Seminar on Program Analysis

Winter semester 2014
TU Darmstadt
Plan for Today

1. Organization

2. Topics

3. Recent research from the Software Lab
Why Have a Seminar?

- **Learn fundamentals of doing research**
 - Read and digest papers
 - Present complex ideas to others
 - Scientific writing
 - Reviewing

- **Learn about program analysis**
 - Maybe your future thesis topic
 - Opportunities for HiWis
Organization

- Weekly meetings
- 1 topic per week
 - Each topic: 3 papers
- 1 to 3 talks per week

Your task:
- Talk
- Term paper
- Reviews
Organization

- Weekly meetings
- 1 topic per week
 - Each topic: 3 papers
- 1 to 3 talks per week

Your task:

- Talk 40%
- Term paper 40%
- Reviews 20%

Grading:
Talk

- 20 minutes + questions
- English
- Present 1 of the 3 papers

- Get feedback afterwards
 - Don’t repeat mistakes made by others
 - Expectations will increase during the semester
Talk: Some Advice

Content:
- No need to explain all technical details
- But: Must contain some "meat"

Presentation:
- Examples are your secret weapon
- Stick to the time limit
- Practice, practice, practice

Search for *How to give a good research talk* by Simon Peyton Jones
Talk: Rules

- You may use parts of existing slides
- You may use examples from the paper
Term Paper

- 6 pages
- English
- LaTeX template on course web site
- Summarize all 3 papers and relate them to each other
- Must be self-containing
Term Paper: Some Advice

- Don’t waste space on basics
- Examples are your secret weapon (yes, again)
- Most important part: Comparison of the three papers
- Bad English distracts from good content
- Revise, revise, revise
Term Paper: Rules

- No verbatim copying of text (exception: quotes)
- You may copy figures (e.g., result graphs)
- You must use your own example(s)
Reviews

- Imitates peer reviewing process
- Each participant reviews three term papers
- Revise your term paper after getting reviews
 - Grade will be for final term paper
- Plain text format
- About 1 page, English
Reviews: Some Advice

- Be constructive
- Be polite
- Your reviews contribute to your grade, not to the reviewee’s grade
Dates

- Regular meetings:
 Oct 27, 2014 – Feb 9, 2015

- Deadlines:
 □ Oct 15, 2014: Topic selection
 □ Jan 12, 2015: Term papers
 □ Jan 29, 2015: Reviews
 □ Feb 15, 2015: Revised term papers

- Details on submission: See web site
Plan for Today

1. Organization

2. Topics

3. Recent research from the Software Lab
What is Program Analysis?
What is Program Analysis?

- Automated analysis of the behavior of a program
- Common goals:
 - Find programming errors
 - Optimization
- Static vs. dynamic
What is Program Analysis?

- Automated analysis of the behavior of a program
- Common goals:
 - Find programming errors
 - Optimization
- Static vs. dynamic
What is Program Analysis?

- Automated analysis of the behavior of a program

- Common goals:
 - Find programming errors
 - Optimization

- Static vs. dynamic

```
Input     Input     Input
Program   Program   Program
Output    Output    Output
```

Additional information
Topic: Anomaly Detection

Find bugs without any specification, by inferring knowledge from the program

Example 1:

```java
if (x == null) {
    x.foo();
}
```
Find bugs without any specification, by inferring knowledge from the program

Example 1:

```java
if (x == null) {
    x.foo();
}
```

Example 2:
Topic: Concurrency Bugs

Analyze thread interleavings to find non-deterministic bugs

Example:

Thread 1

```java
... if (x != null) {
    x.foo();
} ...
```

Thread 2

```java
... x = null;
... ...
```
Analyze thread interleavings to find non-deterministic bugs

Example:

Thread 1:

...

if (x != null) {
 x.foo();
}

...

Thread 2:

...

x = null;

...

Error
UI-level test generation that automatically triggers sequences of input events

Example:

![Image from Gross et al., 2012]
Infer types for languages without type annotations and report type errors

Example:

// JavaScript
var obj = {x: "abc", y: 23};
var nb = 42 - obj.x;
Topic: Type Analysis for Dynamic Languages

Infer types for languages without type annotations and report type errors

Example:

// JavaScript
var obj = {x: "abc", y: 23};
var nb = 42 - obj.x;

NaN
Topic: Performance Bugs

Detect code with unnecessarily high CPU or memory requirements

Example:

```java
for (Item item : items) {
    for (int i = 0; i < max; i++) {
        var x = expensive();
        ...
    }
}
```
Topic: Performance Bugs

Detect code with unnecessarily high CPU or memory requirements

Example:

```java
for (Item item : items) {
    for (int i = 0; i < max; i++) {
        var x = expensive();
        ...
    }
}
```

Hoist out of loop if expensive is independent of i
Systematically explore paths by combining symbolic and concrete execution

Example:

// Input: N
if (N > 5) {
 if (N == 42) {
 // error
 // error
 }
}
Topic: Concolic Execution

Systematically explore paths by combining symbolic and concrete execution

Example:

```c
// Input: N
if (N > 5) {
    if (N == 42) {
        // error
    }
}
```

![Diagram](attachment:image.png)
Topic: Concolic Execution

Systematically explore paths by combining symbolic and concrete execution

Example:

```java
// Input: N
if (N > 5) {
    if (N == 42) {
        // error
    }
}
```

```
N=0
```

```
N > 5
```

```
N == 42
```

```
// error
```
Systematically explore paths by combining symbolic and concrete execution

Example:

```java
// Input: N
if (N > 5) {
    if (N == 42) {
        // error
    }
}
```

```
N=6
N > 5

N == 42
// OK
// OK
```
Systematically explore paths by combining symbolic and concrete execution

Example:

```c
// Input: N
if (N > 5) {
    if (N == 42) {
        // error
    }
}
```

Diagram:

```
N = 42

N > 5

N == 42

✓

✓

✓
```
Generate test cases by creating random inputs (e.g., random method calls)

Example:

```java
LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);
assert(s1.equals(s1));  // Fails (Sun’s JDK 1.5)
```

Example from Pacheco et al., 2007
Topic: Random Test Generation

Generate test cases by creating random inputs (e.g., random method calls)

Example:

```java
LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);
assert(s1.equals(s1));
```

Example from Pacheco et al., 2007
Generate test cases by creating random inputs (e.g., random method calls)

Example:

```java
LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);
assert(s1.equals(s1));
```

Example from Pacheco et al., 2007
Generate test cases by creating random inputs (e.g., random method calls)

Example:

```java
LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);
```

Example from Pacheco et al., 2007
Generate test cases by creating random inputs (e.g., random method calls)

Example:

```java
LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);
assert(s1.equals(s1));  // Fails (Sun’s JDK 1.5)
```

Example from Pacheco et al., 2007
Find security-critical bugs, e.g., potential SQL-injection attacks

Example:

$id = \$_GET[\'id\'];

//construct SQL statement
$sqlStmt = "SELECT * FROM Users
 WHERE UserId = $id";
Find security-critical bugs, e.g., potential SQL-injection attacks

Example:

```php
$id = $_GET['id'];
// construct SQL statement
$sqlStmt = "SELECT * FROM Users WHERE UserId = $id";
```

What if $id is: "23; DROP TABLE Users"?
Topic: Differential Testing

Compare two supposedly equivalent programs with each other

Example:

```c
int foo (void) {
    signed char x = 1;
    unsigned char y = 255;
    return x > y;
}
```

Example from Yang et al., 2011
Topic: Differential Testing

Compare two supposedly equivalent programs with each other

Example:

```c
int foo (void) {
    signed char x = 1;
    unsigned char y = 255;
    return x > y;
}
```

Returns 1 when compiled with Ubuntu's GCC, but 0 with the GCC base version

Example from Yang et al., 2011
Topic Selection

- Full list of topics and papers: Course web site

- Send your preferences by Oct 15, 2014
 - Pick 3 topics (sorted by priority)
 - Optionally, indicate which paper you want to present

→ Counts as course registration
Plan for Today

1. Organization
2. Topics
3. Recent research from the Software Lab