsed time</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4s</td>
<td>3s</td>
</tr>
<tr>
<td>B</td>
<td>7s</td>
<td>4s</td>
</tr>
</tbody>
</table>

Which of the following is true?

- A is 1.43x faster than B **1.75x**
- B has a speedup of 0.57x over A **✓**
- A has a speedup of 1.75x over B **✓**
- A improves the CPU-time consumption by 25% **✓**
- A improves the CPU-time consumption by 33% **25%**
Outline

1. Introduction
2. CPU Time Profiling
3. Empirical Complexity

Partially based on these papers:

- *Evaluating the accuracy of Java profilers*, Mytkowicz et al., PLDI 2010