Systematic Black-Box Analysis of Collaborative Web Applications

Joint work with Marina Billes (TU Darmstadt) and Anders Møller (Aarhus University)

More details: Paper at PLDI 2017
Collaborative Web Applications

- Google Docs, MS Office Online, Cloud9 IDE, and many others
- Multiple interacting users
- Goal: Eventual consistency
Hidden Complexity
Hidden Complexity

Client-side: Heterogenous browsers with error prone language (JavaScript)
Hidden Complexity

Client-side: Heterogenous browsers with error-prone language (JavaScript)

Concurrent interactions
Hidden Complexity

Client-side: Heterogenous browsers with errorprone language (JavaScript)

Concurrent interactions

Geographically distributed system
Example Bug

Client 1

Client 2

(Google Docs)
Example Bug

Client 1

Write "this" ...

Client 2

Delete line ...

(Google Docs)
Example Bug

Client 1

Client 2

(Google Docs)
Example Bug

Client 1

Client 2

Synchronize ...

(Google Docs)
Example Bug

Client 1

Client 2

Inconsistent state

(Google Docs)
Challenges for Analysis

How to analyze such a system?

- Huge space of client actions
- Huge space of concurrent interleavings
- Complex system with various components
Challenges for Analysis

How to analyze such a system?

- Huge space of client actions
- Huge space of concurrent interleavings
- Complex system with various components

Impossible to fully explore
Impossible to fully understand and control
This Talk: Simian

Technique for analyzing collaborative web applications

- **Automatic**: No need to specify interactions
- **Scalable**: Blackbox view of system
- **Systematic**: Bounded exploration of all potential conflicts
- **Precise**: No false positives
Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

\[\sigma_1 \xrightarrow{\text{op}_1} \sigma_2 \xrightarrow{\text{op}_2} \]

\(\sigma \) .. state, \(\text{op} \) .. operation, \(T \) .. transformation function
Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

\[\sigma_1 \xrightarrow{op_1} T(op_2) \xrightarrow{T(op_1)} \sigma'_2 \]

\[\sigma_2 \xrightarrow{op_2} T(op_1) \xrightarrow{T(op_2)} \sigma'_1 \]

\(\sigma \) .. state, \(op \) .. operation, \(T \) .. transformation function
Correctness

Operational transformation \[\text{[Ellis & Gibbs, 1989]}\]
Non-blocking concurrency control

\[
\begin{align*}
\sigma_1 & \xrightarrow{op_1} T(op_2) & \sigma_2 & \xrightarrow{op_2} T(op_1) \\
\sigma_1' & \quad & \sigma_2' \\
\end{align*}
\]

Transformation ensures:
\[
\sigma_1 \equiv \sigma_2 \implies \sigma_1' \equiv \sigma_2'
\]

\(\sigma\) .. state, \(op\) .. operation, \(T\) .. transformation function
Correctness

Operational transformation [Ellis & Gibbs, 1989]
Non-blocking concurrency control

\[\sigma_1 \xrightarrow{op_1} T(op_2) \xrightarrow{T(op_1)} \sigma_1' \]
\[\sigma_2 \xrightarrow{op_2} T(op_1) \xrightarrow{T(op_2)} \sigma_2' \]

Transformation ensures:
\[\sigma_1 \equiv \sigma_2 \implies \sigma_1' \equiv \sigma_2' \]

\[\sigma \text{ state, op operation, } T \text{ transformation function} \]

Correctness = Precedence + Convergence
Correctness

Operational transformation [Ellis & Gibbs, 1989]
Non-blocking concurrency control

\[\sigma_1 \xrightarrow{op_1} T(op_2) \sigma'_1 \quad \sigma_2 \xrightarrow{op_2} T(op_1) \sigma'_2 \]

Transformation ensures:
\[\sigma_1 \equiv \sigma_2 \implies \sigma'_1 \equiv \sigma'_2 \]

\(\sigma \) .. state, \(op \) .. operation, \(T \) .. transformation function

Correctness = Precedence + Convergence

Focus of Simian
Overview of Simian

Set of user actions

Phase 1: Sequential learning

Potential conflicts

Phase 2: Concurrent analysis

Inconsistencies
Overview of Simian

- **Set of user actions**
 - **Phase 1:** Sequential learning
 - Potential conflicts
 - **Phase 2:** Concurrent analysis
 - Inconsistencies
 - Blackbox reasoning about states and actions
Actions

Action: **Logical step** triggered by a user

- May consist of multiple implementation-level steps

Examples
- Insert text ”a”
- Mark current line and make it bold
- Delete last character (backspace)
Action Tree

Sequences of actions by a single user
Action Tree

Sequences of actions by a single user

State at client
Action Tree

Sequences of actions by a single user
Phase 1: Sequential Learning

Systematic exploration of action tree

- Full traversal up to maximum depth k
- Execute one single-client interaction per path through the tree
Phase 1: Sequential Learning

Systematic exploration of action tree

- Full traversal up to maximum depth k
- Execute one single-client interaction per path through the tree
Potential Conflicts

Identify potential conflicts

- Actions that affect the same data when triggered in the same state
Identify **potential conflicts**

- Actions that **affect the same data** when triggered in the same state
Equivalent States

Identify equivalent states
Equivalent States

Identify equivalent states
Multi-Client Interactions

Two clients trigger actions concurrently
Multi-Client Interactions

Two clients trigger actions **concurrently**

Sequential prefix:

- Executed by client 1
Multi-Client Interactions

Two clients trigger actions **concurrently**

```
  a
  ↓
bold
  ↓
a  del
```

Wait until clients have synchronized
Multi-Client Interactions

Two clients trigger actions **concurrently**

Concurrent suffixes:
Executed by client 1 and 2
Phase 2: Concurrent Analysis

For each potential conflict:

1) **Synthesize** a multi-client interaction
 - Don’t repeat same suffixes in equivalent states

2) **Check** if clients eventually converge

Naive approach (for comparison):
Synthesize and check all multi-client interactions
Example

```
a

bold

a

del

Client 1
```


Example

Client 1

\[a \rightarrow \text{bold} \rightarrow a \text{ del} \]
Example

```
 a
  ↓
bold
  ↓
 a
  ↓
del
```

Client 1

Client 2
Example

```
a

bold

a \hspace{1cm} del

Client 1

Client 2

aa

|   |
```
Example

Client 1

Correct outcome
Example

Incorrect outcome
Black-Box Reasoning

How to reason about states?

Pixel-based state abstraction

- **Equivalent** states if same pixels

- **Conflicting** actions if overlap of affected pixels

- **Inconsistent** states if different pixels
Implementation

- Approximate comparison of screenshots
- Blinded areas

https://github.com/marinabilles/simian
Evaluation

Ten actions:
Type “a”
Press Return
Toggle bold on line before cursor
Set font face to Verdana on line before cursor
Select and delete line before cursor
Press Tab
Press Space
Type “b”
Toggle italic on line after cursor
Set font size to 18 on line before cursor
Inconsistencies

Various issues in all three systems

<table>
<thead>
<tr>
<th>Exploration depth k</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Docs</td>
<td>0</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Firepad</td>
<td>0</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>ownCloud</td>
<td>1</td>
<td>15</td>
<td>126</td>
</tr>
</tbody>
</table>

Various issues in all three systems.
Examples

Inconsistent fonts

Set font "Verdana"

Type "a" Type "b"

Client 1

Client 2

(ownCloud)
Examples

Incorrect selection shown

Type "a"

Toggle bold

(Client 1)

(Firepad)

Type "a"

Toggle bold

(Client 2)
Examples

Text fragments are swapped
Both clients see incorrect state

Type "a"
Toggle bold
Type "a"
Press space

Client 1

Client 2

(Google Docs)
Examples

Duplicate text fragment
Both clients see incorrect state

Set font size to 18
Type "b"
Press tab Press space

Client 1
Client 2

(Google Docs)
Influence of Non-Determinism

Can you reproduce these issues?

- (Google Docs, 37 interactions with inconsistency in first run)
Performance

How long does it take?

- One inconsistency every 8:43 minutes
- 27–47% spent in first phase

What if we omit the first phase?

- About 10x slower
Conclusions

Analysis of collaborative web applications

- Automatic, scalable, systematic, precise
- Novel two-phase analysis of concurrent systems
- Blackbox reasoning about complex systems

Ongoing and future work

- Exploration of non-determinism
- Cluster inconsistencies by root cause

https://github.com/marinabilles/simian