Analyzing Software using Deep Learning

Summarizing Programs with Convolutional Networks (Part 1)

Prof. Dr. Michael Pradel
Software Lab, University of Stuttgart
Summer 2020
Overview

- Convolutional networks
 - Motivation and basics
 - Properties
 - Pooling

- Tree convolution for program classification

Based on "Convolutional Neural Networks over Tree Structures for Programming Language Processing" by Mou et al., 2016
Historical Motivation: Neuroscience

Receptive fields of cats and monkeys

- Some neurons in visual cortex individually respond to small regions of the visual field
- Two visual cell types
 - **Simple cells**: Respond to straight edges with particular orientations
 - **Complex cells**: Sensitive to larger receptive field but insensitive to exact location of edges

Inspired work on neural network-based image recognition
Intuition

Input data is hierarchically organized

→ E.g., image or source code

Primitive features: Oriented edges

Object parts: wheels, windows

Objects: car, house

→ Object recognition
Convolutional Networks

- Feedforward neural network architecture
- Connectivity pattern exploits hierarchical structure of input data
- Not a fully connected network
- Convolution function: Mathematical approximation of stimuli within receptive field
- Applications:
 - Image and video recognition
 - Natural language processing
 - Classification of programs
Complexity of Fully Connected Neural Network

Suppose:
- Input of length n
- Single output
- 3 hidden layers, fully connected

How many weights does the network have for $n = 32 \times 32$ (e.g., small image)?

\[n^2 + n^2 + n^2 + n \]

= 3.1 million weights

- Each stored in memory
- Each optimized individually
Reducing Complexity via Convolution

Instead of fully connected computation graph
 - Each input influences at most \(k \) neurons
 - Each neuron in convoluted layer is activated by at most \(k \) neurons

\[k = 3 \]
Kernel: Parameters for Convolution

Convolution S

Input I

Kernel K
(vector of length k)

S is product of part of I and K
(We ignore boundaries here.)

Example:
$K = [2, 5, 3]$
$I = [3, 1, 2, 3, 4]$

$S(2) = 1 \cdot 2 + 2 \cdot 5 + 3 \cdot 3$
Two-Dimensional Scenario

- E.g., pixels of an image

\[S(i, j) = \sum_m \sum_n I(i+m, j+n) \cdot K(m, n) \]

\[S(0,0) = a \cdot w + b \cdot x + c \cdot y + f \cdot z \]

\[S(0,1) = b \cdot w + c \cdot x + f \cdot y + g \cdot z \]

\[S(1,2) = g \cdot w + h \cdot x + k \cdot y + l \cdot z \]
Properties

Three properties that help improve learning:

- Sparse interactions
- Parameter sharing
- Equivariant representations
Sparse Interactions

- Fewer connections than in fully connected network
 - Fewer weights to store
 - ... to optimize

But: In deep network (many layers), neurons in deeper layers may indirectly interact with many inputs
Parameter Sharing

Fully connected

- Parameters to optimize: Weights in weight matrix

- Each weight used for one connection

Convolutional

- Parameters to optimize: Weight in kernel matrix

- Same weights used for many parts of the input

connections share the same kernel parameters
Equivariant Representations

If input changes, output changes in same way no matter where the input is.

Applications:

- Images: Representation stays same if objects are moved.

- Source code: Statement with partic. property can occur anywhere, its representation remains the same.
Big Picture

Convolution: Typically used in combination with other steps

...

Pooling

Detection --- Non-linear activation function

Convolution

Input
Pooling

- Form of downsampling
- Replaces output at certain location with summary of nearby outputs
- Intuition: Exact location of a "feature" is less important than its presence and its location w.r.t. other features
Max Pooling

- Summarize region into maximum output within this region

- Example

```
\[
\begin{array}{ccc}
1 & 0 & 0 \\
4 & 6 & 0 \\
3 & 1 & 1 \\
1 & 2 & 2 \\
\end{array}
\rightarrow
\begin{array}{cc}
6 & 8 \\
3 & 4 \\
\end{array}
\]
```