Analyzing Software using Deep Learning
RNN-based Code Completion and Repair (Part 1)

Prof. Dr. Michael Pradel
Software Lab, University of Stuttgart
Summer 2020
Overview

- Recurrent neural networks (RNNs)
- Code completion with statistical language models
 Based on PLDI 2014 paper by Raychev et al.
- Repair of syntax errors
 Based on "Automated correction for syntax errors in programming assignments using recurrent neural networks" by Bhatia & Singh, 2016
From Neurons to Layers

For every neuron:
output = f(W·x + b)

x, f, b - scalars
 e.g., in \(\mathbb{R} \)

w - vector
 e.g., in \(\mathbb{R}^n \)

for each layer:
output = f(W·x + b)

x, f, b - vectors,
 e.g., \(\mathbb{R}^n \)

W - matrix,
 e.g., \(\mathbb{R}^{mxn} \)
Feedforward networks

\[
\begin{array}{ccc}
 x & \rightarrow & h \\
 h & \rightarrow & y \\
\end{array}
\]

x, h, y ... input layer, hidden layer, output layer

U, V, W ... weight matrices

\rightarrow ... function

Recurrent networks

\[
\begin{array}{ccc}
 x & \rightarrow & h \\
 h & \rightarrow & y \\
\end{array}
\]

\[
\begin{array}{ccc}
 x & \rightarrow & h \\
 h & \rightarrow & y \\
\end{array}
\]

\[
\begin{array}{ccc}
 x & \rightarrow & h \\
 h & \rightarrow & y \\
\end{array}
\]

useful for representing sequences of inputs & outputs

store information about previous inputs

\rightarrow ... function with delay of single time step
Example: Predict next word in sentence

ASDL is the best ... (course)

Feedforward

Recurrence

time = 1

ASDL

is

Recurrence connection remembers the beginning of the sentence

time = 4

best course
Unfolding the Computational Graph

\[h^t = f(h^{t-1}, x^t) \quad \text{e.g.,} \quad h^t = \tanh(W \cdot h^{t-1} + U \cdot x^t + b) \]

\[y^t = f(h^t) \quad \text{e.g.,} \quad y^t = \text{softmax}(V \cdot h^t + c) \]
Softmax Function

- Goal: Interpret output vector as a probability distribution

- "Squashes" vector of k values $\in \mathbb{R}$ into vector of k values $\in [0, 1]$ that sum up to 1

- Definition:
 \[
 \sigma(y)_j = \frac{e^{y_j}}{\sum_{i}^{k} e^{y_i}} \quad \text{for } j = 1, \ldots, k
 \]

- Example:
 \[
 \sigma([1, 2, 3, 4, 1, 2, 3]) =

 [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]
 \]
Quiz

Which of the following vectors may be the output of the softmax function?

1.) $y = [0.0, 0.0, 0.0, 0.0, 0.0]$

2.) $y = [0.0, 0.25, 0.25, 0.5]$

3.) $y = [0.0, 1.0, 0.0, 0.0]$

4.) $y = [0.1, 0.1, 0.2, 0.3]$
Which of the following vectors may be the output of the softmax function?

1.) \(y = [0.0, 0.0, 0.0, 0.0] \) \(\text{sum is not 1} \)
2.) \(y = [0.0, 0.25, 0.25, 0.5] \)
3.) \(y = [0.0, 1.0, 0.0, 0.0] \)
4.) \(y = [0.1, 0.1, 0.2, 0.3] \) \(\text{sum is not 1} \)

Note: Mathematically, 0 and 1 cannot occur. In practice, they may occur due to rounding of floating point numbers.
Applications of RNNs

Useful for tasks where the input (and maybe also the output) is a sequence

Examples:

- Unsegmented connected handwriting recognition
- Machine translation of natural languages
- Video classification by frames
- Speech recognition
- Sentiment analysis of twitter messages