Exercise 2: Symbolic and Concolic Execution

—Solution—

Deadline for uploading solutions via Ilias:
January 15, 2021, 11:59pm Stuttgart time

Task 1 Symbolic Execution [33 points]

For this task, you are given the following JavaScript program.

```javascript
function foo(a, b, c) {
    let x = y = 0;

    if (a > 0) {
        y = 7;
    } else {
        y = 5;
    }

    if (b > 3) {
        x = 2;
    }

    if (a <= 0 && c == 0) {
        y = y - 3;
    }

    assert(x + y != 5);
}
```
Subtask 1.1 Program Execution Tree [12 points]

Complete the program execution tree (PET) started below, as demonstrated in the lecture. That is, nodes are conditionals and edges correspond to sequences of non-conditional statements. Mark true branches with a t and false branches with an f. Also write the assignments that were performed next to each edge. Please use a small square □ to signify when an execution ends (i.e., for leaf nodes of the PET).

```
| a = a₀, b = b₀, c = c₀, |
| x = y = 0 |
| a₀ > 0 |

| y = 7 |
| f |
| b₀ > 3 |

| t |
| y = 5 |
| f |
| b₀ > 3 |

| t |
| y = 7 |
| t |
| y = y - 3 |
| □ |
| □ |
| □ |

| f |
| □ |
| □ |

| □ |
| □ |
| □ |
```

```
\begin{align*}
a_{0} &> 0 \\
b_{0} &> 3 \\
a_{0} &\leq 0 \land c_{0} = 0 \\
y &\neq y - 3 \\
x &\neq 2 \\
y &\neq 5 \\
a_{0} &\leq 0 \land c_{0} = 0 \\
y &\neq y - 3 \\
x &\neq 2 \\
\end{align*}
```
Subtask 1.2 Path Conditions

Each of the leaves in the program execution tree above corresponds to a unique path through the program. For each such unique path, there is a path condition, i.e., a logical formula that must be satisfied for the program to take this path. Collect the path condition for each leaf in your program execution tree. Write down all those path conditions below by listing them from left to right in the tree. Use syntax from mathematics for logical connectives (i.e., \(\land \), \(\neg \), etc.) to make clear that these are logical formulas. You are allowed but not required to simplify the formulas.

1. \(a_0 > 0 \land b_0 > 3 \land a_0 \leq 0 \land c_0 = 0 \)
2. \(a_0 > 0 \land b_0 > 3 \land \neg(a_0 \leq 0 \land c_0 = 0) \), which can be also written in conjunctive normal form
 \(a_0 > 0 \land b_0 > 3 \land (a_0 > 0 \lor c_0 \neq 0) \), which simplifies to just \(a_0 > 0 \land b_0 > 3 \).
3. \(a_0 > 0 \land \neg(b_0 > 3) \), or equally \(a_0 > 0 \land b_0 \leq 3 \)
4. \(\neg(a_0 > 0) \land b_0 > 3 \land a_0 \leq 0 \land c_0 = 0 \), which simplifies to \(a_0 \leq 0 \land b_0 > 3 \land c_0 = 0 \)
5. \(\neg(a_0 > 0) \land b_0 > 3 \land \neg(a_0 \leq 0 \land c_0 = 0) \), in conjunctive normal form:
 \(a_0 \leq 0 \land b_0 > 3 \land (a_0 > 0 \lor c_0 \neq 0) \), which simplifies to \(a_0 \leq 0 \land b_0 > 3 \land c_0 \neq 0 \)
6. \(\neg(a_0 > 0) \land \neg(b_0 > 3) \), or equally \(a_0 \leq 0 \land b_0 \leq 3 \)

Subtask 1.3 Solve for Inputs

An SMT solver (and you as a human) can solve path conditions, i.e., try to find an assignment of \(a_0 \), \(b_0 \), and \(c_0 \) that satisfies the formula. Write down one possible solution (there may be infinitely many) per path condition, i.e., write down values for \(a_0 \), \(b_0 \), and \(c_0 \). If no values of \(a_0 \), \(b_0 \), and \(c_0 \) can satisfy the formula, write down UNSAT.

1. UNSAT because of \(a_0 > 0 \land a_0 \leq 0 \).
2. e.g., \(a_0 = 1 \), \(b_0 = 4 \), \(c_0 = 0 \) (\(c_0 \) does not have to be mentioned, since it is unconstrained.)
3. e.g., \(a_0 = 1 \), \(b_0 = 3 \), \(c_0 = 0 \) (\(c_0 \) does not have to be mentioned, since it is unconstrained.)
4. e.g., \(a_0 = 0 \), \(b_0 = 4 \), \(c_0 = 0 \)
5. e.g., \(a_0 = 0 \), \(b_0 = 4 \), \(c_0 = 1 \)
6. e.g., \(a_0 = 0 \), \(b_0 = 3 \), \(c_0 = 0 \) (\(c_0 \) does not have to be mentioned, since it is unconstrained.)

Subtask 1.4 Assertion

For which path does the assertion in line [18] fail, i.e., \(x + y \neq 5 \) evaluates to false? Write down the path condition: Path condition 6, i.e., \(\neg(a_0 > 0) \land \neg(b_0 > 3) \).

What are the values of \(x \) and \(y \) at the assert in that case? \(x = 0 \), \(y = 5 \).
Task 2 Concolic Testing [38 points]

In this task, you will perform concolic testing on the following JavaScript program. Assume all variables are integers.

```javascript
function bar(x, y) {
    // Program state?
    if (x > y) {
        x = 3;
    } else {
        y = 3;
    }
    // Program state?
    y = y * 2;
    // Program state?
    x = baz(x, y);
    // Program state?
    if (x < 0) {
        y = y - 1;
    }
    // Program state?
    assert(x + y == 0);
}
function baz(a, b) {
    return a - b;
}
```

Subtask 2.1 First Concolic Execution [12 points]

We start executing the program by calling function `bar` with seed inputs `x = 1` and `y = 2`. Complete the table below with the values of the variables `x` and `y` for the concrete and symbolic execution of the program. Write those down at each program line given in the first column. After the first branch, also write down the path condition under which the program has executed along this path.

<table>
<thead>
<tr>
<th>At Line</th>
<th>Concrete Execution</th>
<th>Symbolic Execution</th>
<th>Path condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>x = 1, y = 2</td>
<td>x = x₀, y = y₀</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>x = 1, y = 3</td>
<td>x = x₀, y = 3</td>
<td>¬(x₀ > y₀)</td>
</tr>
<tr>
<td>10</td>
<td>x = 1, y = 6</td>
<td>x = x₀, y = 6</td>
<td>¬(x₀ > y₀)</td>
</tr>
<tr>
<td>12</td>
<td>x = -5, y = 6</td>
<td>x = x₀ - 6, y = 6</td>
<td>¬(x₀ > y₀)</td>
</tr>
<tr>
<td>16</td>
<td>x = -5, y = 5</td>
<td>x = x₀ - 6, y = 5</td>
<td>¬(x₀ > y₀) ∧ (x₀ - 6 < 0)</td>
</tr>
</tbody>
</table>
Subtask 2.2 Generating New Inputs

Since concolic execution is a test generation technique, our next goal is to generate a new set of inputs that leads the program down a different path than in the previous execution. For that, take the path condition from the previous execution and negate the conjunct that corresponds to the branch at line 13 in the program.

This results in the following path condition: \(\neg(x_0 > y_0) \land \neg(x_0 - 6 < 0) \)

Please solve this path condition for \(x_0 \) and \(y_0 \) to get test inputs for the program that take a new path (there are infinitely many correct solutions): \(x_0 = 6, y_0 = 6 \).

Subtask 2.3 Second Concolic Execution

We now execute the program a second time, taking the new concrete values for \(x \) and \(y \) that you generated in the previous subtask as concrete inputs. Please fill the table below again with the concrete and symbolic state of the program and the path condition.

<table>
<thead>
<tr>
<th>Line</th>
<th>Concrete Execution</th>
<th>Symbolic Execution</th>
<th>Path condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>x = 6, y = 6</td>
<td>x = x_0, y = y_0</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>x = 6, y = 3</td>
<td>x = x_0, y = 3</td>
<td>(\neg(x_0 > y_0))</td>
</tr>
<tr>
<td>10</td>
<td>x = 6, y = 6</td>
<td>x = x_0, y = 6</td>
<td>(\neg(x_0 > y_0))</td>
</tr>
<tr>
<td>12</td>
<td>x = 0, y = 6</td>
<td>x = x_0 - 6, y = 6</td>
<td>(\neg(x_0 > y_0))</td>
</tr>
<tr>
<td>16</td>
<td>x = 0, y = 6</td>
<td>x = x_0 - 6, y = 6</td>
<td>(\neg(x_0 > y_0) \land \neg(x_0 - 6 < 0))</td>
</tr>
</tbody>
</table>

At the end of this second execution, does the assertion in line 17 fail? Yes, it fails.

Subtask 2.4 Generate More Inputs

Concolic execution can successively generate more inputs for \(x \) and \(y \) until ultimately each path through the program has been taken once.

Please list two more solutions for \(x \) and \(y \) that each cover a new path through the program. For each pair of inputs, also list the final path condition when the program executes on these inputs.

1. \(x = 6, y = 5 \), path condition: \((x_0 > y_0) \land (3 - 2y_0 < 0) \)

2. \(x = 2, y = 1 \), path condition: \((x_0 > y_0) \land \neg(3 - 2y_0 < 0) \)
Task 3 Limitations and Understanding [19 points]

In this task, you should demonstrate a deeper understanding of symbolic and concolic execution by explaining some examples that potentially cause problems. For each of the JavaScript programs below, answer the question in prose with at most 80 words per question. Please write legibly. Assume the argument \texttt{x} is an integer in every example.

Subtask 3.1 [4 points]

```javascript
function f(x) {
    let r = fs.readFileSync("test.txt", "utf8");
    if (r == "some string") {
        x = 0;
    }
    assert(x == 0);
}
```

Assume \texttt{fs} is the file system API from Node.js. Why is this example program difficult for symbolic execution? What are possible solutions in symbolic execution frameworks?

Since the file system is a native API and not implemented in JavaScript, it cannot be executed symbolically. One way to solve this issue, is by modeling the file system in the symbolic execution engine, e.g., as done in KLEE.

How does concolic execution handle this issue?

Since concolic execution does concrete execution in parallel to the symbolic one, the concrete return value of such native APIs can be used instead of the symbolic value. This is also called “concretizing” the return value.
function f(x) {
 let s = 0;

 let i = 0;
 while (i < x) {
 s = s + i*i;
 }

 assert(s > 0);
}

Why is this program problematic in general (Hint: The problem is relevant irrespective of symbolic/concolic execution)?

There is an infinite loop, because \(i\) is never incremented.

What issue can arise when symbolically executing the program?

Because of the infinite loop, one path through the program is infinitely long. Thus, the program execution tree can grow infinitely large and exhaust system memory.

Is the same issue present for concolic execution? What happens when performing concolic execution of the program?

Since concolic testing only follows one path through the program at a time (one concrete execution) and never represents the program execution tree explicitly, memory exhaustion is not a problem. However, due to the infinite loop, concolic testing with input \(x > 0\) would get stuck and never terminate.
Are there still challenges for symbolic execution, when a statement `i++;` is added after line 6? If so, explain why.

Yes. If the loop counter is correctly incremented, each execution of the program will eventually terminate. (So no path in the PET is infinitely long.) However, since x can be arbitrarily large, there can be infinitely many of those paths. So the PET could still exhaust all memory, if there is, for example, no bound on the depth of the tree.

Subtask 3.3 [4 points]

```javascript
function f(x) {
    let y = randomInt();
    if (x > y) {
        x = 0;
    }
    assert(x != 0);
}
```

Assume concolic testing executes the program with seed input $x = 1$ and `randomInt()` returns 42 this time, and a pseudo-random integer in general. Assume $x = 43$ is generated as the next input. Which issue could arise in the next concolic execution? What is the proper term for this behavior?

If the `randomInt()` function returns a value larger or equal 43 in the second execution, the program would take the same path again. Since this is different from the expected path condition, this is an instance of a divergent execution.

Besides random number generators, can there be other causes for this issue? Name an example if so, explain why if not.

Other non-determinism can also cause divergent executions, e.g., date or time functions or multi-threading.

Subtask 3.4 [4 points]

```javascript
function f(x) {
    let h = SHA256(x);
    if (h == 0xDEADBEEF) {
        assert(false);
    }
}
```
Assume SHA256 computes the cryptographic SHA-256 hash function on its input. Why is this program difficult for symbolic and concolic execution?

In order to solve the path condition, an SMT solver would have to find an input x that hashes to 0xDEADBEEF. However, since SHA-256 is a cryptographic hash function, it is (currently) impossible to invert. Hence, not all paths through the program can be explored.

What output can SMT and SAT solvers produce, besides a model (i.e., an assignments of values to variables that satisfies the given formula) and UNSAT?

A timeout.

Task 4 Multiple Choice

Which of the following statement(s) is true? Check the correct statement(s).

☑ Symbolic execution is a static program analysis technique.
☐ Concolic execution is a static program analysis technique.
☐ Symbolic execution is a dynamic program analysis technique.
☑ Concolic execution is a dynamic program analysis technique.
☑ Path explosion can be an issue for symbolic execution.

The program execution tree can grow too large to fit into memory.

☑ Path explosion can be an issue for concolic execution.

Instead of running out of memory, it can cause testing to never finish or explore uninteresting paths.

☐ SAT solvers can solve formulas involving floating point numbers.

Strictly speaking, SAT solvers can only solve boolean formulas.

☑ SMT solvers can solve every conditional in a program.

See previous task for a counter example.

☑ Symbolic execution requires more “heavy-weight” program analysis than fuzzing.

☐ Symbolic execution is not deployed in practice because it is too “heavy-weight”.

SAGE is deployed at Microsoft in production.