Machine Learning for Programming (ML4P)

Join the course on Ilias! See link on http://software-lab.org/teaching/winter2019/ml4p/

Prof. Dr. Michael Pradel

Winter 2019/20

Software Lab, University of Stuttgart
About Me: Michael Pradel

Since 9/2019: Full Professor at University of Stuttgart

Before
- Studies at TU Dresden, ECP (Paris), and EPFL (Lausanne)
- PhD at ETH Zurich, Switzerland
- Postdoctoral researcher at UC Berkeley, USA
- Assistant Professor at TU Darmstadt
- Sabbatical at Facebook, Menlo Park, USA
About the Software Lab

- My research group since 2014
- Focus: Tools and techniques for building **reliable, efficient, and secure** software
- Program testing and analysis
- Machine learning, security
- Thesis and job opportunities
Plan for Today

1. Organization

2. Topic of this seminar

3. Recent research from the Software Lab
Why Have a Seminar?

- Learn **fundamentals of doing research**
 - Read and digest papers
 - Present complex ideas to others
 - Scientific writing
 - Reviewing

- Learn **about machine learning and program analysis**
 - Maybe your future thesis topic
 - Opportunities for HiWis
Organization

■ Today: Kick-off meeting

■ Meetings during the semester
 □ Talks by students
 □ Dates announced next week

■ Your tasks:
 □ Term paper
 □ Reviews
 □ Talk
 □ Active participation
Organization

- Today: Kick-off meeting

- Meetings during the semester
 - Talks by students
 - Dates announced next week

- Your tasks:
 - Term paper
 - Reviews
 - Talk
 - Active participation

Grading:
- 30%
- 10%
- 40%
- 20%
Talk

- 15 minutes + questions
- English
- Present a recent research paper

Your mentor will help you prepare the presentation

- Send slides one week before the talk
- Incorporate feedback given by the mentor
Talk: Some Advice

Content:
- No need to explain all technical details
- But: Must contain some "meat"

Presentation:
- Examples are your secret weapon
- Stick to the time limit
- Practice, practice, practice

Pro tip: View video *How to give a good research talk* by Simon Peyton Jones
Talk: Rules

- Prepare your own slides
 - No copy & paste from existing slides, even if available

- You may use examples from the paper
 - Adding your own examples is encouraged, of course
Term Paper

- 6 pages
- English
- LaTeX template on course web site
- Summarize the paper in your own words
- Must be self-containing
Term Paper: Some Advice

- Don’t waste space on basics
- **Examples** are your secret weapon (yes, again)
- Bad English distracts from good content
- Revise, revise, revise
Term Paper: Rules

- No *verbatim copying or paraphrasing* of existing text
 - Exception: Clearly marked, short quotes

- You may copy *figures* (e.g., result graphs)

- You must use your *own example(s)*
Reviews

- Imitates peer reviewing process
 - Each student reviews three term papers

- Revise your term paper after getting reviews
 - Grade will be for final term paper

- Plain text format

- About 1 page, English
Reviews: Some Advice

- Be constructive
- Be polite
- Your reviews contribute to your grade, not to the reviewee’s grade
Dates

- **Deadlines**
 - Oct 20, 2019: Pick preferred topics
 - Nov 24: Term paper
 - Dec 8: Reviews
 - Dec 22: Revised term paper
 - 7 days before your talk: Send slides to mentor

- **Optional**
 - During the semester: Meet mentor to clarify questions about your topic
Plan for Today

1. Organization ✔️

2. Topic of this seminar

3. Recent research from the Software Lab
Topic of This Seminar

Machine Learning for Programming
Machine Learning for Programming

- Tools for improving software reliability and security
- E.g., program analyses to detect bugs, to complete partial code, or to de-obfuscate code
Topic of This Seminar

Machine Learning for Programming

- Source code as data
- Large code corpora to learn from
- Train models that predict program properties
What is Program Analysis?

- Automated analysis of program behavior, e.g., to
 - find programming errors
 - optimize performance
 - find security vulnerabilities
What is Program Analysis?

- Automated analysis of **program behavior**, e.g., to
 - find programming errors
 - optimize performance
 - find security vulnerabilities

![Diagram](http://example.com/diagram.png)
What is Program Analysis?

- Automated analysis of **program behavior**, e.g., to
 - find programming errors
 - optimize performance
 - find security vulnerabilities

![Diagram showing inputs (Input) leading to the Program, which then produces outputs (Output) and an additional information flow.](chart.png)
Why Do We Need It?

Basis for various **tools** that make **developers** productive

- Compilers
- Bug finding tools
- Performance profilers
- Code completion
- Automated testing
- Code summarization/documentation
Traditional Approaches

- Analysis has **built-in knowledge** about the problem to solve
- Significant human effort to create a program analysis
 - Conceptual challenges
 - Implementation effort
- Analyze a **single program** at a time
Learning from Existing Data

- Huge amount of existing code ("big code")
- Programs are regular and repetitive
- Machine learning: Extract knowledge and apply it in new contexts
- Learn how to ..
 - .. complete partial code
 - .. use an API
 - .. fix programming errors
 - .. create inputs for testing
Deep Learning

Class of machine learning algorithms

- Neural network architectures
- "Deep" = multiple layers
- Features and representation of inputs are extracted automatically

Revolutionizes entire areas

Google

“Ok Google”

AlphaGo
Topics To Choose From

- 16 recently published research papers: http://software-lab.org/teaching/winter2019/ml4p/

- Submit your preferences by end of this week
 - You pick three topics, we assign one
 - By email to me (please use the paper numbers)
Plan for Today

1. Organization

2. Topic of this seminar

3. Recent research from the Software Lab