Analyzing Software using Deep Learning

Lecture 3:
RNN-based Code Completion and Repair
Sequence-to-Sequence Networks

Prof. Dr. Michael Pradel
Software Lab, TU Darmstadt
Plan for Today

■ Deep learning basics
 □ Finish up last lecture

■ Recurrent neural networks (RNNs)

■ Code completion with statistical language models
 Based on PLDI 2014 paper by Raychev et al.

■ Repair of syntax errors
 Based on "Automated correction for syntax errors in programming assignments using recurrent neural networks" by Bhatia & Singh, 2016
Motivation

- **Given:** Program with syntax error
- **Goal:** Find a fix that removes syntax error
- **Possible application context:** MOOCs with automated feedback on programming tasks
Example (1)

```python
def recPower (base, exp):
    if exp <= 0:
        return 1
    return base * recPower (base, exp - 1
```
def recPower (base , exp):
 if exp <= 0:
 return 1
 return base * recPower (base , exp - 1)
Example (2)

def recurPower (base , exp):
 if exp == 0:
 return = exp + 1
 else:
 return (base * recurPower (base ,exp - 1))
Example (2)

def recurPower (base , exp):
 if exp == 0:
 return base
 else:
 return (base * recurPower (base ,exp - 1))
def recurPower (base , exp):
 if exp == 0:
 return base
 else:
 return (base * recurPower (base ,exp - 1))

Beware: Fix of syntax error may not be the semantically correct fix
Syntactically correct student submissions

Learned RNN-based model

→ Syntax Fix → Feedback

(= suggested fix)
RNN-based Model

- Program = Sequence of tokens

- Training:
 Expected output sequence = Input sequence shifted by one

- Prediction:
 Provide partial program until error location & generate next token(s)
SynFix Algorithm

Given: Program with syntax error + error location

Steps:

■ Parse and tokenize program
■ Query network with prefix of tokens until error location
■ Try if inserting or replacing one or more tokens fixes the error
■ If not: Delete line with error and query network with prefix until the error line
■ Try if inserting predicted tokens fixes the error
Summary

■ Recurrent Neural Networks (RNNs)
 □ Powerful class of neural networks
 □ Most effective for inputs (and outputs) that are sequences

■ Two applications
 □ Code completion:
 Predict next calls based on previous calls
 □ Repair of syntax errors:
 Predict correct tokens based on previous tokens