Analyzing Software using Deep Learning

Token Vocabulary and Code Embeddings (Part 2)

Prof. Dr. Michael Pradel

Software Lab, University of Stuttgart

Summer 2020
Overview

- Token Vocabulary problem
- Pre-trained token embeddings
- Joint embedding space for NL & PL

Recommended papers:
- "Distributed representations of words and phrases and their compositionality", NIPS, 2013
- "Big Code != Big Vocabulary - Open-Vocabulary Models for Source Code", ICSE, 2020
- "Deep Code Search", ICSE, 2018
From Tokens to Vectors

- Given a vocabulary of tokens: How to represent a token as a vector?
- Neural models require vectors as inputs
- Need a mapping $E : V \rightarrow \mathbb{R}^k$
 - V .. vocabulary
 - k .. length of vector representation
One-hot Encoding

- Give each $t \in V$ a unique index
- Vector is all zeros, except for the index of t, which is one

$$E(t)_i = \begin{cases}
1 & \text{if index of } t \text{ is } i \\
0 & \text{otherwise}
\end{cases}$$

- Length k of vectors equals vocabulary size $|V|$
Example:

\[V = \{ \text{id}, (,) \} \]

\[E('if') = [1, 0, 0, 0] \]

\[E('(') = [0, 1, 0, 0] \]

\[E(')') = [0, 0, 1, 0] \]

\[E('id') = [0, 0, 0, 1] \]
Token Embeddings

- Map tokens to a vector space
 - Semantically similar tokens have a similar vector representation
 - Size k of vectors is much smaller than $|V|$
Example: Token Embeddings
End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

■ Option 1: Learn embedding function E jointly with the rest of the model
 ■ Embeddings fit the ultimate application

■ Option 2: Pre-train a separate embedding model E
 ■ Powerful model designed just for this purpose
End-to-End vs. Pre-trained

How to get vector embeddings of tokens?

- Option 1: Learn embedding function E jointly with the rest of the model
 - Embeddings fit the ultimate application

- Option 2: Pre-train a separate embedding model E
 - Powerful model designed just for this purpose

Focus for rest of this lecture
Word2vec

- Popular technique for learning embeddings (originally, for natural languages)
- Learn embeddings from context in which a word occurs
 - "You shall know a word by the company it keeps"
 - Context: Surrounding words in sentences
Variant 1: Continuous Bag of Words (CBOW)

Predict token from context

\[h = \frac{1}{k} \cdot \mathbf{U} \cdot (\sum_{j} \mathbf{t}_j) \]

\(i = \frac{k}{2}, \ldots, i + \frac{k}{2} \) (without \(i \))

\[y = \text{softmax} \left(\mathbf{V} \cdot h \right) \]

(input layer \(x \))

(hidden layer \(h \))

(output layer \(y \))

(context of size \(k = 4 \))
Variant 2: Skip-gram

Predict context from token

\[h = U \cdot x \]

\[y = \text{softmax} \left(V \cdot h \right) \]
Getting the Embedding

Once the network has become good at its task (though training), use the hidden layer as embedding for t_i.
Out-of-Vocabulary Problem

- During training: **Finite set of tokens**
- During prediction: **New tokens may appear**
 - Represented as special “unknown” token
 - Loss of valuable information
Embeddings of Subtokens

- Idea to address out-of-vocabulary problem:
 - Learn embedding of subtokens
 - Previously unseen tokens are likely to composable of the subtokens

- Example
 - `setHeight` decomposed into subtokens `set` and `Height`
FastText

- Decompose tokens into their character n-grams
 - n-gram: n consecutive characters
- Learn embedding for each n-gram
 - Using Word2vec-like skip-gram model

\[E(t) = \sum_{s \in \text{n-gram sub-tokens of } t} E(s) \]
Example

token \(t \): \text{getHeight}

\[E(\cdot) \]
\[E(\cdot) \]
\[E(\cdot) \]

\[\mathcal{E}(\cdot) \]

\[\mathcal{E}(t) \]

\[n=3 \quad \text{i.e., 3-grams} \]
Byte Pair Encoding (BPE)

Compute subtokens from data

- Start with one subtoken per character
- Repeat:
 - Find pair of current subtokens that most frequently appear consecutively
 - Merge pair into a new subtoken
- Result: Ordered list L of merge operations
- Represent a token t by
 - splitting t into characters and
 - merging the characters into subtokens using operations as ordered in L
Handling the Vocabulary Problem

<table>
<thead>
<tr>
<th>Abstract tokens</th>
<th>Consider N most frequent tokens only</th>
<th>Embed tokens into a vector space</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Much smaller vocabulary</td>
<td>- Covers large fraction of all tokens</td>
<td>- Constant vector size when code corpus grows</td>
</tr>
<tr>
<td>- Looses valuable information</td>
<td>- Out-of-vocabulary problem</td>
<td>- Non-trivial to obtain an effective embedding</td>
</tr>
</tbody>
</table>