Program Analysis

Data Flow Analysis (Part 4)
Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities
Data Flow Equations

- Transfer functions yield data flow equations for each statement
 - At entry, e.g., $AE_{entry}(2) = ...$
 - At exit, e.g., $AE_{exit}(3) = ...$

- How to solve these equations?
 - Goal: Fix point, i.e., nothing changes anymore
Data Flow Equations

- Transfer functions yield data flow equations for each statement
 - At entry, e.g., $AE_{entry}(2) = \ldots$
 - At exit, e.g., $AE_{exit}(3) = \ldots$

- How to solve these equations?
 - Goal: Fix point, i.e., nothing changes anymore

May depend on each other
Naive Algorithm

Round-robin, iterative algorithm

- For each statement s
 - Initialize entry and exit set of s
- While sets are still changing
 - For each statement s
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set

Algorithms assume forward analysis (analogous for backward a.)
Naive Algorithm

Round-robin, iterative algorithm

- For each statement s
 - Initialize entry and exit set of s
- While sets are still changing
 - For each statement s
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set

Repetedly computes each set, even if the input hasn’t changed

Algorithms assume forward analysis (analogous for backward a.)
Work List Algorithm

- For each statement s: Initialize entry and exit set
- Initialize W with initial/final node (for forward/backward analysis)
- While W not empty
 - Remove a statement s from W
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set
 - If exit set has changed (or statement visited for the first time): Add successors of s to W
Work List Algorithm

- For each statement s: Initialize entry and exit set
- Initialize W with initial/final node (for forward/backward analysis)
- While W not empty
 - Remove a statement s from W
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set
 - If exit set has changed (or statement visited for the first time): Add successors of s to W
Work List Algorithm: Example (Avail. Expr.)

1. \(x = a + b \) \[\{a+b\}\]
2. \(y = a \times b \) \[\{a \times b\}, \{a + b\}\]
3. \(y > a + b \) \[\{a + b\}\]
4. \(a = a - 1 \) \[\{a + b\}\]
5. \(x = a + b \) \[\{a + b\}\]
Convergence

Will it always terminate?

- In principle, work list algorithms may run forever
- Impose constraints to ensure termination
 - Domain of analysis: Partial order with finite height
 - No infinite ascending chains $X_1 < X_2 < ...$
 - Transfer function and meet operator:
 Monotonic w.r.t. partial order
 - Sets stay the same or grow larger
Convergence

Will it always terminate?

- In principle, work list algorithms may run forever
- Impose constraints to ensure termination
 - Domain of analysis: Partial order with finite height
 - No infinite ascending chains $X_1 < X_2 < ...$
 - Transfer function and meet operator:
 - Monotonic w.r.t. partial order
 - Sets stay the same or grow larger

Monotone framework