Analyzing Software using Deep Learning

Reasoning about Types and Code Changes with Hierarchical Networks (Part 1)

Prof. Dr. Michael Pradel
Software Lab, University of Stuttgart
Summer 2020
Overview

- **Hierarchical neural networks**

- **Type prediction**
 Based on “TypeWriter: Neural Type Prediction with Search-based Validation” by Pradel et al., 2020

- **Representing code changes**
 Based on “CC2Vec: Distributed Representations of Code Changes” by Hoang et al., 2020
Motivation

- What if input to a predictive model consists of multiple parts that
 - are too many to simply concatenate
 - are not a sequence
 - may each have a different structure?
Examples

- **Document**
 - Lines of words
 - Images
 - Plots

- **Evidence of program crash**
 - Stack trace
 - Error message
 - Information about the user (key-value pairs)
Examples (2)

- **Program elements** that have a type
 - Code tokens
 - Identifier names
 - Comments associated with the function

- **Commits to a code repository**
 - Code change
 - Multiple code locations
 - Commit messages
Naive approach

Text vectors of words

Images

Pixels in image

Plots

Huge vector

\[\text{feedforward neural network} \]

\[\text{Pass/Fail course} \]

\[\text{very slow} \]

\[\text{single number: probab.} \]
Hierarchical Neural Networks

- Neural model composed of **submodels**
- Aligned into a **hierarchy**
 - E.g., a tree where inputs arrive at leaves
 - Information propagates from leaves to the root
- Prediction based on **summarized information at root**
Submodels

- Each **submodel**: Encode specific part of input
- Different submodels may be **different kinds of neural networks**
 - E.g., feedforward network for some input, RNN for some other input
Jointly Training the Model

How to train a hierarchical neural network?

Option 1: Train each submodel separately

✓ Training focuses on specific model and its input
✗ Need training data for each submodel
✗ Submodel isn’t aware of the overall task
Jointly Training the Model

How to train a hierarchical neural network?

Option 2: Train entire model jointly

✓ Need training data only for the overall task
✓ Submodels get optimized for the overall task
✗ For large models, feedback from final prediction may get lost (vanishing gradient problem)
Example: Joint Training

Input part 1 → W_1 → $+$ → W_3 → Prediction

Input part 2 → W_2