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Python has emerged as one of the most popular programming languages, extensively utilized in domains such
as machine learning, data analysis, and web applications. Python’s dynamic nature and extensive usage make
it an attractive candidate for dynamic program analysis. However, unlike for other popular languages, there
currently is no comprehensive benchmark suite of executable Python projects, which hinders the development
of dynamic analyses. This work addresses this gap by presenting DyPyBench, the first benchmark of Python
projects that is large-scale, diverse, ready-to-run (i.e., with fully configured and prepared test suites), and ready-
to-analyze (by integrating with the DynaPyt dynamic analysis framework). The benchmark encompasses 50
popular open-source projects from various application domains, with a total of 681k lines of Python code,
and 30k test cases. DyPyBench enables various applications in testing and dynamic analysis, of which we
explore three in this work: (i) Gathering dynamic call graphs and empirically comparing them to statically
computed call graphs, which exposes and quantifies limitations of existing call graph construction techniques
for Python. (ii) Using DyPyBench to build a training data set for LExecutor, a neural model that learns to
predict values that otherwise would be missing at runtime. (iii) Using dynamically gathered execution traces
to mine API usage specifications, which establishes a baseline for future work on specification mining for
Python. We envision DyPyBench to provide a basis for other dynamic analyses and for studying the runtime
behavior of Python code.
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1 INTRODUCTION
Python has grown rapidly in recent years to become one of the most frequently used programming
languages in a variety of fields, including machine learning, data analysis, and web applications.
For example, a 2022 report on programming languages used in projects hosted on GitHub lists
Python as the second-most popular of all languages.1 The success of Python can be attributed to
its simplicity, flexibility, and extensive collection of libraries and frameworks. Python’s dynamic
nature, which allows for dynamic type checking and modification of object structures during
runtime, further enhances its appeal to developers.
1https://octoverse.github.com/2022/top-programming-languages
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The dynamic nature of Python also presents challenges when it comes to program analysis, error
detection, security assessment, and performance optimization. Various dynamic program analysis
techniques have been developed to address these challenges, e.g., to detect bugs [65], to enforce
differential privacy [1], to slice programs [14], or to understand the performance of a program
via profiling [7]. These techniques play a crucial role in identifying programming errors, security
vulnerabilities, and performance bottlenecks. To help develop, evaluate, and compare dynamic
analysis techniques, other popular programming languages have benchmark suites of executable
code. For example, DaCapo for Java [10], SPEC CPU for C/C++ [30], and Da Capo con Scala [57]
have contributed significantly to work by both researchers and practitioners on their respective
programming languages.
Despite the popularity and importance of Python, there currently is no equivalent benchmark

suite for Python, which hinders the progress and evaluation of dynamic analyses. Instead, re-
searchers, who want to work on a novel dynamic program analysis for Python, would like to
study the runtime behavior of Python code, or want to gather data from executions of Python
software, must spend significant efforts on creating a suitable set of executable programs. As a
result, many evaluations that involve dynamic analysis of Python are performed on a relatively
small set of benchmark programs, e.g., nine projects [20], five projects [58], six projects [15], and
eleven projects [65]. Moreover, since every team working on Python creates their own benchmark,
it is difficult to compare different techniques and results with each other.

In response to this gap, this paper presents DyPyBench, a novel benchmark of executable Python
projects. We envision our benchmark to facilitate future work on dynamically analyzing Python.
To this end, the benchmark is the first to offer four important properties – large-scale, diverse,
ready-to-run, and ready-to-analyze – as described in the following:

• Large-scale. To offer users an extensive collection of executable code, the benchmark includes
a substantial number of popular and non-trivial projects. The definition of “large-scale” may
vary depending on the specific use case. In this work, we have curated a dataset comprising
50 projects, collectively amounting to 681k lines of code. This size is an order of magnitude
larger than the benchmarks considered in previous evaluations, as listed above.

• Diverse. Given Python’s numerous applications, it is critical that a benchmark covers a
wide number of application domains, which each have their own code style and libraries.
DyPyBench attempts to represent the breadth and diversity of Python usage by including
projects systematically sampled from different application domains, enabling extensive
assessments and studies of code behavior across different contexts.

• Ready-to-run. Executing the code of a real-world, complex project is non-trivial, as it requires
a suitable project configuration, installing third-party dependencies, and inputs that exercise
the code. The effort spent on setting up projects can be significant, especially for users who
are not familiar with the project, and usually, this effort needs to be spent again and again for
each new project. DyPyBench comes with all projects already set up and uses the test suites
of these projects to provide inputs. To facilitate running the code irrespective of variations in
project dependencies, configurations, and execution environments, DyPyBench provides a
unified interface that allows users to run the benchmark with a single command. Moreover, we
provide a Docker image that encapsulates the benchmark and all its dependencies, ensuring
reproducibility and longevity.

• Ready-to-analyze. To facilitate the dynamic analysis of the projects in DyPyBench, the
benchmark integrates with DynaPyt [20], a general-purpose dynamic analysis framework
for Python. The integration allows for instrumenting and analyzing projects with a single
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command, making it straightforward to apply a new dynamic analysis to a wide range of
projects.

To evaluate the usefulness and practicality of DyPyBench, we perform a series of experiments
covering a wide range of research areas. In particular, we apply our benchmark in three usage
scenarios:
(1) We use DyPyBench to empirically compare statically and dynamically created call graphs. To

this end, we use the dynamic analysis infrastructure built into DyPyBench to gather dynamic
call graphs and compare them to the results of a state of the art static call graph generator [53].
Our results help understand the strengths and weaknesses of both approaches, and provide
some guidelines for future work on call graph construction.

(2) We use DyPyBench to create training data for LExecutor [58], a recent neural network-based
technique for learning-guided execution. In this scenario, we apply the existing source code
instrumentation tool provided by LExecutor to the code in DyPyBench and then execute our
benchmark. By using the resulting 436,355 data examples as training data for the LExecutor
model, we find that more data helps improve the accuracy of the model.

(3) Finally, we use DyPyBench to mine specifications from execution traces. For this application,
we again build upon the dynamic analysis support built into our benchmark, this time to
extract traces of function calls. DyPyBench provided thousands of sequences of calls that
allowed to extract some meaningful patterns, which sets a baseline for future work on
dynamic specification mining for Python.

For all three of these applications, one would usually have to spend a significant effort on setting up
suitable projects and finding inputs, e.g., in the form of test suites, for exercising their code. Instead,
DyPyBench provides this setup, which hugely facilitates these and future dynamic analyses for
Python.

In summary our work contributes the following:
• We address the lack of a comprehensive benchmark suite of executable Python projects by
creating DyPyBench.

• We integrate our benchmark with the general-purpose dynamic analysis framework Dy-
naPyt [20], which allows for performing arbitrary dynamic analyses on the entire benchmark
with minimal effort.

• We illustrate the usefulness of DyPyBench in three application scenarios.

2 METHODOLOGY
This section describes our methodology for creating a benchmark of executable Python software.
We begin by presenting the criteria for selecting projects to include in the benchmark, and then
describe our methodology for making these projects ready-to-execute and ready-to-analyze.

2.1 Selecting Projects
To ensure the diversity and representativeness of the benchmark, we select projects from the
Awesome Python repository,2 which is a curated list of popular, open-source Python projects. The
Awesome Python repository has 173k stars on GitHub and more than 400 contributors, which are
indicators of its popularity and adoption by the community. The curated list contains 679 projects,
including libraries, frameworks, and applications, which are classified into 90 categories.

We select a subset of the projects from the curated list, following three criteria designed to ensure
the diversity, quality, and representativeness of our benchmark. First, to increase the quality and

2https://github.com/vinta/awesome-python
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relevance of the benchmark, we consider only projects that have at least 500 stars on their respective
GitHub repositories. GitHub stars serve as an indication of a project’s popularity, reflecting its
usefulness and community support. Second, to make DyPyBench diverse, we sample projects
from different categories in the Awesome Python list. Each category covers a different application
domain, such as web crawling, machine learning, and robotics. We randomly sample from all
projects in the Awesome Python list, with the constraint to pick at most one project from each
category. Finally, as our goal is to create an executable benchmark, we focus on projects with test
suites. Specifically, we focus on test suites that can be executed with pytest, i.e., one of the most
popular testing frameworks for Python. The selected tests include tests written based on Python’s
built-in unittest framework, as well as tests written with pytest itself.

Alternative to sampling projects from the Awesome Python list, we could have selected the most
downloaded projects from the Python Package Index (PyPI). However, we observe that the most
downloaded projects do not fully represent the diversity of the Python ecosystem, but are biased
toward kinds of projects that many others depend on, such as tools to build and set up projects.
Instead, the Awesome Python list provides an independently curated list of projects grouped into a
diverse set of application domains. A downside of using the Awesome Python list is that it focuses
on open-source projects only, and hence, may not be fully representative of the entire Python
ecosystem. We decided to focus on open-source projects, as they are more likely to be used in
research and are more accessible to the community.

2.2 Enabling Execution
As executability is an important property of our benchmark, we invest significant efforts into
automating the process of setting up the projects and their test suites. Our benchmark can be
set up in two ways. First, we provide a Docker image that encapsulates the benchmark and all
its dependencies. This image can be used to run the benchmark on any machine that supports
Docker, ensuring reproducibility and longevity. Second, we provide a command-line interface
that allows users to automatically install and set up the benchmark and its projects. This process
involves cloning the projects, installing their dependencies, and configuring their test suites. To
the extent possible, DyPyBench invokes standard Python tools for installing, building, and testing
projects. However, some projects require various non-standard steps, such as installing unspecified
third-party dependencies or slightly adapting the developer-provided test suites. To address these
cases, we manually inspect the projects and make the necessary adjustments to ensure that they are
ready-to-execute. From the perspective of a user of our benchmark, this process is transparent, as
the benchmark provides a single command for setting up and executing all or individual projects.

The following describes the steps of our automated setup process in detail. At first, we clone the
project repositories from GitHub. To ensure reproducibility, we clone the repositories at a specific
commit, which is the latest commit on or before January 18, 2023. Then, we create a Python virtual
environment for each project, which ensures that the project’s dependencies are installed in an
isolated manner. Next, we install the project’s dependencies within the virtual environment. If
available, this step uses the project’s requirements.txt file, which we augment with additional
dependencies if necessary. Finally, we install the project itself, ensuring that it is properly set up
within its dedicated virtual environment.

To ensure that the test suites of the projects are ready-to-execute, we configure them to run with
pytest. This step involves specifying the locations of the test cases within the project. For some
projects, additional dependencies may be required to execute the test suite. These dependencies
are often not mentioned in the requirements file but can be found in the project’s README
instructions. To handle this scenario, we manually collect the necessary dependencies for each
project. Furthermore, we overwrite specific test files of some projects, e.g., for tests that run into
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Table 1. Projects in the benchmark.

Project Domain Project Domain Project Domain

akshare Downloader grab Web crawling python-decouple Configuration
arrow Date & time graphene GraphQL python-diskcache Caching
black Code formatter gunicorn WSGI servers python-future Compatibility
blinker Misc. html2text Web content python-patterns Algorithms
supervisor DevOps lektor Static sites PythonRobotics Robotics
celery Task queues marshmallow Serialization pyvips Parallel img. proc.
cerberus Data validation mezzanine CMS requests HTTP clients
click CLI app dev. moviepy Video schedule Job schedul.
code2flow Code analysis pdoc Documentation seaborn Data visual.
delegator.py Processes pickledb Database streamparse Distr. comput.
dh-virtualenv Distribution pillow Image proc. structlog Logging
elasticsearch-dsl Search pudb Debugging thefuck Cmd-line tools
errbot ChatOps tools pydub Audio uvicorn ASGI servers
flask-api RESTful API pyfilesystem2 Files webassets Web asset mgmt.
funcy Functl. progr. pyjwt Authentic. wtforms Forms
furl URL manip. pypdf Format proc. zerorpc-python RPC servers
geopy Geolocation pyquery HTML manip.

an infinite loop or that consume an unacceptably high amount of memory. This affects a total of 51
test files across 18 projects. Finally, we validate that the test suites are ready-to-execute by running
all the above steps on a fresh machine and by checking that the tests execute successfully.

2.3 Enabling Dynamic Analysis
One of the main goals of this work is to facilitate dynamic analysis of Python projects. To this end,
the benchmark integrates with DynaPyt [20], a general-purpose dynamic analysis framework for
Python. DynaPyt supports a range of analyses by providing an API of callbacks that are triggered
whenever a specific kind of runtime event occurs, such as a function call, the creation of a new object,
or a binary operation. We show two DynaPyt-based applications of DyPyBench in Sections 4.1
and 4.3.
Performing a dynamic analysis with DynaPyt requires instrumenting the source code of the

target project. DyPyBench facilitates this step by providing a single command for instrumenting
all or selected projects in the benchmark. The command applies DynaPyt’s instrumentation tool
to the source code of the selected projects. DyPyBench offers two variants of this command: One
variant instruments all Python code in a project, which is useful to analyze the executions of both
the tests and the project’s main code. The other variant instruments only the application code, i.e.,
excluding the test suite. We use the latter variant, e.g., for performing a dynamic call graph analysis
(Section 4.1). Finally, DyPyBench provides a command for running the instrumented projects, which
automatically invokes the callbacks into a user-provided dynamic analysis whenever a runtime
event occurs that is of interest to the analysis.

Beyond dynamic analyses built with DynaPyt, the benchmark can, of course, also be used with
other dynamic analysis tools. For example, one of our applications (Section 4.2) is based on a custom,
instrumentation-based dynamic analysis. Furthermore, the benchmark could also be easily run
with dynamic analysis tools that do not require source-level instrumentation, but that instead build
upon Python’s built-in tracing library sys.settrace.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 16. Publication date: July 2024.
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Table 2. Properties of DyPyBench.

Metric Value
Projects 50
Lines of code 681k
Test cases:

Total 29,511
Passing 27,569
Failing 270
Skipped 1,672

Lines of executed code:
Total lines 558k
Coverage 82%

Execution time:
Avg./project 71 seconds
Min. 1 seconds
Max. 1,362 seconds
Total 3,568 seconds

3 DYPYBENCH
By applying the methodology described in the previous section, we create DyPyBench, a large-scale,
diverse, ready-to-run, and ready-to-analyze benchmark of Python projects. This section presents
the composition of the benchmark (Section 3.1), its runtime properties (Section 3.2), and details of
its implementation (Section 3.3).

3.1 Composition of the Benchmark
DyPyBench consists of 50 projects, listed in Table 1. The code in these projects sums up to 681k lines
of Python code, which can be considered large-scale in comparison to current community standards.
For comparison, recent papers on dynamic analyses for Python are usually evaluated with an order
of magnitude fewer projects, e.g., nine projects [20], five projects [58], six projects [15], and eleven
projects [65]. Each project in DyPyBench covers a different application domain, where the domains
are determined by the Awesome Python repository (Section 2.1). Table 1 lists the 50 domains along
with the projects included in the benchmark. Within the selected projects, 94.5% of files are Python
files, whereas some files are written in other languages (2.0% JavaScript, 1.2% HTML, 0.8% C).

3.2 Runtime Properties of the Benchmark
Because a key property of DyPyBench is to be executable, the following takes a deeper look into
the runtime properties of the benchmark. Table 2 summarizes the key figures. The projects in
DyPyBench come with a comprehensive set of test cases, totaling 29,511. The number of test cases
per project ranges from 1 to 3,947, with an average of 590 test cases per project.
Out of all test cases in the benchmark, 27,569 test cases pass, while 270 test cases fail and the

rest gets skipped. DyPyBench has 31 projects with no failing test cases, while 13 projects have
between 1 and 10 failing tests. Figure 1 shows the number of successful, failing and skipped test
cases per project. The pass rate, i.e., the percentage of passing test cases among all test cases, across
all projects in DyPyBench is 93%. To better understand the distribution of test case outcomes across
projects, Figure 2 shows the cumulative distribution of test case pass rate. The plot shows that 41
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Fig. 1. Number of successful, failed, and skipped test cases for each project of the benchmark.

projects have a pass rate exceeding 90%, and 46 projects have 80% or more test cases passing. This
high pass rate not only allows users of our benchmark to execute a lot of code, but also to observe
mostly valid executions.

There are two main reasons why some projects have failing test cases. First, some tests fail due
to incompatible hardware. For example, some test cases are designed to run on a specific hardware,
e.g., a GPU or a specific CPU architecture. Our Docker-based setup provides software abstraction,
but not hardware abstraction, which can lead to test failures depending on the used machine.
Second, some tests fail due to incompatible or unavailable software. Examples include test cases
designed to run on a particular operating system and test cases that use online services that require
authentication. Because our Docker-based setup provides a single consistent software environment,
including a specific operating system, tests that require another software environment are doomed
to fail.

Figure 3 shows the distribution of covered and uncovered statements as a result of test execution
for each project. The figure illustrates that the number of missed statements is noticeably low for
the vast majority of the projects. Furthermore, 27 projects have coverage levels that exceed 85%.
This high coverage not only demonstrates comprehensive testing within our benchmark, but it
also plays an important role in providing diverse and meaningful data for a variety of applications,
as discussed in more detail in Section 4.
Finally, we report the wall-clock time required to execute the test suites of the projects in

DyPyBench. The following numbers are obtained on a standard computer with an Intel Xeon CPU
running at 2.10GHz and 32GB of memory. We launch all the test suites on a single CPU core. The
time to execute the test suite of single project ranges from 1 second to 1,362 seconds. Figure 4
illustrates the runtime for each project (rounded to full seconds), as well as the corresponding
number of test cases. The total runtime for all projects combined amounts to 3,568 seconds, i.e.,
about one hour. The average time required to execute a complete test suite is 71 seconds. Notably,
39 projects can complete their test suite within 50 seconds or less, while there are four projects with

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 16. Publication date: July 2024.
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Fig. 2. Cumulative distribution of test suite pass rates for all projects.

Fig. 3. Distribution of covered statements vs uncovered statements during the execution of test suites for
each project.

runtimes exceeding 200 seconds. The diversity in project sizes and runtimes of their corresponding
test suites allows users of DyPyBench to sample projects with different characteristics, depending
on the specific needs.

3.3 Implementation
Inspired by other widely used benchmarks in the community [17, 32], DyPyBench comes with a
convenient command-line interface that allows users to interact with the benchmark and its projects.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 16. Publication date: July 2024.
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Fig. 4. Number of test cases vs. execution time for each projects.

For example, the interface supports running all or selected projects, instrumenting their source
code, or applying a dynamic analysis to them. For reproducibility and to ensure the longevity of
the benchmark, we provide an Ubuntu 20.04-based Docker image that encapsulates the benchmark
and all its dependencies. We use Python 3.10 as the default Python version across all our Python
environments, considering its widespread usage and stability. To support dynamic analysis, the
benchmark integrates with DynaPyt version 0.3.1.

Currently, DyPyBench contains 50 projects, but it is designed to be easily extensible. The bench-
mark can be extended by adding the GitHub URL of new projects to a specific text file. Our
installation script will try to install and configure the new projects based on frequently observed
setup patterns. In case our script fails to automatically install a project, the user can edit the
installation script to add a special case.
All our experiments are conducted on a machine with an Intel Xeon Gold 6230 CPU, 64GB

RAM limit and 300GB disk space. The disk space is needed only when performing the applications
described below on all projects at once.

4 APPLICATIONS
We demonstrate the usability and usefulness of DyPyBench by studying three applications of
the benchmark. First, we compare dynamic and static call graphs extracted for the programs in
DyPyBench (Section 4.1). Second, we use the benchmark to generate training data for LExecutor [58],
a machine learning-based technique for executing incomplete code snippets (Section 4.2). Finally,
we dive into the domain of mining specifications from execution traces (Section 4.3).

4.1 Studying Static and Dynamic Call Graphs
Call graphs are a fundamental building block for various program analyses. Because of their
importance, various algorithms for computing call graphs have been proposed, e.g., for C++ [6],
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Java [60], Scala [2], JavaScript [21], and Python [53]. To better understand the properties of such
algorithms, several studies compare the call graphs produced by different analyses with each other,
e.g., for C [39], Java [50, 59], JavaScript [12], and WebAssembly [34]. However, to the best of our
knowledge, there is no study that compares dynamic and static call graphs for Python.
The following application of DyPyBench fills this gap by comparing call graphs generated

by PyCG [53], a state-of-the-art static call graph analysis for Python, with dynamic call graphs
generated by DynaPyt [20]. Because DyPyBench is ready-to-analyze and already integrated with
DynaPyt, obtaining dynamic call graphs of the 50 projects in our benchmark requires relatively
little effort.

4.1.1 Experimental Setup. A call graph𝐺 = (𝐹, 𝐸) consists of set 𝐹 of functions and a set 𝐸 of edges.
An edge 𝑒 ∈ 𝐹 × 𝐹 represents the fact that a caller function invokes a callee function. If a function
is called multiple times by the same caller, the call graph contains only a single between the caller
and the callee. To identify functions, both DynaPyt and PyCG resolve the fully qualified name,
including the module name. For a given Python project, we construct a static call graph 𝐺𝑠𝑡𝑎𝑡𝑖𝑐

by applying PyCG to the project’s source code. As mentioned in the documentation of PyCG, we
specify the project path and the set of all Python files in the project. To generate a dynamic call
graph 𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 , we use the existing dynamic call graph analysis provided by DynaPyt [20]. To this
end, we instrument and then execute the projects in our benchmark, as described in Section 2.3.
We set a time limit of six hours and a memory limit of 60GB for the analysis of a single project.
Furthermore, we set a timeout of 30s for each individual test case when run with the DynaPyt
analysis. Moreover, we ignore the results of an analysis on a project in case the analysis itself
crashes.

Once we obtain the call graphs 𝐺𝑠𝑡𝑎𝑡𝑖𝑐 and 𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 for the projects in DyPyBench, we compare
them with each other. For a quantitative comparison, we consider three sets: (i) the set of call
graph edges, (ii) the set of all callers, i.e., nodes with at least one outgoing edge, and (iii) the set of
callees, i.e., nodes with at least one incoming edge. For both analyses, we ignore calls made by the
underlying unit testing tool and calls made directly inside a test case, because we are interested in
the calls made within the analyzed project. For example, if a test file test_app.py contains a test
case function called test_1, then the call to test_1 appears neither in𝐺𝑠𝑡𝑎𝑡𝑖𝑐 nor𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 . Likewise,
any calls made directly inside test_1 are also ignored. In contrast, calls made by functions invoked
by test_1 are added to the call graphs. In addition to the quantitative comparison, we manually
inspect a sample of 97 differences between the static and dynamic call graphs. The goal of this
inspection is to understand the differences and to classify them by their root cause.

4.1.2 Results.

Static call graphs. PyCG successfully creates a call graph for 39 out of 50 projects. The missing
projects are due to six projects that exceed the six-hour timeout, three projects that exceed the
memory limit of 60GB, and two projects where PyCG crashes with an exception. Across the 39
successful projects, the static call graphs have a total of 60,565 edges, with an average of 1,552
edges per project. These edges are between 33,795 unique callers and 10,537 unique callees, where
uniqueness is computed at the project level, i.e., if the same function appears in two different
projects we count it twice.

Dynamic call graphs. DynaPyt successfully creates dynamic call graphs for all 50 projects. On
average, executing DyPyBench while computing the call graph takes 215 minutes per project. This
time is longer than simply executing DyPyBench without computing call graphs because DynaPyt
introduces additional overhead by instrumenting the code. The dynamic call graphs have a total
of 9,575 edges, giving an average of 191 edges per project. These edges are between 3,078 unique
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(a) Edges (b) Callers (c) Callees

Fig. 5. Venn diagrams of edges, callers, and callees in dynamic call graphs (left) and static call graphs (right).

callers and 5,384 unique callees. Considering only the 39 projects where PyCG runs successfully,
DynaPyt generates 6,306 edges between 2,049 callers and 3,741 callees.

Comparison of edges. Figure 5a compares the edges found in the static and dynamic call graphs
across the 39 projects that could be successfully analyzed by both the static and dynamic analysis.
The static call graphs have many more edges than their dynamic counterparts, which is expected
because the static analysis considers all code of a project, whereas the dynamic analysis focuses on
code exercised by the tests in DyPyBench. Surprisingly, many edges found by the dynamic analysis
are not detected by the static analysis. Ideally, a static call graph should be sound, i.e., include all
call edges that can occur at runtime. Instead, we find that only 49% of the edges present within
DynaPyt’s call graphs are within the set of edges found in PyCG’s call graphs.

Comparison of callers. To better understand the differences between the static and dynamic call
graphs, we compare their sets of callers and callees. As illustrated in Figure 5b, we notice a big
difference when comparing the sets of callers derived from PyCG and DynaPyt. While almost all
the callers collected by DynaPyt (95%) are present in the set of callers identified by PyCG, the static
call graph contains many callers missed by the dynamic analysis. We attribute this difference to
the limited code coverage in the exercised tests, which does not exercise all possible behavior of
the projects.

Comparison of callees. When checking the set of callees, an even more important disparity
emerges between DynaPyt and PyCG, as shown in Figure 5c. Only 48.5% of DynaPyt’s callees are
included in the set of PyCG’s callees. That is, the static call graph is missing many called functions,
even though DyPyBench offers evidence in the form of actual executions that these functions get
called.

Root causes of differences. To understand the reasons that cause the static and dynamic call graphs
to differ, we first automatically analyze why edges are missing, and then manually inspect a sample
of missing callers and callees. Our exploration begins with an examination of edges in the dynamic
call graph (𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ) that do not find correspondence in the static call graph (𝐺𝑠𝑡𝑎𝑡𝑖𝑐 ). Remarkably,
51% of the edges in𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 remain unrepresented in𝐺𝑠𝑡𝑎𝑡𝑖𝑐 . A detailed analysis of these disparities
reveals that for 92% of such edges, the reason is that the callee is missing in 𝐺𝑠𝑡𝑎𝑡𝑖𝑐 (while the
callers exist). Furthermore, in 8% of cases, both the callers and callees coexist within 𝐺𝑠𝑡𝑎𝑡𝑖𝑐 , albeit
without an edge connecting them. We also analyze 𝐺𝑠𝑡𝑎𝑡𝑖𝑐 edges that do not appear in 𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 .
This analysis shows that for 79% of such edges both the callers and the callees are missing from the
dynamic call graph, while for 20% of these edges only the callees are missing from 𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 .

Next, we manually inspect disparities in callers, more specifically the 5% of callers appearing in
𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 but not in𝐺𝑠𝑡𝑎𝑡𝑖𝑐 . Our manual inspection shows that the mismatch is caused by differences
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in the way DynaPyt and PyCG refer to the fully qualified name of some callers. For example, within
the Flask project, there is a wrapper around the Requests library, which makes PyCG resolve the
function to FlaskAPI.Requests.something. Instead, DynaPyt refers directly to the original caller,
without the wrapper, which results in the caller’s name being Requests.something.

Finally, we analyze the callees captured by 𝐺𝑑𝑦𝑛𝑎𝑚𝑖𝑐 but still missing from 𝐺𝑠𝑡𝑎𝑡𝑖𝑐 . We identify
two primary causes for callees missed by the static analysis:

• Our manual inspection shows that PyCG’s is missing many calls to methods offered by
Python’s built-in types. For instance, a call "abc".strip() is adequately detected by DynaPyt,
recording them it as a call to str.strip, but PyCG fails to capture the call. Based on a list of
Python’s built-in function names, we find that this particular phenomenon accounts for 59%
of all callees missing in the static call graph. In addition, calls in the form of super.method()
are also not included in the call graph of PyCG.

• Another reason is, again, the resolution of modules names, which causes differences in the
fully qualified names of functions. The Flask example given above illustrates this problem.
Differences in function name resolution account for roughly 12% of the observed mismatches.

4.1.3 Implications. To the best of our knowledge, the call graphs generated with DyPyBench are
the first large-scale dataset of dynamic call graphs for Python. Such a dataset may serve as a ground
truth of calls that a sound static analysis should at least detect. For example, our finding that PyCG
is missing method calls made on objects of built-in types, such as strings, calls for considering such
calls in future static call graph analyses. Moreover, the dataset provides a basis for a more detailed
empirical study of call graph generation algorithms for Python. One challenge to be addressed
in such a study is to define a uniform way of resolving functions into a fully qualified name, to
avoid spurious differences between different call graphs for the same project. Furthermore, the
dynamic call graphs can help evaluate and develop techniques for optimizing and pruning statically
generated call graphs [62]. Finally, our observation that dynamic call graphs can be generated
quicker than static call graphs for some projects motivates future work on more efficient static call
graph algorithms.

4.2 Gathering Runtime Data for Training a Neural Model
Neural models of software are becoming increasingly popular for various applications [45], e.g.,
code completion, bug detection, and type prediction. While the majority of approaches focuses
on training models on source code and other static artifacts of software, there is an emerging
subfield that trains models on data gathered during the execution of programs [42–44, 58]. A major
challenge in this line of work is to gather large-scale datasets of runtime data, which is required to
obtain effective neural models. The following demonstrates that DyPyBench can help address this
challenge.

4.2.1 Experimental Setup. As a case study, we use LExecutor [58], a recent technique that queries
a neural model to predict otherwise missing values, and hence, allows for executing arbitrary code
snippets. The neural model underlying LExecutor is trained on a dataset of value-use events. Each
such event consists of a value observed during the execution of a program and the code context in
which the value gets used. The original dataset used to train LExecutor consists of 214,365 value-use
events, which were gathered from five projects.
To evaluate the usefulness of DyPyBench for training LExecutor, we use the benchmark to

generate an additional dataset of value-use events. To this end, we instrument the projects in
DyPyBench with the custom Python instrumentation that is part of LExecutor and then execute the
instrumented benchmark, which yields a dataset of value-use events. We keep a random 5% of the
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Fig. 6. Accuracy of LExecutor [58] model trained on DyPyBench-based data.

dataset for validation, and use the remaining 95% to train a new LExecutor model. During training,
we follow the default setup in the original LExecutor work, i.e. its fine-grained value abstraction
and the CodeT5 model, except that we train for five instead of ten epochs due to computational
constraints.

4.2.2 Results. Executing DyPyBench results in a total of 436,355 value-use events. That is, thanks
to DyPyBench, the available training data is more than double the size compared to the original
LExecutor work.
To assess the impact of using training datasets of different sizes, we train different LExecutor

models with increasingly large subsets of the combined training dataset. Specifically, we train
models with subsets of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the data, respectively.
We then measure accuracy on the held-out validation data. Following the original LExecutor work,
we report top-1 accuracy, i.e., the percentage of predictions for which the correct value is the most
likely prediction. Figure 6 shows the accuracy of the resulting models. The results illustrate that,
perhaps unexpectedly, having more training data leads to a more accurate model, i.e., DyPyBench
provides an easy way to improve the accuracy of the original model.

4.2.3 Implications. The continuously increasing interest in neural models of software calls for
large-scale datasets of runtime data. DyPyBench can help address this need by providing a ready-
to-analyze benchmark of executable Python projects. We envision future work to build upon our
benchmark to generate various other kinds of runtime datasets, e.g., for predicting function names
from traces of function executions, for predicting static type annotations from types observed at
runtime, or for predicting the next value of a variable from its previous values.

4.3 Mining Specifications from Execution Traces
Specification mining [4] is a technique that extracts specifications from existing software. Various
techniques for mining specifications have been proposed [51], many of which focus on temporal
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constraints between function calls. Specification mining plays a role in various applications, includ-
ing identifying inconsistencies and anomalies, establishing best practices, and gaining a deeper
understanding about the common behavior of a given programs. The following demonstrates that
DyPyBench can be used to mine specifications from execution traces of Python code.

4.3.1 Experimental Setup. In our experiment, we leverage call traces generated by DynaPyt to
uncover patterns in function calls within the projects in DyPyBench. The process unfolds as follows:
(1) We customize DynaPyt’s call graph analysis to capture traces of function calls, where each

trace entry consists of a caller and a callee function.
(2) We instrument and execute the projects in DyPyBench to capture sequences of function calls

for each project. Similar to the call graphs analysis, we only instrument and collect traces of
the main source code of a project, without instrumenting the test cases themselves.

(3) To refine the data, we post-process the call sequences to inline callees into each caller
functions, and to remove sequences that are incomplete due to exceptions.

(4) We apply an efficient implementation3 of the PrefixSpan algorithm [28] to mine frequent
patterns from the sequences of functions called within a specific function. We give PrefixSpan
a list of sequences, each of which corresponds to the functions called within another function,
in the order of their execution. We apply the mining algorithm to the aggregated set of
sequences of all projects in DyPyBench. To reduce the computational cost of the mining
algorithm, we consider only sequences of calls that have a length lower or equal to 100 calls,
which corresponds to 94% of all call traces.

(5) Finally, we extract the top-100 patterns with a length greater than two.
Due to time constraints we limit the collection of call traces to 72 hours, which results in traces
from 27 projects. While collecting traces using DynaPyt takes a relatively long time, generating the
patterns with PrefixSpan is quite fast when invoked with no constraints on the collected patterns.
For example, for all the sequences we collect, PrefixSpan is able to generate the top-100 patterns in
less than ten seconds. However, this time is highly influenced by the length of sequences, which is
the reason why we exclude sequences longer than 100 calls.

4.3.2 Results. In total, we extract 16,538 sequences, with an average of 612 sequences per project.
The average length is eight, which means that the average function transitively performs eight
function invocations. The CDF in Figure 7 shows the distribution of the length of the collected
sequences. The plot indicates that most of the sequences (91%) contain less than ten calls. This
implies that the most frequent patterns extracted by PrefixSpan are going to be relatively short
patterns. In addition, the plot in Figure 8 illustrates the number of call sequences collected from
each project, which ranges between tens of sequences and several thousands. The distribution,
however, is far from uniform, which based on our initial results, leads to the patterns extracted
from one project dominating the top-100 patterns that we mine from the entire set of projects. To
prevent this bias, we set a limit on the number of sequences that we consider from each project
during the pattern mining. We define the limit as the mean number of sequences (613) over all
projects, plus one standard deviation (1,280), which totals to 1,893 sequences. Among the top-100
patterns, we randomly pick five patterns and present them in Table 3 alongside their frequency and
an example of their occurrence in a project in DyPyBench. The patterns range from sequences of
built-in functions and standard library functions (e.g., in rows 1 and 2) to library-specific patterns
(e.g., in rows 3 and 4). While the extracted patterns look simple and straightforward, the code
reflecting those patterns can be complicated due to multiple branches (e.g., in row 3 and 4) or

3https://github.com/chuanconggao/PrefixSpan-py
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Fig. 7. Distribution of extracted calls sequences by length.

Fig. 8. Number of extracted sequences per project.

because they occur in a complex expressions, such as in row 2. Collecting execution traces and
mining frequent patterns condenses such behavior into a temporal specification.

4.3.3 Implications. Despite many research results on specification mining in general [51], our work
is the first application of specification mining to Python. DyPyBench provides a natural foundation
for developing and exploring specification mining in Python projects, as it provides a large number
of ready-to-run and ready-to-analyze projects. Beyond specification mining, future work could
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Table 3. Examples of patterns among top-100 mined patterns.

Pattern Freq. Code examples from DyPyBench

builtins.isinstance

builtins.isinstance
1,701

if isinstance(ty, tuple):

return Tuple(ty)

if isinstance(ty, ParamType):

return ty

bytes.join

builtins.str

str.encode

1,008
return b"".join([b"HTTP /1.1",

str(status_code).encode (),

b"\s", phrase , b"\r\n"])

Pattern.match

Match.span

str.isidentifier

730

pseudomatch=pseudoprog.match(line ,pos)

if pseudomatch: # scan for tokens

start , end=pseudomatch.span (1)

#code in between

if ...

elif initial.isidentifier ():

# ...

thefuck ... encode_utf8

str.replace

shlex.split

str.replace

thefuck ... decode_utf8

565

encoded = self.encode_utf8(command)

try:

splitted =[s.replace("??", "\\ ")

for s in shlex.split(

encoded.replace('\\ ','??'))]

except ValueError:

splitted = encoded.split(' ')

return self.decode_utf8(splitted)

logging.getLogger

logger.setLevel
205

logger = logging.getLogger(

"urllib3.connectionpool")

logger.setLevel(logging.WARNING)

explore other applications in software analysis that leverage our dataset of call sequences, e.g., to
detect anomalies and inconsistencies.

5 RELATEDWORK
Dynamic analysis and testing of Python. Python has been the target of several dynamic analyses,

e.g., to slice programs [14], to detect type-related bugs [65], and to enforce differential privacy [1].
Scalene [7] offers an efficient CPU andmemory profiler. DyPyBench can serve as a dataset to test and
evaluate these and future dynamic analyses. Pynguin [37] is a unit-level, search-based test generator
for Python. LExecutor [58] proposes learning-guided execution, which executes code by injecting
otherwise missing runtime values. Both Pynguin and LExecutor share with DyPyBench the goal of
executing code. DyPyBench complements these existing efforts by providing a reproducible setup
that allows for executing and analyzing a set of real-world projects with little effort. DynaPyt [20]
is a general-purpose dynamic analysis framework. Because it allows for implementing arbitrary
dynamic analyses, we integrate DynaPyt into this work and show two applications of it (Sections 4.1
and 4.3).

Other work on Python. Beyond dynamic analysis, the increasing importance of Python has lead
to a stream of work on studying Python software and on supporting Python developers. A study
of flaky tests [26] relates to this work because they try to automatically execute the test suites of
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thousands of Python projects. DyPyBench differs by focusing on a reusable benchmark, where each
project and its setup is carefully checked by a human before being included into the benchmark,
whereas the prior work is based on a large-scale, fully automated experiment. Another difference
is the size and characteristics of the projects. As highlighted in [26], approximately 75% of their
projects have fewer than 10 tests, 60% exhibit a coverage below 10%, and over 90% of the projects
consist of less than 10k lines of code. In contrast, our benchmark contains only 4% of projects with
less than 10 test cases, a minimum coverage of 48% (average: 82%), and an average code base size of
14k lines per project.

The lack of static type annotations by default has lead to several techniques for inferring
and predicting type annotations [3, 46, 66, 67], to work on comparing gradual type systems for
Python [49], and to work on studying type annotations in the Python ecosystem [25]. DyPyBench
could be used to create a ground truth of types observed at runtime, which can serve as training data
for learning-based type predictors or be used during their evaluation. Another study investigates
the performance benefits of using Python idioms [70]. Future work on studying the performance
of Python code can benefit from DyPyBench as a ready-to-execute collection of real-world code.

Dynamic analysis of other languages. Beyond Python, there are various dynamic analyses, e.g.,
to detect concurrency bugs [22, 41, 54], type-related problems [5, 48], and other common bug
patterns [24]. Other analyses find optimization opportunities [61, 64], or infer API usage proto-
cols [47, 68] and input grammars [31]. Security-oriented analyses include taint analysis [16] and
dynamic detectors of similar functions [19]. To reduce the effort of building a dynamic analysis, dy-
namic analysis frameworks have been proposed for most popular languages, e.g., DynamoRIO [11],
Pin [36], and Valgrind [40], which all target x86 binaries, Jalangi [56] for JavaScript, Wasabi [33]
for WebAssembly, DiSL [38] for Java, and RoadRunner [23], which specifically targets concurrency-
related dynamic analyses. As DyPyBench targets Python, it cannot directly support the above
analyses, but the breadth and depth of prior work underlines the importance of dynamic analysis,
and hence, benchmarks like ours.

Benchmarks of executable code. Our work has been partially inspired by other benchmarks of
executable code. Similar to DyPyBench, several benchmarks offer a set of real-world programs
with inputs to execute their code, e.g., DaCapo [10] for Java, SPEC CPU [30] for C/C++, and Da
Capo con Scala [57]. Other executable benchmarks are aimed at specific tools and techniques,
e.g., LAVA [18] and Magma [29], which are aimed at evaluating fuzzers, SecBenchJS [8], which is
aimed at evaluating techniques for detecting or mitigating vulnerabilities in JavaScript, and Parsec,
which offers multi-threaded C/C++ programs [9]. Importantly, none of the above benchmarks is
for Python, which is the gap our work tries to fill.

Other benchmarks. Many other benchmark sets have proven valuable, of which we can list only
a few here. To evaluate and compare bug-related techniques, there are Defects4J [32], Bugs.jar [52],
and BugSwarm [17] for Java, BugsJS for JavaScript [27], and BugsInPy [63] for Python. More special-
ized benchmarks include a set of JavaScript performance bugs [55] and a collection of concurrency
bugs [69]. To evaluate deep learning models of code, benchmarks such as CodeXGLUE [35] and
HumanEval [13], are widely used. We envision DyPyBench to help support future work on dynamic
analysis for Python in a way similar to the above benchmarks.

6 CONCLUSION
This paper addresses a significant gap in the Python programming ecosystem by introducing
DyPyBench, a dynamic benchmark suite of executable Python projects. The benchmark offers a
unique combination of features by being large-scale, diverse, ready-to-run, and ready-to-analyze.
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With 50 projects, 681k lines of code (of which 558k are executed), and 29,511 test cases, DyPyBench
offers a rich set of executions to analyze and study. We illustrate the practicality and utility of
DyPyBench in three usage scenarios: comparing static and dynamic call graphs; creating training
data for learning-guided execution; and mining specifications from execution traces. We envision
our work to provide a foundation for many other dynamic analyses and for studying the runtime
behavior of Python software.

DATA AVAILABILITY
Our DyPyBench image is available on Zenodo: https://zenodo.org/doi/10.5281/zenodo.10683759. Al-
ternatively, the image can also be pulled fromDockerHub: https://hub.docker.com/r/islemdockerdev/
dypybench. Project page for updates and issues: https://github.com/sola-st/DyPyBench
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