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ABSTRACT

Variable names are important to understand and maintain code. If
a variable name and the value stored in the variable do not match,
then the program suffers from a name-value inconsistency, which is
due to one of two situations that developers may want to fix: Either
a correct value is referred to through a misleading name, which
negatively affects code understandability and maintainability, or
the correct name is bound to a wrong value, which may cause
unexpected runtime behavior. Finding name-value inconsistencies
is hard because it requires an understanding of the meaning of
names and knowledge about the values assigned to a variable at
runtime. This paper presents Nalin, a technique to automatically
detect name-value inconsistencies. The approach combines a dy-
namic analysis that tracks assignments of values to names with
a neural machine learning model that predicts whether a name
and a value fit together. To the best of our knowledge, this is the
first work to formulate the problem of finding coding issues as a
classification problem over names and runtime values. We apply
Nalin to 106,652 real-world Python programs, where meaningful
names are particularly important due to the absence of statically de-
clared types. Our results show that the classifier detects name-value
inconsistencies with high accuracy, that the warnings reported by
Nalin have a precision of 80% and a recall of 76% w.r.t. a ground
truth created in a user study, and that our approach complements
existing techniques for finding coding issues.
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1 INTRODUCTION

Variable names are a means to convey the intended semantics of
code. Because meaningful names are crucial for the understand-
ability and maintainability of code [15], developers generally try
to name a variable according to the value(s) it refers to. Names are
particularly relevant in dynamically typed languages, e.g., Python
and JavaScript, where the lack of types forces developers to rely on
names, e.g., to understand what types of values a variable stores.

Unfortunately, the name and the value of a variables sometimes
do not match, which we refer to as a name-value inconsistency. A
common reason is a misleading name that is bound to a correct
value. Because such names make code unnecessarily hard to un-
derstand and maintain, developers may want to replace them with
more meaningful names. Another possible reason is that a mean-
ingful name refers to an incorrect value. Because such values may
propagate through the program and cause unexpected behavior,
developers should fix the corresponding code.

The following illustrates the problem with two motivating ex-
amples, both found during our evaluation on real-world Python
code [49]. As an example of a misleading name consider the follow-
ing code:
log_file = glob.glob('/var/www/some_file.csv')

The right-hand side of the assignment yields a list of file names,
which is inconsistent with the name of the variable it gets assigned
to, because log_f1ile suggests a single file name. The code is even
more confusing since this specific call to glob will return a list
with at most one file name. That is, a cursory reader of the code
may incorrectly assume this file name to be stored in the log_file
variable, whereas it is actually wrapped into a list. To clarify the
meaning of the variable, it could be named, e.g., log_files or
log_file_list, or the developer could adapt the right-hand side
of the assignment by retrieving the first (and only) element from
the list. We find misleading names to be the most common reason
for name-value inconsistencies.

Less common, but perhaps even worse, are name-value inconsis-
tencies caused by an incorrect value, as in the following example:

train_size = 0.9 * iris.data.shape[o]
test_size = iris.data.shape[e] - train_size
train_data = data[e:train_size]

The code tries to divide a dataset into training and test sets. Names
like train_size are usually bound to non-negative integer values.
However, the above code assigns the value 135.0 to the train_size
variable, i.e., a floating point value. Unfortunately, this value causes
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the code to crash at the third line, where train_size is used as an

index to slice the dataset, but indices for slicing must be integers.

While the root cause and the manifestation of the crash are close

to each other in this simple example, in general, incorrect values

may propagate through a program and cause hard to understand
misbehavior.

Finding name-value inconsistencies is difficult because it requires
both understanding the meaning of names and realizing that a
value that occurs at runtime does not match the usual meaning of
a name. As a result, name-value inconsistencies so far are found
mostly during some manual activity. For example, a developer may
point out a misleading name during code review, or a developer
may stumble across an incorrect value during debugging. Because
developer time is precious, tool support for finding name-value
inconsistencies is highly desirable.

This paper presents Nalin, an approach for detecting name-value
inconsistencies automatically. The approach combines dynamic
program analysis with deep learning. At first, a dynamic analysis
keeps track of assignments during an execution and gathers pairs
of names and values the names are bound to. Then, a neural model
predicts whether a name and a value fit together. When the dynamic
analysis observes a name-value pair that the neural model predicts
to not fit together, then the approach reports a warning about a
likely name-value inconsistency.

While simple at its core, realizing the Nalin idea involves four
key challenges:

C1 Understanding the semantics of names and how developers typ-
ically use them. The approach addresses this challenge through
a learned token embedding that represents semantic similari-
ties of names in a vector space. For example, the embedding
maps the names train_size, size, and len to similar vectors,
as they refer to similar concepts.

C2 Understanding the meaning of values and how developers
typically use them. The approach addresses this challenge by
recording runtime values and by encoding them into a vector
representation based on several properties of values. The prop-
erties include a string representation of the value, its type, and
type-specific features, such as the shape of multi-dimensional
numeric values.

C3 Pinpointing unusual name-value pairs. We formulate this prob-
lem as a binary classification task and train a neural model
that predicts whether a name and a value match. To the best
of our knowledge, this work is the first to detect coding issues
through neural classification over names and runtime values.

C4 Obtaining a dataset for training an effective model. The ap-
proach addresses this challenge by considering observed name-
value pairs as correct examples, and by creating incorrect ex-
amples by combining names and values through a statistical,
type-guided sampling that is likely to yield an incorrect pair.

Our work relates to learning-based bug detectors [6, 18, 33,
47, 57], which share the idea to classify code as correct or in-
correct. However, we are the first to focus on name-value incon-
sistencies, whereas prior work targets other kinds of problems.
Nalin also relates to learned models that predict missing identifier
names [12, 17, 48]. Our work differs by analyzing code with names
supposed to be meaningful, instead of targeting obfuscated or com-
piled code. Finally, there are static analysis-based approaches for

Jibesh Patra and Michael Pradel

finding inconsistent method names [26, 34, 38] and other naming
issues [22]. A key difference to all the above work is that Nalin is
based on dynamic instead of static analysis, allowing it to learn
from runtime values, which static analysis can only approximate.
One of the few existing approaches that learn from runtime behav-
ior [56] aims at finding vector representations for larger pieces of
code, but cannot pinpoint name-value inconsistencies.

We train Nalin on 780k name-value pairs and evaluate it on 10k
previously unseen pairs from real-world Python code extracted
from Jupyter notebooks. The model effectively distinguishes con-
sistent from inconsistent examples, with an F1 score of 0.89. Com-
paring the classifications by Nalin to a ground truth gathered in
a study with eleven developers shows that the reported inconsis-
tencies have a precision of 80% and a recall of 76%. Most of the
inconsistencies detected in real-world code are due to misleading
names, but there also are some inconsistencies caused by incorrect
values. Finally, we show that the approach complements state-of-
the-art static analysis-based tools that warn about frequently made
mistakes, type-related issues, and name-related bugs.

In summary, this paper contributes the following:

e An automatic technique to detect name-value inconsistencies.

o The first approach to find coding issues through neural machine
learning on names and runtime behavior.

o A type-guided generation of negative examples that improves
upon a purely random approach.

e Empirical evidence that the approach effectively identifies name-
value pairs that developers perceive as detrimental to the under-
standability and maintainability of the code.

2 OVERVIEW

This section describes the problem we address and gives an overview
of our approach. Nalin reasons about name-value pairs, i.e., pairs
of a variable name and a value that gets assigned to the variable.
The problem we address is to identify name-value pairs where
the name is not a good fit for the value, which we call inconsis-
tent name-value pairs. Identifying such pairs is an inherently fuzzy
problem: Whether a name fits a value depends on the conventions
that programmers follow when naming variables. The fuzziness
of the problem motivates a data-driven approach [45], where we
use the vast amounts of available programs as guidance for what
name-value pairs are common and what name-value pairs stand
out as inconsistent.

Broadly speaking, Nalin consists of six components and two
phases, illustrated in Figure 1. During the training phase, the ap-
proach learns from a corpus of executable programs a neural classi-
fication model, which then serves during the prediction phase for
identifying name-value inconsistencies in previously unseen pro-
grams. The following illustrates the six components of the approach
with some examples. A detailed description follows in Section 3.

Given a corpus of executable programs, the first component
is a dynamic analysis of assignments of values to variables. For
each assignment during the execution of the program, the analysis
extracts the variable name, the value assigned to the variable, and
several properties of the value, e.g., the type, length, and shape. As
illustrated in Figure 1, properties that do not exist for a particular
value are represented by null. For example, the analysis extracts
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Figure 1: Overview of the approach.

the length of the assigned value for Xs_train, but not for age and
probability, as the corresponding values are primitives that do
not have a length.

While the name-value pairs obtained by the dynamic analysis
serve as positive examples, the second component generates nega-
tive examples that combine names and values in an unusual and
likely inconsistent way. The motivation behind generating negative
examples is that Nalin trains a classification model in a supervised
mannet, i.e., the approach requires examples of both consistent and
inconsistent name-value pairs. Using the example pairs in Figure 1,
one negative example would be the name Xs_train paired with
the floating point value 0.83, which indeed is an unusual name-
value pair. Our approach for generating negative examples is a
probabilistic algorithm that biases the selection of unusual values
toward unusual types based on the types of values that are usually
observed with a name. The first and second component together
address challenge C4 from the introduction, i.e., obtaining a dataset
for training an effective model.

The third component of Nalin addresses challenges C1 and C2,
ie., “understanding” the semantics of names and values. To this end,
the approach represents names and values as vectors that preserve
their meaning. To represent identifier names, we build on learned
token embeddings [13], which map each name into a vector while
preserving the semantic similarities of names [54]. For example,
the vector of probability will be close to the vectors of names
probab and likelihood, because these names refer to similar con-
cepts. To represent values, we present a neural encoding of values
based on their string representation, type, and other properties.

Given the vector representations of name-value pairs, the fourth
component trains a neural model to distinguish positive from neg-
ative examples. The result is a classifier that, once trained with
sufficiently many examples, addresses challenge C3. The fifth com-
ponent of the approach queries the classifier with vector repre-
sentations of name-value pairs extracted from previously unseen
programs, producing a set of pairs predicted to be inconsistent.
The final component heuristically filters pairs that are likely false
positives, and then reports the remaining pairs as warnings to the
developer. For the two new assignments shown in Figure 1, the
trained classifier will correctly identify the assignment name =
2.5 as unusual and raises a warning.

3 APPROACH

The following presents the components of Nalin outlined in the
previous section in more detail.

3.1 Dynamic Analysis of Assignments

The goal of this component is to gather name-value pairs from a
corpus of programs. Our analysis focuses on assignments because
they associate a value with the name of a variable. One option would
be to statically analyze all assignments in a program. However, a
static analysis could capture only those values where the right-
hand side of an assignment is a literal, but would miss many other
assignments, e.g., when the right-hand side is a complex expression
or function call. In the code corpus used in our evaluation, we find
that 90% of all assignments have a value other than a primitive
literal on the right-hand side, i.e., a static analysis could not gather
name-value pairs from them. Instead, Nalin uses a dynamic analysis
that observes all assignments during the execution of a program.
Besides the benefit of capturing assignments that are hard to reason
about statically, a dynamic analysis can easily extract additional
properties of values, such as the length or shape, which we find to
be useful for training an effective model.

3.1.1 Instrumentation and Data Gathering. To dynamically analyze
assignments, Nalin instruments and then executes the programs in
the corpus. For instrumentation, the analysis traverses the abstract
syntax tree of a program and augments all assignments to a variable
with a call to a function that records the name of the variable and
the assigned value.

As runtime values can be arbitrarily complex, the analysis can
extract only limited information about a value. We extract four
properties of each value, which we found to be useful for training
an effective model, but extending the approach to gather additional
properties of values is straightforward. Slightly abusing the term
“pair” to include the properties extracted for each value, the analysis
extracts the following information:

Definition 1 (Name-value pair). A name-value pair is a tuple
(n,0,7,1,5), where n denotes the variable name on the left hand
side, v is a string representation of the value, 7 represents the type
of the value, and [ and s represent the length and shape of the value,
respectively.
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The string representation builds upon Python’s built-in string
conversion, which often yields a meaningful representation because
developers commonly use this representation, e.g., for debugging.
The type of values is relevant because it allows Nalin to find type-
related mistakes, which otherwise remain easily unnoticed in a
dynamically typed language. Length here refers to the number of
items present in a collection or sequence type value, which is useful,
e.g., to enable the model to distinguish empty from non-empty
collections. Since some common data types are multidimensional
the shape refers to the number of items present in each dimension.
The table in Figure 1 shows examples of name-value pairs gathered
by the analysis. We show in the evaluation how much the extracted
properties contribute to the overall effectiveness of the model.

3.1.2  Filtering and Processing of Name-Value Pairs.

Merge Types. We observe that the gathered data forms a long-
tailed distribution of types. One of the reasons is the presence of
many similar types, such as Python’s dictionary type dict and its
subclass defaultdict. To help the model generalize across similar
types, we reduce the overall number of types by merging some of
the less frequent types. To this end, we first choose the ten most
frequent types present in the dataset. For the remaining types, we
replace any types that are in a subclass relationship with one of
the frequent types by the frequent type. For example, consider a
name-value pair (stopwords, frozenset({"all", "afterwards", "eleven”,
...}), frozenset, 337, null). Because type frozenset is not among the
ten most frequent types, but type set is, we change the name-value

pair into (stopwords, frozenset({"all", "afterwards", "eleven”, ...}), set,
337, null).

Filter Meaningless Names. An underlying assumption of Nalin
is that developers use meaningful variable names. Unfortunately,
some names are rather cryptic, such as variables called a or ts_pd.
Such names help neither our model nor developers in deciding
whether a name fits the value it refers to, and hence, we filter likely
meaningless names. The first type of filtering considers the length
of the variable names and discards any name-value pairs where the
name is less than three characters long. The second type of filtering
is similar to the first one, except that it targets names composed of
multiple subtokens, such as ts_pd. We split names at underscores!,
and remove any name-value pairs where each subtoken has less
than three characters.

3.2 Generation of Negative Examples

The gathered name-value pairs provide numerous examples of
names and values that developers typically combine. Nalin uses su-
pervised learning to train a classification model that distinguishes
consistent, or positive, name-value pairs from inconsistent, or neg-
ative, pairs. Based on the common assumption that most code is
correct, we consider the name-value pairs extracted from execu-
tions as positive examples. The following presents two techniques
for generating negative examples. First, we explain a purely ran-
dom technique, followed by a type-guided technique that we find
to yield a more effective training dataset.

1https:/ /www.python.org/dev/peps/pep-0008/#function-and-variable-names
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Algorithm 1 Create a negative example

Input: Name-value pair (n,0,7,1,s), dataset D of all pairs
Output: Negative example (n,v', .0, s')
1: Fglopa < Compute from D a map from types to their frequency
2: Fname < Compute from D and n a map from types observed
with n to their frequency
: Thame < @
¢ Tname_infreq < 9 > Types infrequently seen with n
: for each (T ~ f) € Frame do
Thame < T
if f < threshold then

~T

> Types seen with n

[ S B AN ]

Tnameﬁin 1freq

9: Tay < dom(Fgiopar) > All types ever seen

10: Tegng = (Tall N Tname) U Tnameﬁinfreq
infrequently seen with n

11: 7' < weightedRandomChoice(T g4, Fylobal)

12: o', s" « randomChoice(D, r')

13: return (n,v', r',l',s')

> Types never or

3.2.1  Purely Random Generation. Our purely random algorithm
for generating negative examples is straightforward. For each name-
value pair (n,9, 1,1, 5), the algorithm randomly selects another name-
value pair (n’,v', 7 l',s') from the dataset. Then, the algorithm
creates a new negative example by combining the name of the
original pair and the value of the randomly selected pair, which
yields (n, o' 7, l’,s’).

While simple, the purely random generation of negative exam-
ples suffers from the problem of creating many name-value pairs
that do fit well together. The underlying root cause is that the dis-
tribution of values and types is long-tailed, i.e., the dataset contains
many examples of similar values among the most common types.
For example, consider a name-value pair gathered from an assign-
ment num = 23. When creating a negative example, the purely
random algorithm may choose a value gathered from another as-
signment age = 3. As both values are positive integers, they both
fit the name num, i.e., the supposedly negative example actually is a
legitimate name-value pair. Having many such legitimate, negative
examples in the training data makes it difficult for a classifier to
discriminate between consistent and inconsistent name-value pairs.

3.2.2  Type-Guided Generation. To mitigate the problem of legiti-
mate, negative examples that the purely random generation algo-
rithm suffers from, we present a type-guided algorithm for creating
negative examples. The basic idea is to first select a type that a
name is infrequently observed with, and to then select a random
value among those observed with the selected type. Algorithm 1
shows the type-guided technique for creating a negative example
for a given name-value pair. The inputs to the algorithm are a
name-value pair (n,0,7,1,5s) and the complete dataset D of positive
name-value pairs.

The first two lines of Algorithm 1 create two helper maps, which
map types to their frequency. The Fgjop,; map assigns each type to
its frequency across the entire dataset D, whereas the Fpame map
assigns each type to how often it occurs with the name n of the
positive example. Next, lines 3 to 8 populate two sets of types. The
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& Given name-value pair:
years = [2011, 2012, 2013, 2014]

(n, v, T, 1, s) =(years,[2011, 2012, 2013, 2014], list, &, null)

& All types years has been in the dataset and their frequencies:
Frame = { list: 235, ndarray: 59, int: 33,
float: 7, dict: 5, tuple:d, set:1 }
<& Infrequent types for years:
Thame_infreq = {float, dict, tuple, set}

<& Global frequencies of types infrequently or never seen with years:
Faobat = { str: 89337, bool: 5385,
float: 71244, dict: 21654, ... }

& Weighted random selection of a target type:
T = float

& Random selection of a float value from the dataset:
(n, v', ©', 1', s') =(years, 1.8, float, null, null)

Figure 2: Steps for creating a negative example.

first set, Tname, is populated with all types ever observed with name
n. The second set, Tygme_infreq is populated with all types that are
infrequently observed with name n. “Infrequent” here means that
the frequency of the type among all name-value tuples with name
n is below some threshold, which is 3% in the evaluation. The goal
of selecting types that are infrequent for a particular name is to
create negative examples that are unusual, and hence, likely to be
inconsistent.

The remainder of the algorithm (lines 9 to 13) picks a type to be
used for the negative example and then creates a negative name-
value pair by combining the name n with a value of that type.
To this end, the algorithm computes all candidates types, T,4,q4,
that are either never observed with name n or among the types
Thame_infreq that infrequently occur with n. The algorithm then
randomly selects among the candidate types, using the global type
frequency as weights for the random selection. The rationale is to
choose a type that is unlikely for the name n, while following the
overall distribution of types. The latter is necessary to prevent the
model from simply learning to spot unlikely types, but to instead
learn to find unlikely combinations of names and values. Once the
target type 7’ for the negative example is selected, the algorithm
randomly picks a value among all values (line 12) observed with
type 7', and eventually returns a negative example that combines
name n with the selected value.

Figure 2 illustrates the algorithm with an example from our
evaluation. The goal is to create a negative example for a name-
value pair where the name is years. In the dataset of positive
examples, the name years occurs with values of types list, ndarray,
int, etc., with the frequencies shown in the figure. For example,
years occurs 235 times with a list value, but only seven times with
a float value. Among all types that occur in the dataset, many never
occur together with the name years, e.g., str and bool. Based on the
global frequencies of types that years never or only infrequently
occurs with, the algorithm picks float as the target type. Finally, a
corresponding float value is selected from the dataset, which is 1.8
for the example, and the negative example shown at the bottom of
the figure is returned.
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Figure 3: Architecture of the neural model.

By default, Nalin uses the type-guided generation of negative
examples, and our evaluation compares it with the purely random
technique. The generated negative examples are combined with
the positive examples in the dataset, and the joint dataset serves as
training data for the neural classifier. Due to the automated genera-
tion, a generated negative examples may coincidentally be identical
to an existing positive example. In practice, the dataset used dur-
ing the evaluation contains 38 instances of identical positive and
negative examples out of 490,332 negative examples.

3.3 Representation as Vectors

Given a dataset of name-value pairs, each labeled either as a positive
or a negative example, Nalin trains a neural classification model to
distinguish the two kinds of examples. A crucial step is to represent
the information in a name-value pair as vectors, which we explain
in the following. The approach first represents each of the five com-
ponents (n,0,7,1,s) of a name-value pair as a vector, and then feeds
the concatenation of these vectors into the classifier. Figure 3 shows
an overview of the neural architecture. The following describes the
vector representation in more detail, followed by a description of
the classifier in Section 3.4.

Representing Variable Names. To enable Nalin to reason about
the meaning of variable names, it maps each name into a vector
representation that encodes the semantics of the name. For example,
the representation should map the names 1ist_of_numbers and
integers to similar vectors, as both represent similar concepts,
but the vector representations of the names age and file_name
should differ from the previous vectors. To this end, our approach
builds on pre-trained word embeddings, i.e., a learned function
that maps each name into a vector. Originally proposed in natu-
ral language processing as a means to represents words [13, 36],
word embeddings are becoming increasingly popular also on source
code [9, 35, 39, 41, 47], where they represent individual tokens, e.g.,
variable names.
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We build upon FastText [13], a neural word embedding known
to represent the semantics of identifiers more accurately than other
popular embeddings [54]. An additional key benefit of FastText is
to avoid the out-of-vocabulary problem that other embeddings, e.g.,
Word2vec [36] suffer from, by splitting each token into n-grams and
by computing a separate vector representation for each n-gram. To
obtain meaningful embeddings for the Python domain, we pre-train
a FastText model on token sequences extracted from the corpus
Python programs used in our evaluation. Formally, the trained
FastText model M, assigns to each name n a real-valued vector
M(n) e RY, where d = 100 in our evaluation.

Representing Values. The key challenge for representing the
string representations of values as vectors is that there is a wide
range of different values, including sequential structures, e.g., in
values of types string, ndarray, list, and values without an obvious
sequential structure, e.g., primitives and custom objects. The string
representations of values may capture many interesting properties,
including and beyond the information conveyed by the type of a
value. For example, the string representation of an int implicitly en-
codes whether the value is a positive or negative number. Our goal
when representing values as vector is to pick up such intricacies,
without manually defining type-specific vector encoders.

To this end, Nalin represents value as a combination of two
vector representations, each computed by a neural model that we
jointly learn along with the overall classification model. On the one
hand, we use a recurrent neural network (RNN) suitable for cap-
turing sequential structures. Specifically, we apply gated recurrent
units (GRU) over the sequence of characters, where each character
is used as an input at every timestep. The vector obtained from the
hidden state of the last timestep then serves as the representation
of the complete sequence. On the other hand, we use a convolu-
tional neural network (CNN) suitable for capturing non-sequential
information about the value. Specifically, the approach applies a
one-dimensional CNN over the sequence of characters, where the
number of channels for the CNN is equal to the number of charac-
ters in the string representation of the value, the number of output
channels is set to 100, Relu is the activation function, and a one-
dimensional MaxPool layer serves as the final layer. Finally, Nalin
concatenates the vectors obtained from the RNN and the CNN into
the overall vector representation of the value.

Representing Types. To represent the type of a value as a vector,
the approach computes a one-hot vector for each type. Each vector
has a dimension equal to the number of types present in the dataset.
A type is represented by setting an element to one while keeping
the remaining elements set to zero. For example, if we have only
three types namely int, float, and list in our dataset then using
one-hot encoding, each of them can be represented as [1, 0, 0], [0, 1,
0] and [0, 0, 1] respectively. For the evaluation, we set the maximum
number of types to ten. More sophisticated representations of types,
e.g., learned jointly with the overall model [5], could be integrated
into Nalin as part of future work.

Representing Length and Shape. Length and shape are similar
concepts, and hence, we represent them in a similar fashion. Because
the length of a value is theoretically unbounded, we consider ten
ranges of lengths and represent each of them with a one-hot vector.

Jibesh Patra and Michael Pradel

Specifically, Nalin considers ranges of length 100, starting from 0
until 1,000. That is, any length between 0 and 100 will be represented
by the same one-hot vector, and likewise any length greater than
1,000 will be represented by the another vector. The shape of a value
is a tuple of discrete numbers, which we represent similarly to the
length, except that we first multiply the elements of the shape tuple.
For example, for a value of shape x,y, z, we encode x - y - z using
the same approach as for the length. For values that do not have a
length or shape, we use a special one-hot vector.

3.4 Training and Prediction

Once Nalin has obtained a vector representation for each compo-
nent of a name-value pair, the individual vectors are concatenated
into the combined representation of the pair. We then feed this
combined representation into a neural classifier that predicts the
probability p of the name-value pair to be inconsistent. The classifi-
cation model consists of two linear layers with a sigmoid activation
function at the end. We also add a dropout with probability of 0.5
before each linear layer. We train the model with a batch size of
128, using the Adam [28] optimizer, for 15 epochs, after which the
validation accuracy saturates. During training, the model is trained
toward predicting p = 0.0 for all positive examples and p = 1.0
for all negative examples. Once trained, we interpret the predicted
probability p as the confidence Nalin has in flagging a name-value
pair as inconsistent, and the approach reports to the user only pairs
with p above some threshold (Section 4.2).

3.5 Heuristic Filtering of Likely False Positives

Before reporting name-value pairs that the model predicts as in-
consistent to the user, Nalin applies two simple heuristics to prune
likely false positives. The heuristics aim at removing generic and
meaningless names that have passed the filtering described in Sec-
tion 3.1.2, such as data and val_o. The rationale is that judging
whether those names match a specific value is difficult, but the goal
of Nalin is to identify name-value pairs that clearly mismatch. The
first heuristic removes pairs with names that contain one of the
following terms, which are often found in generic names: data,
value, result, temp, tmp, str, and sample. The second heuris-
tic removes pairs with short and cryptic names. To this end, we
tokenize names at underscores and then remove pairs with names
where at least one subtoken has less than three characters.

4 EVALUATION

Our evaluation focuses on the following research questions:

e RQ1: How effective is the neural model of Nalin in detecting
name-value inconsistencies?

e RQ2: Are the inconsistencies that Nalin reports perceived as hard
to understand by software developers?

e RQ3: What kinds of inconsistencies does the approach find in
real-world code?

e RQ4: How does our approach compare to popular static code
analysis tools?

e RQ5: How does Nalin compare to simpler variants of the ap-
proach?
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4.1 Experimental Setup

We implement our approach for Python as it is one of the most popu-
lar dynamically typed programming languages[1]. All experiments
are run on a machine with Intel Xeon E5-2650 CPU having 48 cores,
64GB of memory and an NVIDIA Tesla P100 GPU. The machine
runs Ubuntu 18.04, and we use Python 3.8 for the implementation.

The evaluation requires a large-scale, diverse, and realistic dataset
of closed (i.e., include all inputs) programs. We choose one million
computational notebooks in an existing dataset of Jupyter note-
books scrapped from GitHub [49]. The dataset is (i) large-scale
because there are many notebooks available, (ii) diverse because
they are written by various developers and cover various appli-
cation domains, (iii) realistic because Jupyter notebooks are one
of the most popular ways of written Python code these days, and
(iv) closed because notebooks do not rely on user input. Another
option would be to apply Nalin to executions of test suites, which
often focus on unusual inputs though and, by definition, exercise
well-tested and hence likely correct behavior.

Excluding some malformed notebooks, we convert 985,865 note-
books into Python scripts using nbconvert. Some of these notebooks
contain only text and no code, while for others, the code has syntax
errors, or the code is very short and does not perform any assign-
ments. All of this decreases the number of Python files that Nalin
can instrument, and we finally obtain 598,321 instrumented files.
The instrumentation takes approximately two hours.

When gathering name-value pairs, we face general challenges
related to reproducing Jupyter notebooks [55]. First, even with the
installation of the 100 most popular Python packages, unresolved
dependencies result in crashes during some executions. Second,
some Python scripts read inputs from files, e.g., a dataset for train-
ing a machine learning model, which may not be locally available.
Considering all notebooks that we can successfully execute de-
spite these obstacles, Nalin gathers a total of 947,702 name-value
pairs, of which 500,332 remain after the filtering described in Sec-
tion 3.1.2. The extracted pairs come from 106,652 Python files with
a total of 7,231,218 lines of non-comment, non-blank Python code.
Running the instrumented files to extract name-value pairs takes
approximately 48 hours.

Before running any experiments with the model, we sample
10,000 name-value pairs as a held-out test dataset. Unless men-
tioned otherwise, all reported results are on this test dataset. On the
remaining 490,332 name-value pairs, we perform an 80-20 split into
training and validation data. For each name-value pair present in
the training, validation, and test datasets, we create a correspond-
ing negative example, which takes two hours in total. The total
number of data points used to train the Nalin model hence is about
780k. Training takes an average of 190 seconds per epoch and once
trained, prediction on the entire test dataset takes about 15 seconds.

We find the name-value pairs to consist of a diverse set of values
and types. There are 99.8k unique names, i.e., each name appears, on
average, about 10 times. The top-5 frequent types are list, ndarray,
str, int, float. The presence of a large number of collection types,
such as list and ndarray, which usually are not fully initialized as
literals shows that extracting values at run-time is worthwhile.
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Figure 4: Precision, recall, and F1 score with different thresh-
olds for reporting warnings.

4.2 ROQ1: Effectiveness of the Trained Model

We measure the effectiveness of Nalin’s model by applying the
trained model to the held-out test dataset. The output of the model
can be interpreted as a confidence score that indicates how likely
the model believes a given name-value pair to be inconsistent. We
consider all name-value pairs Pyygming With a score above some
threshold as a warning, and then measure precision and recall of
the model w.r.t. the inconsistency labels in the dataset (Pinconsistent
are pairs labeled as inconsistent):

P _ |Pwarningnpincnnsistent‘
preczszon =1 1

|Pwarning|

recall — IPwarninngincansistentl

[Pinconsistent|
We also compute the F1 score, which is the harmonic mean of
precision and recall.

Figure 4 shows the results for different thresholds for reporting
a prediction as a warning. The results illustrate the usual precision-
recall tradeoff, where a user can reduce the risk of false positive
warnings at the cost of finding fewer inconsistencies. The model
achieves the highest F1 score of 89% at a threshold of 0.4, with a
precision of 88% and a recall of 91%. Unless otherwise mentioned,
we use a threshold of 0.5 as the default, which gives 87% F1 score.
Out of 8,858 files in the held-out test set, 336 (3.8%) have at least
one warning reported by Nalin.

Finding 1: The model effectively identifies inconsistent name-
value pairs, with a maximum F1 score of 89%.

4.3 ROQ2: Study with Developers

To answer the question how well Nalin’s warnings match name-
value pairs that developers perceive as hard to understand, we
perform a study with eleven software developers. The participants
are four PhD students and seven master-level students, all of which
regularly develop software, and none of which overlaps with the
authors of this paper. During the study, each participant is shown
40 name-value pairs and asked to assess each pair regarding its
understandability. The participants provide their assessment on a
five-point Likert scale ranging from “hard” (1) to “easy” (5), where
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Figure 5: Results from user study.

“hard” means that the name and the value are inconsistent, making it
hard to understand and maintain the code. The 40 name-value pairs
consist of 20 pairs that are randomly selected from all warnings
Nalin reports as inconsistent with a confidence above 80% and of 20
randomly selected pairs that the approach does not warn about. For
each pair, the participants are shown the name of the variable, the
value that Nalin deems inconsistent with this name, and the type of
the value. In total, the study hence involves 440 developer ratings.
Because what is a meaningful variable names is, to some extent,
subjective, we expect some variance in the ratings provided by the
participants. To quantify this variance, we compute the inter-rater
agreement using Krippendorff’s alpha, which yields an agreement
of 56%. That is, developers agree with a medium to high degree on
whether a name-value pair is easy to understand.

Before providing quantitative results, we discuss a few represen-
tative examples. Among the name-value pairs without a warning
is a variable called DATA_URL that stores a string containing a URL.
This pair is consistently rated as easy to understand, with a mean
ranking of 5.0. Among the pairs that Nalin reports as inconsistent
are a variable password_text storing an integer value o, which
most participants consider as hard to understand (mean rating:
1.54). Another pair that the approach warns about is a variable
called path that stores an empty list. The study participants are
rather undecided about this example, with a mean rating of 2.72.

The main question of the user study is to what extent Nalin
pinpoints name-value pairs that developers also consider to be
hard to understand. We address this question in two ways, first by
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computing precision and recall of Nalin w.r.t. the developer ratings,
and then by comparing the ratings for warnings and non-warnings.

Precision and Recall w.r.t. Developer Ratings. We assign each of
the 40 name-value pairs into two sets: On the one hand, a pair is
in Pp,,, if the mean rating assigned by the developers is less than
three and in Peasy otherwise. On the other hand, a pair is in Pyarning
if Nalin flags it as an inconsistency and in Ppowarning otherwise.
Table 5a shows the intersections between these sets. For example,
we see that 16 of the pairs that Nalin warns about, but only 5 of the
pairs without a warning, are considered to be hard to understand.
We compute precision and recall as follows:

.. ‘Pwamingﬂphardl 16
recision = —5—— = 55 = 80%
p ‘Pwamingl 20 °
_ |Pwarningmphard‘ _ 16 _
recall = W =51 = 76%

Ratings for Warnings vs. Non-Warnings. In addition to the pair-
based metrics above, we also globally compare the ratings for pairs
with and without warnings. The goal is to understand whether
Nalin is effective at distinguishing between name-value pairs that
developers perceive as easy and hard to understand. To this end,
consider two sets of ratings: ratings Ryarning for name-value pairs
that Nalin reports as inconsistent, and ratings Ryowarning for other
name-value pairs. Figure 5b compares the two sets of ratings with
each other, showing how many ratings there are for each point
on the 5-point Likert scale. The results show a clear difference be-
tween the two sets: “easy” is the most common rating in Ryowarning.
whereas the majority of ratings in Ryygming is either "relatively hard”
or “hard”. We also statistically compare Rygrning and Ruowarning us-
ing a Mann-Whitney U-test, which shows the two sets of rankings
to be extremely likely to be sampled from different populations
(with a p-value of less than 0.1%).

Finding 2: Developers mostly agree with the (in)consistency
predictions by Nalin. In particular, they assess 80% of the name-
value pairs that the approach warns about as hard to maintain
and understand.

4.4 ROQ3: Kinds of Inconsistencies in
Real-World Code

To better understand the kinds of name-value inconsistencies de-
tected in real-world code, we inspect name-value pairs in the test
datasets that appear as such in the code, but that are classified as
inconsistent by the model. When using Nalin to search for previ-
ously unknown issues, these name-value pairs will be reported as
warnings. We inspect the top-30 predictions, sorted by the proba-
bility score provided by the model, and classify each warning into
one of three categories:

o Misleading name. Name-value pairs where the name clearly fails
to match the value it refers to. These cases do not lead to wrong
program behavior, but should be fixed to increase the readability
and maintainability of the code.

o Incorrect value. Name-value pairs where the mismatch between
aname and a value is due to an incorrect value being assigned.
These cases cause unexpected program behavior, e.g., a program
crash or incorrect output.
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Table 1: Examples of warnings produced by Nalin.

Code Example Category Run-time value Comment
name = 'Philip K. Dick' Misleading A variable called name is typically holding a string, but
s name here stores a float value.
name = 2.5
if type(name) == str:
print('yes')
file = os.path.exists('reference.csv’) Misleading  False The name file suggests that the variable stores either a
if file == False: name file handle or a file name, but it here stores a boolean.
print('Warning: ...")
def Custom(information): Incorrect "Corporate" Assigning a string to a variable called prob is unusual,
prob = get_betraying_probability(information) value because prob usually refers to a probability. The value
if(prob > 1/ 2): is incorrect and leads to a crash in the next line because
return D comparing a string and a float causes a type error.
elif(prob == 1 / 2): P g g yP ’
return choice([D, C])
else:
return C
dwarF = '/Users/iayork/Downloads/dwar_2013_2015.txt’ False pos- "/Users/.." The value is a string that describes file path, which fits the
dwar = pd.read_csv(dwarF, sep=' ', header=None) itive name, where the F supposedly means “file”. The model

reports this false positive because it fails to understand
the abbreviation.

e False positive. Name-value pairs that are consistent with each
other, and which ideally would not be reported as a warning.

The inspection shows that 21 of the warnings correspond to
misleading names, 2 are incorrect values, and 7 are false positives.
That is, the majority of the reported inconsistencies are due to the
name, whereas only a few are caused by an incorrect value being
assigned to a meaningful name. This result is expected because in-
correct behavior is easier to detect, e.g. via testing, than misleading
names, for which currently few tools exist. The fact that 23 out
of 30 warnings (77%) are true positives is also consistent with the
developer study in RQ2.

Table 1 shows representative examples of warnings produced by
Nalin. The first two examples show misleading names. For example,
it is highly unusual to assign a number to a variable called name
or to assign boolean to a variable called file. To the best of our
knowledge, these misleading names do not cause unexpected be-
havior, but developers may still want to fix them to increase the
readability and maintainability of the code. In the third example,
Nalin produces a warning about the assignment on line 2. The value
assigned during the execution is a string ' Cooperate’. Due to the
string assignment, the code on line 3 crashes since the operator >
does not support a comparison between a string and float. Nalin
is correct in predicting this warning because the variable name
prob is typically used to refer to a probability, not to a string like
"Cooperate’. The final example is a false positive, which illus-
trates one of the most common causes of false positives seen during
our inspection, namely short (and somewhat cryptic) names for
which the model fails to understand the meaning.

Finding 3: The majority of inconsistencies detected in real-
world code are due to the name in a name-value pair being
misleading, and occasionally also due to incorrect values.

4.5 RQ4: Comparison with Previous Bug
Detection Approaches

We compare Nalin to three state-of-the-art static analysis tools
aimed at finding bugs and other kinds of noteworthy issues: (i)
pyre, a static type checker for Python that infers types and uses
available type annotations. We compare with pyre because many of
the inconsistencies that Nalin reports are type-related, and hence,
might also be spotted by a type checker. (ii) flake8, a Python lin-
ter that warns about commonly made mistakes. We compare with
flake8 because it is widely used and because linters share the goal of
improving the quality of code. (iii) DeepBugs [47], a learning-based
bug detection technique. We compare with DeepBugs because it
also aims to find name-related bugs using machine learning, but us-
ing static instead of dynamic analysis. We run pyre and flake8 using
their default configurations. For DeepBugs, we install the “Deep-
Bugs for Python” plugin from the marketplace of the PyCharm IDE.
We apply each of the three approaches to the 30 files where Nalin
has produced a warning and which have been manually inspected
(RQ3). Namer [22], a recent technique for finding name-related cod-
ing issues through a combination of static analysis, pattern mining,
and supervised learning would be another candidate for comparing
with, but neither the implementation nor the experimental results
are publicly available.

Table 2 shows the number of warnings reported by the existing
tools and how many of these warnings overlap with those reported
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Table 2: Comparison with existing static bug detectors.

Approach Warnings Warnings common with Nalin
pyre 54 1/30
flake8 1,247 0/30
DeepBugs 151 0/30
0.95
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Figure 6: Result of ablation study.

by Nalin. We find that except one warning reported by pyre, none
matches with the 30 manually inspected warnings from Nalin. The
matching warning is a misleading name, shown on the first row
of Table 1. The pyre type checker reports this as an “Incompatible
variable type” because in the same file, the variable name is first
assigned a string 'Philip K. Dick’ and later assigned a float value
2.5. The 1,247 warnings produced by flake8 are mostly about cod-
ing style, e.g., “missing white space” and “whitespace after (" ”.
The warnings reported by DeepBugs include possibly wrong oper-
ator usages and incorrectly ordered function arguments, but none
matches the warnings reported by Nalin.

Finding 4: Nalin is complementary to both traditional static
analysis-based tools and to a state-of-the-art learning-based
bug detector aimed at name-related bugs.

4.6 RQ5: Comparison with Variants of the
Approach

4.6.1 Type-Guided vs. Purely Random Negative Examples. The fol-
lowing compares the two algorithms for generating negative ex-
amples described in Section 3.2. Following the setup from RQ1, we
find that the purely random generation reduces both precision and
recall, leading to a maximum F1 score of 0.82, compared to 0.89
with the type-guided approach. Manually inspecting the top-30
reported warnings as in RQ2, we find 21 false positives, nine mis-
leading names, and zero incorrect values, which clearly reduces
the precision compared to the type-guided generation approach.
These results confirm motivation for the type-guided algorithm
(Section 3.2.2) and show that it outperforms a simpler baseline.
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4.6.2 Ablation Study. We perform an ablation study to measure
the importance of the different components of a name-value pair
fed into the model. To this end, we set the vector representation of
individual components to zero during training and prediction, and
then measure the effect on the F1 score of the model. Figure 6 shows
the results, where the vertical axis shows the F1 score obtained
on the validation dataset at each epoch during training. Each line
in Figure 6 shows the F1 score obtained while training the model
keeping that particular feature set to zero. For example, the green
line (“No Shape”) is for a model that does not use the shape of a
value, and the blue line (“all”) is for a model that uses all components
of a name-value pair. We find that the most important inputs to
the model are the variable name and the string representation of
the value. Removing the length or the type of a value does not
significantly decrease the model’s effectiveness. The reason is that
these properties can often be inferred from other inputs given to
the model, e.g., by deriving the type from the string representation
of a value. We confirm this explanation by removing both the type
and the string representation of a value, which yields an F1 score
similar to the model trained by removing only values.

Finding 5: Each component of the approach contributes to
the overall effectiveness, but there is some redundancy in the
properties of values given to the model.

5 THREATS TO VALIDITY

Internal Validity. Several factors may influence our results. First,
the filtering of name-value pairs based on the length of names
may accidentally remove short but meaningful names, such as
abbreviations that are common in a specific domain. Preliminary
experiments without such filtering resulted in many false positives,
and we prefer false negatives over false positives to increase devel-
oper acceptance. Second, our manual classification into different
kinds of inconsistencies is subject to our limited knowledge of the
analyzed Python files. To mitigate this threat, the classification
is done by two of the authors, discussing any unclear cases until
reaching consensus.

External Validity. Several factors may influence the generalizabil-
ity of our results. First, our approach is designed with a dynamically
typed programming language in mind, because meaningful iden-
tifier names are particularly important in such languages. This
focus and the setup of our experiments implies that we cannot
draw conclusions beyond Python or beyond the kind of Python
code found in Jupyter notebooks. Second, our developer study is
limited to eleven participants, and other developers may assess the
understandability of the name-value pairs differently. We mitigate
this threat by getting eleven opinions about each name-value pair
and by statistically analyzing the relevance of the results.

6 RELATED WORK

Detecting Poor Names. The importance of meaningful names dur-
ing programming has been studied and established [15, 32]. There
are several techniques for finding poorly named program elements,
e.g., based on pre-defined rules [2], by comparing method names
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against method bodies [26], and through a type inference-like analy-
sis of names and their occurrences [30]. To improve identifier names,
rule-based expansion [31], n-gram models of code [3], and learning-
based techniques that compare method bodies and method names
have been proposed [34, 38]. Namer [22] combines static analy-
sis, pattern mining, and supervised learning to find name-related
coding issues. Many of the above approaches focus on method
names, whereas we target variables. Moreover, none of the existing
approaches exploits dynamically observed values.

Predicting Names. When names are completely missing, e.g., in
minified, compiled, or obfuscated code, learned models can predict
them [12, 29, 48, 53]. Another line of work predicts method names
given the body of a method [4, 7, 9], which beyond being potentially
useful for developers serves as a pseudo-task to force a model to
summarize code in a semantics-preserving way. Nalin differs by
considering values observed at runtime, and not only static source
code, and by checking names for inconsistencies with the values
they refer to, instead of predicting names from scratch.

Name-based Program Analysis. DeepBugs introduced learning-
based and name-based bug detection [47], which differs from Nalin
by being purely static and by focusing on different kinds of er-
rors. The perhaps most popular kind of name-based analysis is
probabilistic type inference [59], often using deep neural network
models [5, 23, 35, 46, 58] that reason about the to-be-typed code.
RefiNum uses names to identify conceptual types, which further re-
fine the usual programming language types [16]. SemSeed exploits
semantic relations between names to inject realistic bugs [42]. All
of the above work is based on the observation that the implicit
information embedded in identifiers is useful for program analyses.
Our work is the first to exploit this observation to find name-value
inconsistencies.

Natural Language vs. Code. Beyond natural language in the form
of identifiers, comments and documentation associated with code
are another valuable source of information. iComment [51] and
tComment [52] use this information to detect inconsistencies be-
tween comments and code. Our work differs by focusing on variable
names instead of comments, by comparing the natural language
artifact against runtime values instead of static code, and by us-
ing a learning-based approach. Another line of work uses natural
language documentation to infer specifications of code [19, 37, 40],
which is complementary to our work.

Learning on Code. In addition to the work discussed above, ma-
chine learning on code is receiving significant interest recently [45].

Embeddings of code are one important topic, e.g., using AST paths [10],

control flow graphs [57], ASTs [60], or a combination of token se-
quences and a graph representation of code [24]. Our encoder of
variable names could benefit from being combined with an en-
coding of the code surrounding the assignment using those ideas.
Other work models code changes and then makes predictions about
them [14, 25], or trains models for program repair [18, 21], code
completion [8, 11, 27], and code search [20, 50].

Learning from Executions. Despite the recent surge of work on
learning on code, learning on data gathered during executions is a
relatively unexplored area. One model embeds student programs
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based on dynamically observed input-output relations [43]. Wang
et al’s “blended” code embedding learning [56] combines runtime
traces, which include values of multiple variables, and static code el-
ements to learn a distributed vector representation of code. Beyond
code embedding, BlankIt [44] uses a decision tree model trained on
runtime data to predict the library functions that a code location
may use. In contrast to these papers, our work addresses a different
problem and feeds one value at a time into the model.

7 CONCLUSION

Using meaningful identifier names is important for code under-
standability and maintainability. This paper presents Nalin, which
addresses the problem of finding inconsistencies that arise due to
the use of a misleading name or due to assigning an incorrect value.
The key novelty of Nalin is to learn from names and their values
assigned at runtime. To reason about the meaning of names and
values, the approach embeds them into vector representations that
assign similar vectors to similar names and values. Our evalua-
tion with about 500k name-value pairs gathered from real-world
Python programs shows that the model is highly accurate, leading
to warnings reported with a precision of 80% and recall of 76%.

Our implementation and experimental results are available:
https://github.com/sola-st/Nalin
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