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Abstract—As writing concurrent programs is challenging,
developers often rely on thread-safe classes, which encapsulate
most synchronization issues. Testing such classes is crucial to
ensure the correctness of concurrent programs. An effective
approach to uncover otherwise missed concurrency bugs is to
automatically generate concurrent tests. Existing approaches
either create tests randomly, which is inefficient, build on a
computationally expensive analysis of potential concurrency bugs
exposed by sequential tests, or focus on exposing a particular
kind of concurrency bugs, such as atomicity violations. This
paper presents CovCon, a coverage-guided approach to generate
concurrent tests. The key idea is to measure how often pairs of
methods have already been executed concurrently and to focus
the test generation on infrequently or not at all covered pairs
of methods. The approach is independent of any particular bug
pattern, allowing it to find arbitrary concurrency bugs, and is
computationally inexpensive, allowing it to generate many tests
in short time. We apply CovCon to 18 thread-safe Java classes,
and it detects concurrency bugs in 17 of them. Compared to
five state of the art approaches, CovCon detects more bugs than
any other approach while requiring less time. Specifically, our
approach finds bugs faster in 38 of 47 cases, with speedups of at
least 4x for 22 of 47 cases.
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I. INTRODUCTION

Writing correct and efficient concurrent software is difficult.
To alleviate the pain of developing concurrent software in
object-oriented, shared-memory languages, such as Java or
C++, developers often use thread-safe classes. These classes
encapsulate concurrency-related challenges, such as how to
synchronize concurrent memory accesses in an efficient and
deadlock-free way, and provide an easy-to-use interface to
developers. In essence, each thread can use an instance of a
thread-safe class as if no other thread was using the instance
concurrently, without any synchronization between the threads
that access the instance. The thread-safe class guarantees that
the behavior of the execution is equivalent to a method-level
linearization of the concurrent calls to the shared instance.

Because thread-safe classes are widely used, ensuring their
correctness is crucial for ensuring the overall correctness of
concurrent programs. An effective approach for validating the
correctness of a thread-safe class is automated test generation.
The basic idea is that a test generator creates concurrent
unit tests, i.e., tests where multiple concurrently executing
threads exercise a shared instance of the class under test.
To determine whether a generated test exposes a bug, the

concurrent execution is then compared against linearizations
of the test [5], [39] or analyzed by existing detectors of data
races [16], [34], [45], [47], atomicity violations [1], [15], [38],
or deadlocks [26].

Existing generators of concurrent tests fall into three cat-
egories. Random-based approaches select at random which
methods to call in the concurrently executed threads and
randomly combine threads with each other [33], [39]. These
approaches have minimal requirements but are often ineffi-
cient, because they tend to repeatedly test already exercised
behavior, yet miss behavior that can expose bugs. Sequential
test-based approaches execute existing sequential unit tests of
the thread-safe class, identify concurrency bugs that may occur
when combining multiple sequential tests into concurrent tests,
and then synthesize such tests [42]–[44]. These approaches
rely on appropriate sequential tests and impose a relatively
high computational cost. Finally, coverage-based approaches
compute a set of concurrency-related coverage requirements
and generate tests that cover as many of these requirements
as possible [51], [55]. This direction is promising. However,
existing approaches use coverage criteria that demand expen-
sive coverage measurement and test generation. Furthermore,
a common limitation of existing non-random approaches is to
consider only a particular kind of concurrency bugs, e.g., data
races [44], atomicity violations [43], [55], or deadlocks [42].

This paper presents a novel coverage-guided approach for
generating concurrent tests that can detect arbitrary kinds of
concurrency bugs. The approach is a simple yet effective
alternative to the existing approaches. We follow the philoso-
phy of recent coverage-based approaches [51], [55] to guide
random-based test generation toward not yet covered inter-
leavings, making it less random and more likely to trigger not
yet exercised (mis)behavior. Unlike existing approaches, we
drastically simplify the analysis and computation associated
with interleaving coverage. We face two major challenges in
achieving this goal. First, we require a lightweight technique to
assess which interleavings are not yet covered by existing test
cases. Naively enumerating all possible interleavings (i.e., total
orders of memory accesses) is practically infeasible. Existing
coverage-based approaches focus on partial orders of memory
accesses, of which there are finitely many. However, they
still require an expensive coverage measurement that analyzes
every access to global or heap objects. Second, we require
a lightweight technique for steering automatic test generation



toward tests likely to cover not-yet-covered interleavings. This
is non-trivial for existing approaches, as they need to figure out
which call sequences may cover specific memory accesses that
are part of a targeted interleaving. Furthermore, the obvious
solution, prioritizing interleavings that have been covered the
least or not at all, fails for realistic classes under test because
some interleavings may be infeasible.

To address these two challenges, we use a coverage metric
that abstracts the set of interleavings into concurrent method
pairs, i.e., the set of pairs of methods that execute concur-
rently. An important insight that enables the idea to scale
to realistic classes is that concurrent method pairs yield a
finite coverage domain that is computationally inexpensive to
measure, yet an effective approximation of possible and cov-
ered interleavings. The approach instruments the class under
test to measure which pairs of methods execute concurrently
when executing a generated concurrent test. The approach
then uses the coverage information to easily construct tests
aimed at covering infrequently covered pairs of methods, while
minimizing the priority of method pairs that simply cannot
execute concurrently, e.g., because both methods are protected
by the same lock. We call the presented approach CovCon,
standing for Coverage-guided generation of Concurrent tests.
The main benefit of CovCon is to be both conceptually and
computationally simple, yet effective and efficient in triggering
concurrency bugs.

Note that our work differs from recent work on generating
schedules based on concurrent coverage metrics [21], [60],
[65] because CovCon generates test cases instead of schedules.
The problem of generating test cases is orthogonal to the
problem of generating schedules for executing these test cases.
Once test cases are available, e.g., generated by CovCon, they
can be explored with any approach for generating schedules,
including coverage-based approaches [21], [60], [65], active
testing [25], bounded exploration [31], and exhaustive explo-
ration [28], [57]. In contrast, without bug-triggering test cases,
even the best schedule exploration technique cannot find any
bugs.

Steering the testing process toward higher coverage is
inspired by a long tradition of using coverage to direct the
testing of sequential programs. Traditional sequential coverage
metrics, such as statement coverage, branch coverage, or
definition-use coverage, are widely used to measure testing
sufficiency. They indicate which parts of the code still lack
testing, and guide developers or automated test generation
tools [2], [24], [36], [58] toward those parts. Coverage-directed
testing generation is a natural step for concurrency testing,
given the success of coverage-directed testing in sequential
software. When taking this step, finding a simple yet effective
coverage measurement and test generation scheme is crucial
to the success of this promising direction.

We evaluate the CovCon approach with 18 thread-safe
classes from popular Java projects and compare our coverage-
guided approach with five existing approaches. Our approach
detects concurrency bugs in 17 of the 18 classes, which is
more than any other approach. At the same time, CovCon

significantly reduces the time required to find bugs: For 38
of 47 cases, our approach is faster than the state of art, with
speedups of at least 4x for 22 of the 47 cases.

In summary, this paper contributes the following:
• The first approach to use a finite, simple, and generic

metric of interleaving coverage as a driver for generating
concurrent tests.

• The insight that concurrent method pairs provide an in-
expensive metric of interleaving coverage that effectively
steers test generation. This insight yields a conceptually
simple yet highly effective test generation approach to
automatically test thread-safe classes.

• A comprehensive experimental comparison of generators
of concurrent tests that exceeds previous experiments
both in the number of classes and in the number of
approaches. The results show that CovCon outperforms
all state of the art approaches, both in terms of bug finding
capabilities and efficiency.

II. OVERVIEW

This section outlines the main ideas of our coverage-guided
approach for generating concurrent tests and illustrates them
with an example. Figure 1a shows a supposedly thread-safe
class under test. Methods m2 and m3 both use a field li,
which m2 may set to null and which m3 may dereference.
Unfortunately, m3 checks whether li is non-null before
dereferencing it without enforcing that the check and the
dereference operation are executed atomically. As a result,
a client of the class that calls m2 and m3 concurrently
may trigger a NullPointerException, violating the thread
safety property that the class intends to guarantee.

To test the class, CovCon generates multi-threaded unit tests
(Section IV-D), such as the test shown in Figure 1b. The test
instantiates the class, may call some of its methods (not shown
in the example), and then spawns two threads. The concurrent
threads both use the shared instance c of the class under test
and call some of its methods. Each generated test focuses on
a particular pair of methods, (m1,m3) for the example, and
tries to execute these methods concurrently.

Next, CovCon executes the test and gathers an execution
trace that records method entry and exit events of the concur-
rently executing threads (Section IV-B). The trace in Figure 1c
shows the calls done by thread 1 and 2 on the left and right,
respectively. Note that the trace contains events of both the
direct calls, such as the calls to m1 and m3, and the indirect
calls, such as the calls to m4 through m3. During the execution
in Figure 1c, several pairs of methods execute concurrently:
(m3,m3), (m3,m4), (m1,m3), and (m1,m4).

The main feature of CovCon is to maintain and exploit
information about interleaving coverage. Our work builds on
concurrent method pairs, a measure that stores how often a
particular pair of methods has executed concurrently (Sec-
tion IV-A). Figure 1d lists all pairs of methods of the class
under test. For each pair, the approach maintains two counters:
How often CovCon has already generated a test that tries to
call the methods concurrently, and how often the methods



(a) Class under test:
class C {
List li = ...;
synchronized void m1() {
...

}
synchronized void m2() {
if (...) li = null;

}
int m3() {
if (li == null)
return 0;

m4();
synchronized(this) {
return li.size();

}
}
void m4() { ... }

}

(b) Generated test:
C c = new C();

c.m1();
c.m3();

c.m3();
c.m1();

Thread 1 Thread 2

(c) Trace of test execution:
enter m1
exit m1
enter m3

enter m3
enter m4

exit m4
exit m3

enter m1

enter m4
exit m4
exit m3

exit m1

(d) Coverage information:
Method Coverage Priority
pair (tried/covered) after

Init- After 20
ially 20 tests tests

m1,m1 0 / 0 2 / 0 4
m1,m2 0 / 0 2 / 0 4
m1,m3 0 / 0 2 / 4 4
m1,m4 0 / 0 2 / 7 10
m2,m2 0 / 0 2 / 0 4
m2,m3 0 / 0 2 / 2 2
m2,m4 0 / 0 2 / 8 12
m3,m3 0 / 0 2 / 2 2
m3,m4 0 / 0 2 / 3 2
m4,m4 0 / 0 2 / 5 6

Fig. 1: Example to illustrate coverage-guided generation of concurrent tests.

have indeed executed concurrently. These counters may differ
because a particular execution may not schedule two methods
concurrently, because a pair of methods may never or rarely
be able to execute concurrently due to synchronization, and
because a call in a test may call other methods.

Given the execution trace in Figure 1c, CovCon updates
the coverage information as follows. It increments the number
of tries for (m1,m3) because the test focuses on this pair
of methods. Furthermore, it updates the number of times that
(m3,m3), (m3,m4), (m1,m3), and (m1,m4) are covered.
The third column of Figure 1d illustrates the coverage informa-
tion that CovCon may gather by generating and executing 20
tests. Some method pairs, such as (m1,m1), have not been
covered at all because they are protected by the same lock.
Other method pairs, such as (m2,m4), are covered relatively
often because m4 gets exercised both by tests that directly call
m4 and by tests that directly call m3, increasing its chance
to execute concurrently with other methods. Note that even
though the number of tries are the same for all method pairs
in the example, this need not be the case.

CovCon uses the coverage information to focus the gen-
eration of tests on pairs of methods that have not yet been
covered or that have been covered less frequently than others
(Section IV-C). A naive approach might always pick the pair
of methods with the lowest covered count. However, this
approach would spend most of its testing efforts on method
pairs that cannot execute concurrently, such as (m1,m2).
Instead, we present a prioritization technique that accounts
both for pairs that cannot be executed concurrently and pairs
that are frequently executed concurrently because they are
called by other methods. The last column of Figure 1d shows
the score that CovCon assigns to each method pair after
generating and executing 20 tests. Based on the scores, the
approach is most likely to focus on the three pairs (m2,m3),
(m3,m3), and (m3,m4) in its next round of test generation,
which includes the method pair (m2,m3) that is prone to the
atomicity violation.

The testing process illustrated in Figure 1 continues until
CovCon detects a thread safety violation or until the user stops

the approach when the testing reaches a time-out or a test
coverage goal. During this process, the approach continuously
updates the coverage information and refines the decisions on
which pairs of methods to test next.

III. BACKGROUND: CONCURRENT TESTS

CovCon analyzes a supposedly thread-safe class under test
by generating concurrent tests. Such a test consists of a
sequential prefix, executed in a single thread, and multiple
concurrent suffixes, executed in concurrent threads. The prefix
instantiates the class under test and possibly calls additional
methods to bring the instance into a state that may expose
errors. The suffixes all share the single instance of the class
under test created by the prefix. Similar to prior work [33],
[39], [40], this paper focuses on tests with two suffixes.

To check whether executing a concurrent test exposes a
concurrency bug, we build upon the thread safety oracle [39].
It checks whether the concurrent execution of a test leads to
an exception or a deadlock, and if it does, checks whether the
same exception or deadlock also occurs in any of the method-
level linearizations of the test. If the exception or deadlock
occurs only in a concurrent execution but not in any of the
linearizations, then the oracle reports a thread safety violation.
Because thread safety guarantees that each concurrent behavior
of a class corresponds to a method-level linearization, the
thread safety oracle reports a warning only if the class indeed
suffers from a concurrency bug. The oracle may miss bugs
that do not manifest as an exception or a deadlock and bugs
not triggered during the concurrent execution due to non-
determinism.

IV. APPROACH

The following describes the details of CovCon, a coverage-
guided approach to generate concurrent tests. Given a sup-
posedly thread-safe class under test, the approach repeatedly
performs two steps until it finds a thread safety violation or
until the user stops the approach:

1) Test generation. Create a multi-threaded unit test that
exercises the class under test.



2) Test execution and validation. Execute the test and
decide whether it exposes a thread safety violation.

The main contribution of this work is to improve the
efficiency and effectiveness of the first step by guiding the
test generator toward tests that will cover not yet or infre-
quently explored interleaving behaviors. We first present the
interleaving coverage metric used by CovCon (Section IV-A).
CovCon gathers coverage information during the execution of
tests by instrumenting the class under test and by analyzing ex-
ecution traces (Section IV-B). Based on the gathered coverage
information, CovCon assigns priorities to interleavings, giving
highest priority to interleavings that require more thorough
testing (Section IV-C). Finally, CovCon uses the priorities to
steer the test generation toward not yet or infrequently covered
concurrent behaviors (Section IV-D).

A. Interleaving Coverage

A major challenge for coverage-guided test generation is to
find a coverage metric that is both efficient and practical to
use. Efficiency refers to the cost of computing the coverage
domain, i.e., the set of all interleaving behaviors that clients of
a thread-safe class can explore, the cost of gathering coverage
facts, i.e., which of these interleaving behaviors have been
covered by test executions, and the cost of synthesizing a test
case to satisfy a particular coverage requirement. Efficiency is
critical because otherwise the benefits of using coverage infor-
mation may not outweigh the cost, compared to a coverage-
oblivious approach. It is also critical that the coverage domain
is neither too small nor too big. Otherwise, the coverage goal
is either too easy or too difficult to achieve in practice.

A naive approach would be to compute all possible
instruction-level interleavings via static analysis, and to mea-
sure which of these interleavings are covered by an execu-
tion. Unfortunately, precisely computing this coverage domain
is computationally expensive and gathering coverage facts
would impose huge runtime overhead. Moreover, covering
all instruction-level interleavings that clients of a class may
explore is practically infeasible because the coverage domain
would be very large, or even infinite. Recent coverage-based
approaches [51], [55] focus on partial-order interleavings, and
hence address the practicality issue of the naive approach, but
cannot address the efficiency issues.

To enable CovCon to efficiently compute interleaving co-
verage, we use an approximate interleaving coverage metric.
The metric, called concurrent method pairs, measures which
pairs of methods are executed concurrently.1 Each concurrent
method pair consists of two publicly accessible methods of
the class under test. Concurrent method pairs are inspired
by Deng et al.’s concurrent function pairs [13], which was
proposed to reduce the dynamic bug-detection cost for pre-
defined inputs. Our work is the first to apply the metric to

1We consider (m1,m2) and (m2,m1) to be the same method pair because
the order is irrelevant for concurrency bug detection. This terminology differs
from the mathematical definition of “pair” but is in line with previous
work [13].

object-oriented programs and to adapt it to the problem of
generating concurrent tests.

The concurrent method pair metric is both efficient and
practical to use. Computing the coverage domain is straightfor-
ward as it requires only the set of publicly accessible methods
of the class under test. Likewise, gathering coverage facts is
computationally inexpensive, as we show in Sections IV-B.
Finally, the set of concurrent method pairs is finite and can
be covered in reasonable time (Section VI-F). The following
section describes how we compute and use this metric.

B. Gathering Coverage Information

CovCon keeps track of three kinds of coverage related
information:
• The set P of concurrent method pairs that could poten-

tially be covered by test executions.
• A map C that assigns each method pair p ∈ P to the

number of times that the pair has been covered, i.e.,
how often the two methods in p have been executed
concurrently. We call C(p) the covered count of p.

• A map R that assigns each method pair p ∈ P to the
number of tests where the methods in p are directly called
in different suffixes, i.e., the number of tests that are
designed to try increasing the covered count of p. We
call R(p) the tried count of p.

P is computed as the set of all pairs of publicly accessible
methods of the class under test.2 R is updated whenever
a method pair p is selected as the prioritized method pair
(Section IV-C). Updating C requires instrumentation and trace
analysis for each test execution, which will be discussed in
detail in the remainder of this subsection.

1) Instrumentation: To detect which methods of the class
under test execute concurrently, CovCon instruments each
publicly accessible method defined in the class and its su-
perclasses. The instrumentation records the start and the end
of every invocation of the method into an execution trace.

Definition 1 (Execution trace)
The trace created while executing a concurrent test is a se-
quence of trace entries. Each entry is a tuple (e,m, o, h, s),
where
• e is the kind of event (“start” or “end”),
• m is the fully qualified signature of the current method,
• o is a unique identifier of the object on which the method

is called (or “null” for static methods),
• h is a unique identifier of the current thread, and
• s is a global, logical timestamp.

To obtain the global timestamp, CovCon maintains a global
counter that serves as a logical clock shared among all threads.
Each time when the instrumented code creates a new trace
entry, it increments the counter and records the incremented
counter as the current timestamp.

2A possible extension of CovCon could be to refine P via a static analysis
that prunes methods that cannot execute concurrently due to synchronization.



Algorithm 1 Analyze execution trace to update information
about covered method pairs.

Input: Execution trace trace and covered counts C
Output: Updated covered counts C

1: Mcur ← ∅ {maps threads to currently executing meth-
ods}

2: for all (e,m, o, h, s) ∈ trace do
3: if e = “start” then
4: for all h′ ∈Mcur do
5: if h′ 6= h then
6: for all m′ ∈Mcur(h

′) do
7: p← sort(m,m′)
8: C(p)← C(p) + 1
9: Mcur(h).push(m)

10: else if e = “end” then
11: Mcur(h).pop()

To detect the start of a method execution, CovCon inserts
a call statement at the beginning of the method. Detecting
the end of a method execution is slightly more complicated
because a method may have multiple exit points, including
exit points caused by checked and unchecked exceptions. To
consider all possible exit points of a method, CovCon sur-
rounds the original method body with a try-catch-finally
statement, which catches and re-throws all exceptions. The
finally block, which is always executed at the end of the
method, records the trace entry for exiting the method.

2) Analyzing the Execution Trace: Based on the execution
trace of a test, CovCon determines which pairs of methods
have executed concurrently and updates their covered counts
accordingly. Algorithm 1 summarizes the trace analysis. The
algorithm iterates through all trace entries and maintains a
stack of currently executing methods for each thread. For each
event that represents the start of a method m, the algorithm
pushes m to the stack of the current thread h (line 9).
Moreover, the algorithm checks which other methods m′

execute concurrently, i.e., in another thread h′, and increments
the covered count for the pair (m,m′) (line 8). Since the
order of methods is irrelevant for the concurrent coverage
pair metric, the algorithm represents each pair in a canonical
format by sorting the method signatures. When the algorithm
observes the end of a method m, it pops m from the stack
of the current thread (line 11). The algorithm considers the
general case of an arbitrary number of concurrently executing
methods, even though this work focuses on tests with only
two suffixes. One reason is that there may be more than two
concurrently executing methods when a method called in a
suffix spawns additional threads.

C. Prioritizing Method Pairs

In the following, we present how CovCon decides which
method pairs to prioritize during test generation. The input
to this step is the coverage information gathered during prior
executions of generated tests, specifically, the maps C and R,
which store the covered counts and tried counts of method
pairs, respectively.

The prioritization addresses three challenges:
• (C1) To maximize the chance to discover a new thread

safety violation, CovCon should generate tests to exercise
pairs of methods that have not yet been tested extensively.
In particular, pairs that have not yet been tried at all
should have highest priority.

• (C2) To avoid spending testing effort on pairs of methods
that cannot be executed concurrently, CovCon should
reduce the priority of such pairs. For example, a method
pair may never (rarely) execute concurrently if (signif-
icant parts of) both methods are protected by the same
lock.

• (C3) To avoid spending testing effort on pairs of methods
that are frequently executed concurrently, even though
only few tests have directly called them in concurrent
suffixes, CovCon should reduce the priority of such pairs.
For example, such a method pair may occur if helper
methods that are called by many other methods often
execute concurrently.

An obvious solution would be to assign highest priority
to method pairs p with the lowest covered count C(p). This
approach addresses C1 but fails to address C2 and C3. For
example, such an approach would repeatedly attempt to test
(m1,m2) from Figure 1a, which cannot execute concurrently
due to synchronization.

To address all three challenges, we present a prioritization
score that assigns an integer value to each method pair.

Definition 2 (Prioritization score)
Given a method pair p ∈ P , let r be its tried countR(p) and let
c be its covered count C(p). The prioritization score S(p) is the
following:
• If r = 0, then S(p) = 0.
• If r 6= 0, then S(p) = max(|r − c|, 1) ·max(r, 1).

CovCon prioritizes method pairs with a low score. The first
case of Definition 2 (r = 0) partly addresses C1 by prioritizing
pairs that have not yet been tried to cover by any test. The
first part of the second case (max(|r−c|, 1) addresses C2 and
C3 by assigning a higher score (i.e., lower priority) to pairs
that are either infrequently covered despite frequent attempts to
cover them or frequently covered despite few attempts to cover
them. Finally, the second part of the second case (max(r, 1))
addresses C1 by assigning a lower score (i.e., higher priority)
to pairs that have not yet been attempted to cover frequently.

For illustration, Table I shows the scores for tried counts
and covered counts ranging from zero to ten. For a pair that
has not yet been called concurrently in any test, the score
is zero, i.e., this pair gets highest priority (C1). In contrast,
a pair with a high tried count and a relatively low covered
count, illustrated by the left-bottom corner cells in Table I,
gets a high score, i.e., this pair gets low priority (C2). A pair
that has a high covered count despite having a relatively low
tried count, illustrated by the gray cells on the right side of
Table I, also gets a relatively high score, i.e., a low priority
(C3).



TABLE I: Prioritization score depending on covered count (x
axis) and tried count (y axis). Lower score implies higher
probability to be focused on in future tests.

R(p)

C(p)
0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 2 3 4 5 6 7 8 9
2 4 2 2 2 4 6 8 10 12 14 16
3 9 6 3 3 3 6 9 12 15 18 21
4 16 12 8 4 4 4 8 12 16 20 24
5 25 20 15 10 5 5 5 10 15 20 25
6 36 30 24 18 12 6 6 6 12 18 24
7 49 42 35 28 21 14 7 7 7 14 21
8 64 56 48 40 32 24 16 8 8 8 16
9 81 72 63 54 45 36 27 18 9 9 9

10 100 90 80 70 60 50 40 30 20 10 10

Instead of probabilistically prioritizing method pairs, Cov-
Con could also completely avoid re-testing already covered
pairs. The rationale for using prioritization is that the ability
of a test to expose a bug depends not only on which methods
execute concurrently, but also, e.g., on the arguments provided
to the methods. As another alternative to Definition 2, CovCon
could use a static analysis to determine which pairs of methods
can execute concurrently and which pairs of methods are likely
to be called frequently by other concurrently executing meth-
ods. We have initially considered this option but found that an
inexpensive static analysis does not provide an advantage over
the prioritization score. In contrast, the benefit of the presented
prioritization score is threefold. First, it avoids a static analysis
of the class under test and its dependences. This design
makes the approach both conceptually and computationally
simpler, which is critical to the overall testing effectiveness.
Second, the approach is language-agnostic and can be easily
applied to other languages than Java, whereas adapting a
static analysis to another language is non-trivial. Finally, static
analysis may incorrectly judge a pair of methods that cannot
execute concurrently due to ad hoc synchronization [63], but
our prioritization score would not be affected.

D. Creating Tests
After CovCon decides to prioritize a method pair pprio =

(m1,m2), it creates tests to focus on it. The execution of these
tests aims at triggering the concurrent execution of m1 and m2
and at increasing the interleaving coverage. This goal is non-
trivial to achieve, as we need to build up some meaningful
state for m1 and m2 to execute upon and, more importantly,
we want to improve interleaving coverage as much as we can
with as little overhead as we can.

CovCon creates tests that have a sequential prefix and two
concurrent suffixes. It builds upon the test generation approach
from [39] to create the prefix that instantiates the class under
test and calls up to k additional methods with appropriate
arguments to bring the tested object into a state that may
reveal concurrency errors. For each prioritized method pair,
CovCon creates two prefixes: One without any additional calls,

i.e., k = 0, and one with up to k = 5 additional calls.
The rationale is that some concurrency bugs can only be
triggered after bringing the object into a bug-exposing state by
invoking a sequence of calls, whereas other bugs may show
only on a freshly instantiated instance. For example, a class
that represents a file handle may become unusable after calling
a method that closes the file.

The suffix generation is more tricky. The first question is
which methods should be called from the suffix. The existing
test generation approach from [39] generates the suffixes using
randomly selected methods, which clearly does not fit the
prioritization goal here. Instead, CovCon generates suffixes
that call only methods from the pair pprio. The second question
is how to call these methods m1 and m2 to improve the
test coverage. One possible approach is to create a suffix
m1(),m1(), . . . and a suffix m2(),m2(), . . . , and to combine
these suffixes into a concurrent test. Such a test is likely
to improve coverage for the pair (m1,m2) but unlikely to
also cover (m1,m1) and (m2,m2). As an alternative, the
test generator could create a test that runs the same suffix
m1(),m2(),m1(), . . . in two concurrent threads. Such a test
is not only likely to cover the pair (m1,m2) but may also
cover (m1,m1) and (m2,m2). Unfortunately, the chance to
trigger an execution where m1 and m2 run concurrently is
relatively low because both threads start by calling m1 and
alternate between the two methods in the same order.

Instead of these two naive approaches, CovCon creates
two suffixes, a suffix m1(),m2(),m1(), . . . and a suffix
m2(),m1(),m2(), . . . , and combines the prefix with these
two suffixes into a test. That is, each suffix calls the methods
of pprio alternately. The benefit of starting this alternation with
different methods in the two suffixes is to maximize the chance
that the pair of methods (m1,m2) executes concurrently. One
could achieve the same goal by inserting sleeps or synchro-
nization operations [14]. In contrast, CovCon’s approach is
more lightweight as it does not introduce any overhead.

CovCon creates suffixes that have up to lmax calls per suffix.
For the first five tests created for a particular pair pprio, we
set lmax = 2. For example, when lmax = 2, CovCon creates a
test with a suffix m1(),m2() and another suffix m2(),m1().
After the first five tests, we set lmax = 5. The rationale for
varying lmax is to quickly identify bugs that can be triggered
with short suffixes, and to then explore longer suffixes that
allow for more interleavings but that also require the thread
safety oracle to analyze more linearizations.

E. Putting Everything Together

Algorithm 2 summarizes the CovCon test generation ap-
proach. Given a supposedly thread-safe class under test, the
algorithm generates and executes tests until it finds a thread
safety violation, or until the user terminates the automatic
testing after a timeout or a coverage goal is reached.

At first, the algorithm computes the set P of concurrent
method pairs for the given class (line 1). Then, the algorithm
initializes the maps C and R with zero for each method pair



Algorithm 2 Coverage-guided generated of concurrent tests.

Input: Class under test C
Output: Thread safety violation viol

1: P ← computeCMPs(C)
2: for all p ∈ P do
3: R(p)← 0
4: C(p)← 0
5: while true do
6: pprio ← prioritizeCMP (C,R)
7: updateTriedCounts(p,R)
8: T ← generateTests(pprio)
9: for all T ∈ T do

10: (trace, viol)← executeAndV alidate(T )
11: if viol 6= none then
12: return viol
13: updateCoveredCounts(trace, C)

in the set P , to indicate that no pair has been tried yet and
that no pair has been covered yet (lines 2 to 4).

The main part of the algorithm repeatedly generates, ex-
ecutes, and validates tests, while gathering coverage infor-
mation to steer the test generation toward not yet covered
method pairs in the set P (lines 5 to 13). This part consists
of three main steps. First, function prioritizeCMP () selects,
based on the coverage information gathered in C and R and
the prioritization score, a method pair pprio to focus on next
and updates the tried count of pprio, as discussed in Section
IV-C. Second, function generateTests() creates a set T of
concurrent tests that focus on the prioritized pair pprio, as
discussed in Section IV-D. Third, the algorithm executes each
test in T and checks whether it exposes a thread safety
violation using the thread safety oracle (Section III). If the
oracle reports a thread safety violation (line 10), then the
algorithm terminates. After each test execution, the algorithm
updates C to increase the covered counts of method pairs
that have executed concurrently (line 13), as explained in
Section IV-B.

There is one optimization that we have not discussed
yet. Since there are often multiple method pairs with the
same lowest prioritization score, as an optimization, CovCon
computes the priorities once for all method pairs and stores
all method pairs with the lowest score into a set Pprio of
prioritized pairs. When Algorithm 2 calls prioritizeCMP (),
the function checks whether Pprio is non-empty and if so,
removes and returns a random element of Pprio. Only if
the set of pre-computed prioritized method pairs becomes
empty, CovCon computes the priority scores for all method
pairs and fills Pprio again. The benefit of this optimization
is to significantly reduce the number of computations of
prioritization scores. The downside is that prioritization is not
always based on the most recent coverage information. We find
that, in practice, the benefits of the optimization outweigh this
disadvantage.

V. IMPLEMENTATION

The implementation of CovCon is available for download.3

To instrument classes under test, CovCon builds upon the
Eclipse Java Development Tools. The instrumented classes
under test write an execution trace into a file, which is then
analyzed to update the coverage information and to prioritize
method pairs for the next round of test generation. The test
generation is implemented based on an existing framework for
generating concurrent tests.4 To execute generated tests, we
use the default scheduler of the Java VM, because this work
focuses on test generation, not on exploring test executions.
More sophisticated test execution approaches, such as sys-
tematic exploration of interleavings [31] or active testing [25]
could be plugged into our implementation.

VI. EVALUATION

To evaluate CovCon, we apply our implementation to 18
supposedly thread-safe classes with known, real-world concur-
rency bugs, which have been used to evaluate prior work [39],
[55]. We compare the effectiveness and efficiency of CovCon
to five state of the art approaches for generating concurrent
unit tests [39], [42]–[44], [55]. To the best of our knowledge,
this is the largest experimental comparison of approaches for
generating concurrent tests, both in terms of number of classes
and number of approaches.

A. Experimental Setup

Table II lists the classes under test. The concurrency bugs
in these classes include data races, atomicity violations, and
deadlocks, as shown in the “Bug” column of the table.
The benchmarks include all classes used in [39], except for
one because we could not obtain the source code, and all
classes used in [55]. The table gives the number of lines of
code, methods, and potential concurrent method pairs P for
each class. These values include both the class itself and its
superclasses (but not java.lang.Object) because this is the
code tested by CovCon.

We compare our approach to random-based test generation
using ConTeGe [39] and to coverage-based test generation us-
ing AutoConTest [55]. To compare our approach with sequen-
tial test-based approaches, we use Narada [44], Intruder [43],
and Omen [42], which detect data races, atomicity violations,
and deadlocks, respectively. In contrast, CovCon detects all
three kinds of concurrency bugs. For a fair comparison, we
combine the three existing tools into a single tool that starts
all three individual tools in parallel and reports a bug as soon
as one of the individual tools has found a bug. We call the
combined sequential test-based approach Nainom, standing
for Narada, Intruder, and Omen.5 Since Nainom relies on
sequential seed tests to generate concurrent tests, we need to
provide sequential tests for each class under test. For a fair

3https://github.com/michaelpradel/ConTeGe/tree/CovCon
4https://github.com/michaelpradel/ConTeGe
5As an alternative to running the three tools in parallel, we also experiment

with applying them in a round-robin fashion. Since the parallel version of
Nainom is slightly more efficient, we report these results.



comparison with CovCon, which does not require creating any
sequential tests, and to avoid biasing Nainom’s behavior by
providing a particular set of manually written sequential tests,
we generate sequential tests via feedback-directed, random test
generation, similar to Randoop [35]. The generated tests call
each public method of the class under test at least once, as
suggested by the authors of Nainom.6

The efficiency of automated concurrency testing depends
not only on the generated tests but also on how these tests are
executed. Both CovCon and ConTeGe execute tests using the
default scheduler of the Java VM. In contrast, Nainom and
AutoTestGen build upon more sophisticated approaches for
exploring interleavings that are likely to reveal concurrency
bugs quicker [27], [29], [38], [47]. Since targeted strategies
to explore the space of possible interleavings are known to
outperform repeated execution [31], we expect this difference
in the setups to work in favor of Nainom and AutoConTest.

For all approaches, we measure the time to detect a bug
as the total time required by each tool, i.e., including test
generation and test execution or exploration time. We use a
timeout of one hour per run on a particular class. Because
all approaches involve non-deterministic decisions, we repeat
each experiment ten times with a different random seed. To
determine whether the time required by two approaches to
detect a bug differs in a statistically significant way, we
compute the confidence intervals (90% confidence) of the
measured times and check whether these intervals overlap. All
experiments are done on an Intel Core i7-4790 CPU with eight
3.6GHz cores and 32GB memory, running Ubuntu 14.04 LTS
(64 bit).

B. Bug Finding Capabilities

CovCon detects thread safety bugs in 17 of the 18 classes
under test. The detected bugs include data races, atomicity vi-
olations, and deadlocks. In comparison, the existing ConTeGe,
Nainom, and AutoConTest approaches fail to detect a bug in 3,
10, and 14 classes, respectively. Table II lists the average time
required to detect a bug, where “3,600” marks that an approach
fails to find a bug within the one-hour timeout for all ten runs
of the approach. A reason why AutoConTest, which shares
the idea of coverage-directed test generation, fails to detect
various bugs is that it focuses on a particular kind of atomicity
violation. In contrast, CovCon uses a generic coverage goal
suitable for any kind of concurrency bug.

C. Efficiency

An important criterion for applying automated concurrency
testing in practice is the time required to detect a bug.
We compare this time for CovCon and the state of the art
approaches. On average, CovCon requires 314 seconds to find
a bug in a given class. In contrast, all existing approaches
require significantly more time and often exceed our one-hour
timeout, as we discuss in detail in the following.

Figure 2 shows, for each class under test, the average
speedup of CovCon over the existing approaches. Speedup

6Personal communication, September 2015.
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Fig. 2: Speedup of CovCon over existing approaches in terms
of the average time required to detect a bug. Note that several
speedup factors exceed the displayed [−4, 4] range.

here means the average time taken by the slower approach
divided by the average time taken by the faster approach.
We present cases where CovCon is the faster approach as
a positive speedup and cases where CovCon is a slower
approach as a negative speedup. Several speedups exceeds
the [−4, 4] range that is shown in the figure. For example,
for class 1 (Logger), CovCon is at least 4x faster than all
three existing approaches. For class 15 (Vector), CovCon is
at least 4x faster than ConTeGe, 3.3x faster than Nainom, and
at least 4x slower than AutoConTest. Overall, CovCon clearly
outperforms the existing approaches. We discuss exceptions to
this overall result below.

Table II provides detailed execution times and speedup
factors for all classes. The columns in the “Time to bug”
block show how long each approach takes to detect a bug in
a particular class. For example, CovCon requires 159 seconds
to detect a bug in Logger, whereas ConTeGe takes 2,810
seconds, on average. We mark classes that cannot be analyzed
by a particular tool because the tool crashes with “—”. The
last block in Table II shows the speedup of CovCon over
the existing approaches. For example, CovCon is 17.67 times
faster in finding a bug in Logger than ConTeGe. Because we
stop the existing approaches for several classes after the one-
hour timeout, the speedup is an underapproximation. For ex-
ample, CovCon is at least 22.64 times faster than Nainom for
class Logger. To ease the presentation, the table color-codes
the speedups, where a darker colors means a higher speedup.
We also mark which speedups are statistically significant by
printing these speedups in bold.

Contrary to most classes, there are three classes where an
existing approach clearly outperforms CovCon. The XStream

class is an outlier in the comparison with ConTeGe. The reason
is that CovCon’s prioritization mechanism is less successful
than for the other classes in steering testing toward higher
interleaving coverage (Section VI-F). The Vector 1.1.7 class
stands out in the comparison with AutoConTest. The reason
is that this class suffers from an atomicity violation that
is unlikely to be triggered yet perfectly matches the bug



TABLE II: Classes under test and the time required to find bugs in them with CovCon and existing approach. “3,600”
indicates a timeout. The last columns color-code the speedup of CovCon over the existing approaches into three categories:
Faster (> 1.0x and <2x) , Much faster (≥ 2x and <4x) , A lot faster (≥ 4x) . Speedups printed in bold are statistically

significant.

Time to bug (seconds, avg.) Speedup of CovCon over ..

ID Class LoC Meth. CMPs Bug CovCon ConTeGe Nainom Auto- ConTeGe Nainom Auto-
ConTest ConTest

1 BufferedInputStream (JDK 1.1) 239 9 45 Atom. 3 178 149 743 59.33 49.67 247.67
2 Logger (JDK 1.4.1) 531 44 990 Atom. 159 2,810 3,600 3,600 17.67 22.64 22.64
3 SynchronizedMap (JDK 1.4.2) 79 15 120 Deadl. 2,602 3,600 3,600 — 1.38 1.38 —
4 ConcurrentHashMap (JDK 1.6.0) 972 22 253 Atom. 2,477 2,504 346 3,600 1.01 -7.16 1.45
5 StringBuffer (JDK 1.6.0) 789 52 1,378 Atom. 560 689 280 — 1.23 -2.00 —
6 TimeSeries (JFreeChart 0.98) 359 41 861 Race 59 73 385 3,600 1.24 6.53 61.02
7 XYSeries (JFreeChart 0.9.8) 200 25 325 Race 9 15 174 3,600 1.67 19.33 400.00
8 NumberAxis (JFreeChart 0.9.12) 1,662 110 6,105 Atom. 72 374 3,600 95 5.19 50.00 1.32
9 PeriodAxis (JFreeChart 1.0.1) 1,975 125 7,875 Race 26 25 3,600 — -1.04 138.46 —

10 XYPlot (JFreeChart 1.0.9) 3,080 217 23,653 Race 325 722 3,600 — 2.22 11.08 —
11 Day (JFreeChart 1.0.13) 267 26 351 Race 26 44 217 3,600 1.69 8.35 138.46
12 PerUserPoolDataSource (DBCP 1.4) 719 65 2,145 Race 28 738 3,600 — 26.36 128.57 —
13 SharedPoolDataSource (DBCP 1.4) 546 51 1,326 Race 17 433 3,600 — 25.47 211.76 —
14 XStream (XStream 1.4.1) 926 66 2,211 Race 1,416 55 3,600 — -25.76 2.54 —
15 Vector (JDK 1.1.7) 216 24 300 Atom. 793 3,600 2,638 103 4.54 3.33 -7.70
16 Vector (JDK 1.4.2) 786 45 1035 Atom. 134 612 503 432 4.57 3.75 3.22
17 IntRange (Apache Commons 2.4) 276 26 351 Atom. 3,600 3,600 3,600 3,600 1.00 1.00 1.00
18 AsMap (Google Commons 1.0) 409 15 120 Atom. 2,881 2,166 3,600 3,600 -1.33 1.25 1.25

pattern that AutoConTest targets. Finally, Naimon is faster
than CovCon in detecting a bug in ConcurrentHashMap.
Despite these outliers, the overall results show CovCon to be
significantly more efficient than state of the art approaches.

D. Number of Tests
The overall effectiveness of automated testing depends both

on how effective individual tests are and on how long it
takes to generate such tests [3]. CovCon may generate and
execute several hundreds or even thousands of tests before
finding a bug, whereas Nainom and AutoConTest typically
require less then a hundred tests. However, as our results in
Section VI-C show, CovCon clearly outperforms Nainom and
AutoConTest in terms of the overall effectiveness because
the higher effectiveness of their generated tests comes at a
significantly higher cost for generating each test.

E. Comparison with Naive Prioritization
We compare our prioritization of method pairs (Sec-

tion IV-C) with a naive prioritization that always selects the
method pair that has been tried the least number of times. If
multiple such pairs exist, the approach randomly picks from
all pairs with the minimum tried count. The efficiency of this
naive prioritization is either similar or worse than for our
prioritization. For example, the time required to find a bug
with the naive prioritization is 450x, 13x, and 5x higher than
with CovCon for BufferedInputStream, NumberAxis, and
Day, respectively.

F. Steering Toward Uncovered Interleavings
To validate our hypothesis that CovCon effectively steers

toward tests that cover not-yet-covered interleavings, we com-
pare the interleaving coverage achieved when executing tests

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1  10  100  1000  10000

C
ov

er
ag

e 
(%

)

Time (seconds)

XYPlot

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 1  10  100  1000  10000

C
ov

er
ag

e 
(%

)
Time (seconds)

PerUserPoolDataSource

Fig. 3: Interleaving coverage over time for two representative
classes. The upper, red curve is for CovCon; the lower, green
curve is for ConTeGe. The x axis is log-scaled.

generated by CovCon and the random-based ConTeGe. Each
experiment runs either until 100% coverage is reached or until
one hour is over, and each experiment is repeated 10 times.
Figure 3 shows the results for two representative classes. Each
graph gives the percentage of covered concurrent method pairs
over time, and it provides the mean and confidence interval
for each data point. The results show that a coverage-guided
approach indeed achieves higher interleaving coverage in less
time. For most classes, the interleaving coverage achieved
through both automated testing approaches saturates at some
point, and CovCon reaches this point earlier than ConTeGe.
Note that reaching 100% coverage may be infeasible, e.g.,
when two methods cannot execute concurrently because they
are protected by the same lock.

G. Breakdown of Overall Execution Times

Figure 4 shows how much time CovCon spends on (i)
generating tests, (ii) executing tests, (iii) analyzing the exe-
cution trace to update coverage information and prioritizing
concurrent method pairs, and (iv) checking for thread safety
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violations by executing linearizations of concurrent test ex-
ecutions. Most time is spent in the test generation part of
the approach, which underlines the need to steer this part
toward tests that explore not yet covered behavior. Class 3
(SynchronizedMap) is an outlier because an unusually high
amount of time is spent in the thread safety oracle. The reason
is that about 10% of all generated tests cause an exception
or a deadlock, so the thread safety oracle must check an
unusually high number of linearizations to check whether the
misbehavior is due to a thread safety violation.

VII. RELATED WORK

a) Test Generation: Section VI experimentally com-
pares our work to recent random-based [39], sequential test-
based [42]–[44], and coverage-based [55] generators of con-
current tests. Other existing approaches include the random-
based Ballerina [33] and the coverage-based ConSuite [51].
Conceptually, CovCon improves upon random-based ap-
proaches by using interleaving coverage to steer the test
generation toward infrequently tested interleavings. In contrast
to sequential test-based approaches, CovCon does not require
sequential tests but has the class under test as its only input.
The main differences of our work to existing coverage-based
approaches are (i) to use a conceptually and computationally
simpler coverage metric and (ii) to work well for arbitrary
kinds of concurrency bugs.

SpeedGun [40] generates concurrent tests that expose per-
formance problems. Schimmel et al. [46] combine test genera-
tion with a static pre-analysis of the code to find methods that
access shared data. One could integrate such a static analysis
into CovCon to reduce the set of concurrent methods pairs to
consider. Claessen et al. propose a test generator for Erlang
programs [10]. It requires a user to provide a finite state
model of the tested program, whereas our approach is fully
automatic. MultithreadedTC [41] and IMUnit [22] are unit
testing frameworks to manually write concurrent unit tests.
In contrast, CovCon generates tests automatically. Besides
concurrent tests, there is a long history of approaches for gen-
erating sequential tests, e.g., based on random testing [9], [12],
[35], symbolic execution [58], [62], concolic execution [7],
[19], [48], and genetic algorithms [18].

b) Interleaving Coverage: Several concurrency-related
coverage metrics have been proposed. Taylor et al. pioneered
by proposing a hierarchy of concurrency coverage criteria [53].

Bron et al. discuss coverage metrics that are useful for
human developers that write concurrent tests [4]. Other work
adapts the definition-use path coverage criterion to concurrent
programs [64]. Lu et al. theoretically analyze the cost of seven
interleaving coverage criteria [30]. Our work differs from
these approaches by using interleaving coverage as a feedback
mechanism for generating concurrent tests. The coverage
criterion that CovCon builds on, concurrent method pairs, is
inspired by Deng et al.’s concurrent function pairs [13]. They
use the criterion to select from pre-defined inputs to analyze
with dynamic concurrency bug detectors, whereas we use it
to generate new inputs. Since the design goals are different,
how they measure coverage and use coverage to conduct
prioritization are also completely different from us.

c) Schedule Exploration: A single program and input
may have many different schedules; approaches for exhaus-
tive [28], [57], bounded [31], change-based [23], [54], and
heuristic [8], [11] exploration of schedules have been pro-
posed. Active testing searches for potential concurrency bugs
with a static or dynamic analysis and forces schedules that may
trigger the potential bugs [6], [17], [25], [27], [29], [37], [38],
[47], [50], [66], [67]. Other work uses concurrent coverage
metrics to select and prioritize schedules to explore [21], [52],
[60], [65]. Selecting schedules and generating tests are two
orthogonal problems. CovCon can be combined with existing
schedule exploration approaches, and such a combination may
further reduce the time required to detect bugs.

d) Static Analysis, Synthesis, Verification: One alterna-
tive to testing concurrent software are synthesis and verifi-
cation [20], [49], [56]. These approaches rely on a formal
specification that describes the desired behavior of the syn-
thesized program. Instead, CovCon can be directly applied
to existing thread-safe classes. Another alternative are static
analyses, e.g., to detect data races [59] or deadlocks [32],
[61]. In contrast to those, CovCon covers multiple kinds of
concurrency bugs and guarantees to report only true positives.

VIII. CONCLUSION

This paper presents CovCon, an efficient, coverage-guided
generator of concurrent tests. The main idea is to measure
which interleavings are not yet covered by existing tests and
to generate tests likely to cover these interleavings. Key to
the success of CovCon is the insight that concurrent method
pairs provide an inexpensive coverage metric that is effective
in steering test generation toward not yet covered interleav-
ings. An implementation of the CovCon approach reveals 17
concurrency bugs in 18 thread-safe classes from popular Java
libraries. Furthermore, we show that CovCon reduces the time
to detect bugs over existing random-based and sequential test-
based approaches in 38 of 47 cases, with speedups of at least
4x in 22 of 47 cases.
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