Analyzing Software using Deep Learning

Lecture 6: Introduction to Course Project

Prof. Dr. Michael Pradel
Software Lab, TU Darmstadt
Plan for Today

Introduction of course project

- Goal
- Training data
- Framework
- Tasks
Goal

- **Code completion**

- **Two phases**
 - Learn from corpus of programs
 - Respond to queries

- **Query = Program with a missing part**
Training Data

- 1,000 JavaScript programs
 (relatively small data set)

- Representations
 - Sequences of tokens (default)
 - Abstract syntax trees (optional)
Training Data (2)

Using the training data

- During development and for empirical results:
 Use subset for training and other subset for validation

- For submission of trained network:
 Train will all examples
Framework

https://github.com/michaelpradel/ASDL2018
Framework: Overview

training data

validation data

runner.py

train

predict

code_completion_baseline.py

stored state of trained network
Baseline Implementation

Token:
- type
 - e.g., punctuator
- value
 - e.g., \(\)
→ combine into single string
 - "punctuator-@-\(\)"
→ one-hot encoding

Example: \(\text{var } x = 23; \) → Training data:
 - \(("x", "=\) \)
Amount of Missing Code

One or more tokens may be missing
- Missing tokens are always consecutive
- Set using max_hole_size variable

Larger holes make the prediction more challenging
- Model doesn’t know nb. of missing tokens
- We’ll use max_hole_size=3 for grading
Accuracy

Measure of success:

\[
\text{accuracy} = \frac{\text{nb. of correct predictions}}{\text{total nb. of queries}}
\]

Baseline implementation:
≈ 18–25% accuracy
Weaknesses of Baseline

Several flaws (by design ;-))

- Uses only one prefix token (even if longer prefix given)
- Completely ignores the suffix
- Predicts exactly one token (i.e., always wrong when multiple tokens missing)
Improving Accuracy

- Anything that improves accuracy is in scope

- Some ideas to start with
 - Use more hidden layers
 - Try other neural network architectures
 - Try another representation of tokens
 - Vary the hyperparameters (size of hidden layers, batch size, etc.)
 - Predict more than one token
 - Use prefix and suffix of missing tokens
Optional Tasks

Possible extra points

- Predict type and value of tokens individually
- Consider full tokens (i.e., do not abstract away identifier names, etc.)
- Use tree representation of programs
Deliverables

- **Project report**
 - Describe and discuss your approach
 - Describe and interpret empirical results
- **Implementation**
 - Must be executable and documented
- **Trained neural network**
 - We will query it with additional programs
Deliverables

- **Project report**
 - Describe and discuss your approach
 - Describe and interpret empirical results

- **Implementation**
 - Must be executable and documented

- **Trained neural network**
 - We will query it with additional programs

Strict deadline: July 9, 2018
(midnight, Darmstadt time)