Program Analysis – Lecture 6
Data Flow Analysis (Part 3)
What does the following code print?

```javascript
function f(a, b) {
    var x;
    for (var i = 0; i < arguments.length; i++) {
        x += arguments[i];
    }
    console.log(x);
}
f(1, 2, 3);
```

3 6 NaN Nothing
What does the following code print?

```javascript
function f(a,b) {
    var x;
    for (var i = 0; i < arguments.length; i++) {
        x += arguments[i];
    }
    console.log(x);
}
f(1,2,3);
```

3 6 NaN Nothing
What does the following code print?

```javascript
function f(a, b) {
    var x;
    for (var i = 0; i < arguments.length; i++) {
        x += arguments[i];
    }
    console.log(x);
}
f(1, 2, 3);
```

Array-like object that contains all three arguments

3 6 NaN Nothing
What does the following code print?

```javascript
function f(a, b) {
    var x;  // Initialized to undefined
    for (var i = 0; i < arguments.length; i++) {
        x += arguments[i];  // undefined + some number yields NaN
    }
    console.log(x);
}
f(1, 2, 3);
```

- 3
- 6
- NaN
- Nothing
Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities
Live Variables Analysis

Goal: For each statement, find variables that are may be “live” at the exit from the statement

- ”Live”: The variable is used before being redefined
- Useful, e.g., for identifying dead code
 - Bug detection: Dead assignments are typically unexpected
 - Optimization: Remove dead code
Example

```plaintext
x = 2;
y = 4;
x = 1;
if (y > x) {
    z = y;
} else {
    z = y * y;
    x = z;
}
```
Example

```java
x = 2;
y = 4;
x = 1;
if (y > x) {
    z = y;
} else {
    z = y * y;
    x = z;
}
```

x is not live after this statement
Example

\[
x = 2;
y = 4;
\textcolor{red}{x = 1;}
\text{if} \ (y > x) \ \{ \\
\quad z = y; \\
\text{else} \ \{ \\
\quad z = y \times y; \\
\text{\quad} x = z; \\
\}
\]
Defining the Analysis

- **Domain**: All variables occurring in the code
- **Direction**: Backward
- **Meet operator**: Union
 - Because we care about whether a variable *may* be used
Transfer Function

Defined via *gen* and *kill* functions (again)

- Returns set of variables
- Backward analysis, i.e., returned variables are live at entry of statement

Function *gen*(s)

- All variables *v* that are used in *s*

Function *kill*(s)

- If *s* assigns to *x*, then it kills *x*
- Otherwise: Empty set
Defining the Analysis (2)

- **Transfer function:**
 \[
 LV_{entry}(s) = (LV_{exit}(s) \setminus kill(s)) \cup gen(S)
 \]

- **Boundary condition:** Final node starts with no live variables
 - \(LV_{exit}(finalNode) = \emptyset \)

- Initially, all nodes have no live variables
Quiz: Live Variables

\[x = 2; \]
\[y = 4; \]
\[x = 1; \]
\[\text{if } (y > x) \{ \]
\[\quad z = y; \]
\[\} \text{ else } \{ \]
\[\quad z = y * y; \]
\[\quad x = z; \]
\[\} \]

Compute the live variables before and after every statement. How many variables are in total in the sets you’re computing?
Quit: Live Variables

<table>
<thead>
<tr>
<th></th>
<th>$LV_{entry}(s)$</th>
<th>$LV_{exit}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>${ y }$</td>
</tr>
<tr>
<td>3</td>
<td>${ y }$</td>
<td>${ x, y }$</td>
</tr>
<tr>
<td>4</td>
<td>${ x, y }$</td>
<td>${ y }$</td>
</tr>
<tr>
<td>5</td>
<td>${ y }$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6</td>
<td>${ y }$</td>
<td>${ z }$</td>
</tr>
<tr>
<td>7</td>
<td>${ z }$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

$\Sigma = 11$
Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities
Data Flow Equations

- Transfer functions yield data flow equations for each statement
 - At entry, e.g., $AE_{entry}(2) = \ldots$
 - At exit, e.g., $AE_{exit}(3) = \ldots$

- How to solve these equations?
 - Goal: Fix point, i.e., nothing changes anymore
Data Flow Equations

- Transfer functions yield data flow equations for each statement
 - At entry, e.g., $AE_{\text{entry}}(2) = ...$
 - At exit, e.g., $AE_{\text{exit}}(3) = ...$

- How to solve these equations?
 - Goal: Fix point, i.e., nothing changes anymore
Naive Algorithm

Round-robin, iterative algorithm

- For each statement s
 - Initialize entry and exit set of s
- While sets are still changing
 - For each statement s
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set
Naive Algorithm

Round-robin, iterative algorithm

- For each statement s
 - Initialize entry and exit set of s
- While sets are still changing
 - For each statement s
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set

Repeatedly computes each set, even if the input hasn’t changed.
Work List Algorithm

- For each statement s: Initialize entry and exit set
- Initialize W with initial/final node (for forward/backward analysis)
- While W not empty
 - Remove a statement s from W
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set
 - If exit set has changed (or statement visited for the first time): Add successors of s to W
Work List Algorithm

- For each statement s: Initialize entry and exit set
- Initialize W with initial/final node (for forward/backward analysis)
- While W not empty
 - Remove a statement s from W
 - Update entry set of s by applying meet operator to exit sets of incoming statements
 - Compute exit set of s based on its entry set
 - If exit set has changed (or statement visited for the first time): Add successors of s to W
Work List Algorithm: Example (Avail. Expr.)

1. \(x = a + b \)
2. \(y = a \times b \)
3. \(y > a + b \)
4. \(a = a - 1 \)
5. \(x = a + b \)

Exit
Convergence

Will it always terminate?

- In principle, work list algorithms may run forever
- Impose constraints to ensure termination
 - Domain of analysis: Partial order with finite height
 - Not infinite ascending chains $X_1 < X_2 < \ldots$
 - Transfer function and meet operator:
 Monotonic w.r.t. partial order
 - Sets stay the same or grow larger
Convergence

Will it always terminate?

- In principle, work list algorithms may run forever
- Impose constraints to ensure termination
 - Domain of analysis: Partial order with finite height
 - Not infinite ascending chains $X_1 < X_2 < ...$
 - Transfer function and meet operator:
 - Monotonic w.r.t. partial order
 - Sets stay the same or grow larger

Monotone framework
Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities
Intra- vs. Inter-procedural

- **Intra-procedural analysis**
 - Reason about a function in isolation

- **Inter-procedural analysis**
 - Reason about multiple functions
 - Calls and returns

- Data flow analyses considered so far: Intra-procedural
Inter-procedural Control Flow

- One control flow graph per function
- Connect call sites to entry node of callee
- Connect exit node back to call site
Inter-procedural Control Flow Graph: Example

```javascript
function foo(x) {
    if (x > 1)
        z = bar(5)
    else
        z = bar(3)
}

function bar(y) {
    console.log(y)
    return y + 1
}
```

Analysis considers only "possible" inter-proc. flows:
- After return, don't enter again
- When returning, go back to call site
Propagating Information

- **Arguments** passed into call
 - Propagate to formal parameters of callee

- **Return value**
 - Propagate back to caller

- **Local variables**
 - Do not propagate into callee
 - Instead, when call returned, continue with state just before call
Propagating Information

- **Arguments** passed into call
 - Propagate to formal parameters of callee

- **Return value**
 - Propagate back to caller

- **Local variables**
 - Do not propagate into callee
 - Instead, when call returned, continue with state just before call

For backward analysis: Everything in reverse
Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities
Sensitivities

Every static analysis: Sensitivities

- **Flow-sensitive**: Takes into account the order of statements

- **Path-sensitive**: Takes into account the predicates at conditional branches

- **Context-sensitive** (inter-procedural analysis only): Takes into account the specific call site that leads into another function
Flow sensitivity: Example

```javascript
if (...) {
    x = 3
    x = 5
    < Value of x? 
}
```

Flow-sensitive: 5

Flow-insensitive: 3 or 5
Path sensitivity: Example

\[x = 0 \]
\[\text{if } (a > 0) \{ \]
\[x = 1 \]
\[\} \text{ else } \]
\[x = 2 \]
\[\} \]
\[\text{if } (a > 0) \{ \]
\[x + = 3 \]
\[\} \]

Path-sensitive: no

\[\text{Can } x \text{ be 5?} \]

Path-insensitive: yes
Context sensitivity: Example

```c
function f(x) {
    if (x)
        g(3)
    else
        g(5)
}

function g(y) {
    what are possible values of y?
}
```

Context-insensitive: 3 or 5 (concatenated into one piece of inform.)

Context-sensitive: 3 or 5 (analyzes two separate cases)
Quiz: Sensitivities

Consider an intra-procedural data flow analysis (specifically: live variables analysis).

What sensitivities does it have?
Quiz: Sensitivities

Consider an intra-procedural data flow analysis (specifically: live variables analysis).

What sensitivities does it have?

- Flow-sensitive: Yes (every data flow analysis)
- Path-sensitive: No (doesn’t track predicates)
- Context-sensitive: Irrelevant (because intra-procedural)
Outline

- First example: Available expressions
- Basic principles
- More examples
- Solving data flow problems
- Inter-procedural analysis
- Sensitivities