Analyzing Software using Deep Learning
RNN-based Code Completion and Repair (Part 3)

Prof. Dr. Michael Pradel
Software Lab, University of Stuttgart
Summer 2020
Overview

- Recurrent neural networks (RNNs)
- Code completion with statistical language models
 Based on PLDI 2014 paper by Raychev et al.
- Repair of syntax errors
 Based on "Automated correction for syntax errors in programming assignments using recurrent neural networks" by Bhatia & Singh, 2016
Motivation

- Given: Program with syntax error
- Goal: Find a fix that removes syntax error
- Possible application context: MOOCs with automated feedback on programming tasks
Example (1)

def recPower (base , exp):
 if exp <= 0:
 return 1
 return base * recPower (base , exp - 1
Example (1)

def recPower (base , exp):
 if exp <= 0:
 return 1
 return base * recPower (base , exp - 1)
Example (2)

def recurPower (base, exp):
 if exp == 0:
 return = exp + 1
 else:
 return (base * recurPower (base, exp - 1))
def recurPower (base , exp):
 if exp == 0:
 return base
 else:
 return (base * recurPower (base ,exp - 1))
Example (2)

def recurPower (base , exp):
 if exp == 0:
 return base
 else:
 return (base * recurPower (base , exp - 1))

Beware: Fix of syntax error may not be the semantically correct fix
Syntax: Overview

Student submission with syntax error → SyntaxFix → Feedback (≈ suggested fix)

Syntactically correct student submissions → Learned RNN-based model
RNN-based Model

Program = Sequence of tokens

- Training: Expected output sequence = Input sequence shifted by one
- Prediction: Provide partial program until error location & generate next token(s)
SynFix Algorithm

Given: Program with syntax error + error location

Steps:

■ Parse and tokenize program

■ Query network with prefix of tokens until error location

■ Try if inserting or replacing one or more tokens fixes the error

■ If not: Delete line with error and query network with prefix until the error line

■ Try if inserting predicted tokens fixes the error
Many applications of machine learning require models that can learn relationships between multiple observations. These types of tasks are often referred to as sequence learning problems. In this section, we discuss several sequence learning problems and how they can be addressed using machine learning algorithms.

- **Recurrent Neural Networks (RNNs)**
 - Powerful class of neural networks
 - Most effective for inputs (and outputs) that are sequences
 - Two applications:
 - **Code completion**: Predict next calls based on previous calls
 - **Repair of syntax errors**: Predict correct tokens based on previous tokens