Analyzing Software using Deep Learning

Lecture 3:
RNN-based Code Completion and Repair (Part 2)
Plan for Today (Part 1)

- **Deep learning basics**
 - Finish up last lecture

- **Recurrent neural networks (RNNs)**

- **Code completion with statistical language models**
 Based on PLDI 2014 paper by Raychev et al.

- **Repair of syntax errors**
 Based on ”Automated correction for syntax errors in programming assignments using recurrent neural networks” by Bhatia & Singh, 2016
Motivation

- Given: Program with syntax error
- Goal: Find a fix that removes syntax error
- Possible application context: MOOCs with automated feedback on programming tasks
Example (1)

def recPower (base , exp):
 if exp <= 0:
 return 1
 return base * recPower (base , exp - 1
def recPower (base , exp):
 if exp <= 0:
 return 1
 return base * recPower (base , exp - 1)
def recurPower (base , exp):
 if exp == 0:
 return exp + 1
 else:
 return (base * recurPower (base ,exp - 1))
Example (2)

def recurPower (base , exp):
 if exp == 0:
 return base
 else:
 return (base * recurPower (base , exp - 1))
def recurPower (base , exp):
 if exp == 0:
 return base
 else:
 return (base * recurPower (base ,exp - 1))

Beware: Fix of syntax error may not be the semantically correct fix
SynFix: Overview

Syntactically correct student submission

\[\text{Learned RNN-based model}\]

Student submission with syntax errors \[\text{SynFix} \quad \rightarrow \quad \text{Feedback (suggested fix)}\]
RNN-based Model

- Program = Sequence of tokens

- Training:
 Expected output sequence: Input sequence shifted by one

- Prediction:
 Provide partial program until error location & generate next token(s)
SynFix Algorithm

Given: Program with syntax error + error location

Steps:
- Parse and tokenize program
- Query network with prefix of tokens until error location
- Try if inserting or replacing one or more tokens fixes the error
- If not: Delete line with error and query network with prefix until the error line
- Try if inserting predicted tokens fixes the error
Summary

- Recurrent Neural Networks (RNNs)
 - Powerful class of neural networks
 - Most effective for inputs (and outputs) that are sequences

- Two applications
 - Code completion:
 Predict next calls based on previous calls
 - Repair of syntax errors:
 Predict correct tokens based on previous tokens