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ABSTRACT

Type annotations and gradual type checkers attempt to reveal er-
rors and facilitate maintenance in dynamically typed programming
languages. Despite the availability of these features and tools, it is
currently unclear how quickly developers are adopting them, what
strategies they follow when doing so, and whether adding type
annotations reveals more type errors. This paper presents the first
large-scale empirical study of the evolution of type annotations and
type errors in Python. The study is based on an analysis of 1,414,936
type annotation changes, which we extract from 1,123,393 commits
among 9,655 projects. Our results show that (i) type annotations
are getting more popular, and once added, often remain unchanged
in the projects for a long time, (ii) projects follow three evolution
patterns for type annotation usage — regular annotation, type sprints,
and occasional uses — and that the used pattern correlates with the
number of contributors, (iii) more type annotations help find more
type errors (0.704 correlation), but nevertheless, many commits
(78.3%) are committed despite having such errors. Our findings
show that better developer training and automated techniques for
adding type annotations are needed, as most code still remains
unannotated, and they call for a better integration of gradual type
checking into the development process.
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(b) Commit 2.

def f(x: float, y): def f(x: int, y) -> bool: def f(x: int, y) -> Optionall[bool]:
sum = X +y sum: int = x +y sum: int = x +y
if (sum % 2) == 0: if (sum % 2) == 0: if (sum % 2) == 0:
return True return True return True

(a) Commit 1. (c) Commit 3.

Figure 1: Example of an evolving, partially type-annotated
Python function.

1 INTRODUCTION

Dynamically typed languages, such as Python and JavaScript, have
become the most popular languages for newly written code.! One
reason for this popularity is their lightweight syntax, which does
not require developers to specify the types of parameters, return
values, fields, or variables. At the same type, the absence of static
type annotations often hampers maintenance, causes type-related
bugs to be missed, and limits IDE support.

The problems caused by the complete absence of type annota-
tions has motivated optional type annotations. They offer a flexible
middle ground between no type annotations at all and a fully stat-
ically typed language, enabling each developer to annotate only
those types she believes to be beneficial. The two most popular
dynamically typed languages, Python and JavaScript, both support
optional type annotations. In particular, Python 3.5 specifies the
meaning of type annotations for functions,? and Python 3.6 adds
syntax for specifying the types of variables.

In recent years, a variety of tools have been proposed for helping
developers deal with type annotations in dynamically typed lan-
guages. Gradual type checkers [35, 46] use the available type anno-
tations, possibly along with type information for popular libraries,
to check for type errors. Beyond gradual type checkers, recent work
proposes techniques to infer and predict type annotations, based on
static analysis [3, 11, 22, 25], dynamic analysis [2, 41], probabilistic
rules [52], learned predictive models [1, 23, 30, 40], and combina-
tions of the former [38]. Such tools help annotate code with types,
in particular code written before the standardized introduction of
type annotations into the programming language.

Figure 1 shows an example of a partially type-annotated Python
function and its evolution across three commits, which illustrates
different kinds of type annotations, how they may evolve, and type
errors that may become apparent as a result. The function expects
two parameters and returns whether their sum is an even number.
In Commit 1, the first parameter is initially annotated to be of
type float, whereas the second parameter remains unannotated.
Lhttps://octoverse.github.com/

Zhttps://www.python.org/dev/peps/pep-0484/
3https://www.python.org/dev/peps/pep-0526/
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Commit 2 updates the parameter type of x from float to int, and
also inserts an annotation of the return type being bool. Moreover,
the code change inserts an annotation for the sum variable to be of
type int. Type checking Commit 2 will produce a type error because
not all paths through the function return a boolean, but the function
implicitly returns None when the sum is not even. Finally, Commit 3
fixes the type error by modifying the return type annotation to
Optional[bool].

Several years have passed since the release of Python 3.5 in 2015
and type annotations are hypothesized to be useful to developers,
but it is currently unclear how often they are adopted in practice
and how this trend is evolving. How frequently do people use this
feature? And how has its usage changed over time? This serves to
double check if adding type information to the Python language is
actually perceived as a benefit worth undertaking by developers.
Moreover, the gradual type system of Python defines several stan-
dard library types such as int, List, and Optional. Which of those
are the most useful to developers? And which of those have the
most changes? We can find that adding those types is non-trivial,
and they sometimes result in incorrect type annotations. What im-
pact do the annotations have on detected type errors, and if errors
are detected, do developers address them? This helps to understand
if type checkers are useful during the development process. As a
result, answering these and other questions consist in better under-
standing the adoption of type annotations in Python, identify issues
that developer’s commonly face in this process, and steer future
research on developer tools toward the most relevant problems.

This paper presents the first comprehensive study of the evolu-
tion of type annotations and type errors in Python. The study is
performed on 9,655 of the most popular Python projects, analyzes
1,123,393 commits, and studies 668 projects in more detail, as they
contain at least one annotation. We address four research questions:

e RQ1: How does the adoption of type annotations evolve at the
ecosystem level? To better understand to what extent type
annotations are getting adopted by the developer community
as a whole, we study the evolution of the prevalence of type
annotations across a wide range of projects.

e RQ2: How does the usage of type annotations evolve at the
project level? This question aims at understanding the evolu-
tion of type annotations based on a commit-based timeline
of single projects.

e RQ3: How do individual type annotations evolve? Answering
this question helps understand if and how type annotations,
once inserted, change over time. We also study whether type
annotations are added alongside other code changes or in
specific commits, and how long they remain in a code base.

e RQ4: How do statically detectable type errors evolve and how do
they relate to the type annotations in a project? This question
aims at understanding to what extent gradual type checkers
can help avoid type errors, whether developers fix these
errors, and how they are impacted by adding, changing, or
removing annotations.

Our methodology is based on an AST-based analysis to extract
type annotations, a differential analysis to understand how type an-
notations evolve over time, and gradual type checking on different
versions of the projects.
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Prior work has studied other aspects of dynamically typed pro-
gramming languages, e.g., whether developers migrate from Python 2
to Python 3 [50], how linters are used in JavaScript [45], and
whether type annotations in JavaScript [12] and Python [28] reveal
bugs. Ore et al. assess the human effort involved in adding type
annotations[34], and Hanenberg et al. study the impact of type
annotations on development time [17] and maintainability [19].
Another recent study [? ] is about the kinds of type annotations
developers use and how the errors reported by different gradual
type checkers differ. In contrast to all the above, our study focuses
on the evolution of types and type errors over time, allowing us to
better understand the long-term trends in adopting gradual typing.

Our study leads to several findings regarding the prevalence,
characteristics, and evolution of type annotations and type errors
in real-world Python code, including:

e Type annotations are getting more and more popular, but
are still far from being the norm. Less than 10% of all possi-
ble code elements are currently annotated, even in projects
that have at least one type annotation. This trend is slowly
changing in favor of more annotations, offering a huge op-
portunity for researchers and practitioners to build tools that
help with this process.

e Most type annotations are added alongside other code, but
developers also occasionally (1.3% of all type-editing com-
mits) work on the type annotations only.

o Developers mostly focus on annotating parameter types and
return types, and less on variable types.

e Once added, many type annotations are never updated (90.1%)
and many type annotations (70.4%) are still present in the lat-
est version of a project, rewarding the effort of adding type
annotations. If developers change type annotations, then
optional types are commonly involved in the change.

e Most commits (78.3%) contain statically detectable type er-
rors but are nevertheless integrated into the code base.

e Adding type annotations tends to increase the number of
detected type errors (correlation of 0.704).

Our findings have several implications for developers and re-
searchers working on developer tooling. First, we find that adding
type annotations is a long-term investment because they are rarely
modified, which can impact the maintainability of a code base
over years. Second, the result that more than 90% of program
elements are not yet annotated, both in legacy code and newly
written code, is a call to arms for creating tools that infer and
predict types. Recent work on learning-based type prediction is
a promising step [23, 30, 38]. Third, the repetitive nature of type
annotation changes pinpoints several easy to avoid mistakes, such
as avoiding corner cases using a type T instead of its optional vari-
ant Optional[T], as in our motivating example. Finally, the fact
that most commits have statically detectable type errors calls for
more developer awareness and better integration of gradual type
checkers into the development process.

In summary, this paper makes the following contributions:

e A comprehensive study of the evolution of type annotations
and type errors in real-world Python code.

o Findings that may impact developers and teachers, as well
as future work on tools and techniques for developers.
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e A dataset of type annotation-related code changes to be
used in future work, e.g., on mining and learning from these
changes.

Our implementation, the dataset, and all experimental results
are available online.*

2 METHODOLOGY

This section discusses the methodology we use to address our re-
search questions.

2.1 Extracting and Studying Type Annotations

The core concept of our study are type annotations:

Definition 1 (Type annotation). A type annotation is a tuple tgp, =
(t,n, k, 1), where t is a type, n is the name of an annotated program
element, k is the kind of the annotated program element, and [ is
the code location of the type annotation.

In line with the type annotations specified by the Python lan-
guage, we consider three kinds k of program elements: argument
types, return types, and variable types. The code location [ is speci-
fied by a file path and a line number. As an example, consider the
code in Figure 1a. The type annotation for the annotated parameter
type is (t,n, k, 1), where t is float, n is x, k is “argument type”, and
lis line 1 of the corresponding file.

Given the type annotations in a code base, we compute the
following notion of coverage, which indicates how many of all
program elements that could be annotated are indeed annotated:

Definition 2 (Type annotation coverage). Given a code base B, the
type annotation coverage for a kind kyarges of program elements is:

H(tnkD) eB|k= ktarget}|
[{All program elements of kind k¢arget }|

COVann =

For example, consider a code base that consists only of the func-
tion in Figure 1b. The type annotation coverage for argument types
is 50%, because one out of two arguments is annotated, whereas
the type annotation coverage for return types is 100%.

To extract both present and missing type annotations, we per-
form an AST-based static analysis of each Python file (.py) and each
Python stub file (.pyi) in a version of a project. The analysis visits
each node that corresponds to a possibly type-annotated program
element and, if an annotation is found, extracts the corresponding
tuple. We focus on type annotations in the type definition syntax
added in Python 3.5 (PEP 484) and Python 3.6 (PEP 526). In contrast,
we do not consider types described in informal type comments,
because type comments are only partially supported by tools and
because our preliminary results found type comments to occur
clearly less often than annotations in proper syntax. The analysis
of Python files and Python stub files is implemented on top of the
LibCST and Typed AST libraries, respectively.’

“4https://github.com/sola-st/PythonTypeAnnotationStudy
Shttps://github.com/Instagram/LibCST, https://github.com/python/typed_ast
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2.2 Extracting and Studying Type Annotation
Changes

As the primary focus of our work is to study the evolution of type
annotations, we extract annotations across the history of a project
and relate them to each other.

Definition 3 (Type annotation change). A type annotation change
is a tuple tcpange = (told gnew ¢ ) where t9/4 and t7€Y are the
type annotations before and after a code change, respectively, ¢ is

the kind of code change, and d is the date of the code change.

We consider three kinds of code changes: inserting, updating,
and removing a type annotation. In a type annotation change that
inserts or removes an annotation, the old or new annotation is
undefined, respectively, which we represent with _. For example,
the commits in Figure 1 involve four type annotation changes: an
update of the argument type x, a newly inserted annotation for the
return type of f, a newly inserted annotation for the variable sum,
and an update of the return type of f.

To study the evolution of individual type annotations, we com-
bine multiple type annotation changes into a history:

Definition 4 (Type annotation history). A type annotation his-

tory is a sequence [tghange’ t;’;mnge] of type annotation changes,
where:
o the t! has code change kind ¢ =“insert”,

change
o thereis aiq most one type annotation change with ¢ =“remove”
and if it exists, then it is t;r;mnge,
o the kind k of program element is the same in all type anno-
tation changes, and
e for consecutive type annotation changes, the new type an-
notation ¢} of the first change is the same as the old type

annotation tgff,ll of the second change.

For example, consider an extended version of the example in
Figure 1 where the code change in the figure is preceded by a
commit that adds the function without any type annotations and
followed by a commit that removes the annotation of the x argument
again. This evolution of the argument type would be represented
as a type annotation history with three type annotation changes,
which describe how the annotation of argument x gets inserted,
updated, and removed, respectively.

We compute type annotation changes and type annotation his-
tories by combining the annotations extracted by our AST-based
analysis across the commit history of a repository. Tracking anno-
tations across histories is a non-trivial challenge, e.g., because line
numbers change due to removed and added code, or because devel-
opers may modify multiple type annotations in a single commit.

Algorithm 1 summarizes our approach for addressing this chal-
lenge. The algorithm iterates through a sequence of commits and
extracts a set of type annotation changes from it. At first, lines 3
and 4 extract the type annotations from the old and the new ver-
sion of a commit, respectively. Then, the algorithm compares these
annotations based on their code location, the kind of the annotated
element, and the name of the annotated element. The goal is to find
matches, i.e., pairs of an existing annotation and a revised version
of it, and that hence, should be combined into a type annotation
update. To this end, the algorithm builds upon the concept of hunks,
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Algorithm 1 Extract type annotation changes from commits.

Input: Sequence C of commits

Output: Set T of type annotation changes (old and new type pairs)
L T«0
2: for commit ¢ in C do

3 Ty1q4 < type annotations in code before commit c
4: Thew < type annotations in code after commit ¢
5: d « date of ¢

6: T <0

7: for (to14, tnew) € Toig X Tnew do

8 if 3 hunk A in ¢ where t,j4 in oldLineRange(h)
9: and ty,, in newLineRange(h) then

10: if t,;7 and tpey have same kind k

1 and same name n then

12: Add (t,1g, tnew, ‘update”, d) to T’

13: T’ « ensureSingleMatch(T”)
14: for tpey not yet added to 77 do

15: Add (_, tpew, “insert”,d) to T’
16: for t,;; not yet added to T’ do
17: Add (tyg, _, “remove”, d) to T’

18: T—TUuT

i.e., consecutive lines that are changed together. Concretely, lines 8
to 13 check whether a pair of an old and a new type annotation fit
into the line range of a hunk in the commit, and if so, compares
the kind and name of the annotated program element. Because we
collect the life of type annotations from insertion to removing (if
removed), the ensureSingleMatch function checks if it is an update
of a program element already collected or if it is a different program
element without creating duplicate elements. After finding pairs
of type annotations that are changed in the commit, lines 14 to 17
consider annotations that exist only in the old or only in the new
version of the commit. These annotations are added to the set of
type annotation changes as “inserted” and “removed” annotations,
respectively.

Because Algorithm 1 is heuristic, we validate the accuracy of
the type annotation changes it extracts by manually inspecting
85 histories with a total of 204 type annotation code changes. We
randomly sample these type annotation histories based on three
categories: (i) annotations that are never updated and still present
in the last analyzed version of the project, (ii) annotations that are
never updated but removed at some point during the commit history,
(iii) annotations that are updated multiple times. For each sampled
history, we carefully inspect the commits involving the annotation
and establish a ground truth history. We find that 90.1% of the
automatically extracted histories match the manually established
ground truth, i.e., the vast majority of histories is correctly extracted.
The main reasons for (partially) incorrect type annotation histories
are mismatched annotations due to multiple identifiers with the
same name in the same file, and renamed or deleted files that our
analysis does not track.

2.3 Gathering and Studying of Type Errors

We study the evolution of type errors by running a gradual type
checker on different commits in the history of a project. There are
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several popular type checkers for Python, e.g., pyre, mypy, and
pytype. For our study, we focus on pyre, because it is industrially
used, e.g., at Facebook, and could successfully analyze the studied
projects.

The kinds of type errors reported by pyre and other gradual type
checkers fall into two categories. One category of errors are those
caused by missing dependencies, e.g., when the type checker cannot
find an imported class or cannot resolve a reference to a type. These
errors are unlikely to occur when a type checker is used by the
project developers, assuming that the developers create a proper
configuration that resolves all external dependencies. In contrast,
eliminating these errors in a large-scale study is difficult because
resolving all dependencies and configuring the type checker to find
the dependencies is non-trivial. The second category of errors are
the actual type errors, which result from inconsistencies between
inferred and annotated types of values and the uses of these values.
For example, these errors occur because a function argument is
incompatible with the declared parameter type or because a method
overrides another method with an incompatible type signature.
We focus our study on the second category of errors, and unless
otherwise mentioned, ignore the first category, providing a realistic
view of what errors the developers of a project would see when
using a type checker.

2.4 Selection of Projects to Study

As subjects for our study we select a wide range of open-source
projects based on their creation time and their popularity. At first,
we gather the list of all Python projects at GitHub via the GitHub
APL® We group the projects by their creation date, considering
projects created in the years 2010 to 2019, into ten groups that each
cover one year. Then, we sort the projects in each group by their
number of stars and select the top-1000 per group, which yields a
total of 10,000 projects to study. The rationale for first grouping
and then sampling is to avoid biasing our study toward projects
created in a particular time frame, e.g., mostly old projects. Remov-
ing projects that we could not clone, e.g., because they became
unavailable since the beginning of our study, the total number of
analyzed repositories is 9,655.

3 RESULTS

This section presents the results we obtain when addressing our
four research questions. Before going through the research ques-
tions, we give an overview of the analyzed data. In total, the study
involves 1,123,393 commits in 9,655 repositories. Our analysis ex-
tracts 1,414,936 type annotation changes from these commits. These
type annotation changes correspond to 61,861 commits and 668
repositories that have at least one type annotation change. Our
results are for these 668 projects. As general statistics, the number
of commits with at least one type annotation grows every year. An
early adoption started already in 2015, where 3.8% of the commits
contain at least one type annotation and this number of commits
grows every year until reaching 10.9% in 2021.

6https://api.github.com/search/
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Figure 2: Evolution of type annotations across all projects.

3.1 ROQ1: Ecosystem-level Evolution of Type
Annotations

To understand whether type annotations are becoming more com-
mon in the Python ecosystem as a whole, we analyze the evolution
across all studied projects. The goal is to understand trends in
the ecosystem, e.g., caused by the introduction of new program-
ming language features or tools. We perform this analysis from
two points of view. First, we analyze the evolution of the absolute
number of type annotations. Second, we measure the evolution of
type annotation coverage.

3.1.1 How is the total number of type annotations evolving? We
measure the overall number of type annotations and the overall
number of lines of code between 2015 and 2021. Figure 2 shows
the results, taking a snapshot of each project on October 1 of each
year. The main observation is that both the absolute number of
type annotations and the number of type annotations per line of
code are steadily increasing in a roughly linear manner since 2017.
In 2021, there are around 50.1 annotations per 1,000 lines of code.

To better understand the relative importance of annotations
provided in regular Python files (.py) and Python stub files (.pyi),
Figure 2 distinguishes between them. It shows that the vast majority,
e.g., 99.1% of all annotations present in 2021, are provided in regular
Python files. A manual inspection of 20 stub files sampled from
13 projects shows that most annotations provided in stub files
are about APIs of external libraries (17 out of the 20 files), for
example, native libraries accessed via Python’s native bindings.
Two of the remaining three files are automatically generated. Given
the relatively low number of annotations in stub files and their
focus on external libraries, the remainder of the study considers
only annotations in regular Python files.
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Figure 3: Evolution of program elements with and without
type annotations.

Finding 1: Type annotations are getting more and more pop-
ular, with an increase of about 15 type annotation per 1,000
line of code after 2017 and reaching 50.1 annotations per 1,000
lines of code in 2021.

3.1.2  How is the type annotation coverage evolving? This question
is important to understand how much of the available “annotation
potential” developers are currently using. Out of all 9,655 projects
we study, only 668 (7%) use type annotations at all. That is, six years
after the introduction of type annotations into the language, the
large majority of projects is not yet using this feature. Figure 3 takes
a detailed look into those 668 projects that use type annotations. The
figure shows the type annotation coverage for function arguments,
return values, and variables on October 1 of each year. The results
allow for several observations. First, the type annotation coverage is
steadily increasing. Second, developers prefer to annotate function
argument types and return types, but focus less on variable types.
Third, despite the clear upward trend, the type annotation coverage
is still relatively low, with an average of around 8% for function
arguments and return values.

To put the type annotation coverage in perspective, we consider a
project known for its heavy use of type annotations: mypy’, which
is one of the gradual type checkers for Python. This project has a
type annotation coverage of 62.2% for parameter types, 94.9% for re-
turn types, and 23.4% for variable types. A manual inspection shows
two main reasons for leaving program elements unannotated. First,
the developers do not annotate self parameters, as self always
has the type of the current class, and hence, does not really need a
type annotation. Second, a significant number of unannotated local
variables have types that can be easily inferred by a gradual type
checker, e.g., because a variable is assigned the result of a construc-
tor call or the variable is assigned an annotated variable. Omitting
such annotations fits the philosophy behind gradual typing, i.e., to
annotate types when it is helpful without cluttering the code with
unnecessary annotations.

"https://github.com/python/mypy
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Figure 4: Per-project evolution of three representative projects.

Finding 2: Type annotations are not yet the norm, with less
than 10% of all possible code elements being currently anno-
tated, but there is a clear upward trend. Function arguments
and return types are annotated more commonly than variables.

3.2 ROQ2: Project-level Evolution of Type
Annotations

After considering the Python ecosystem as a whole in RQ1, we now
study the evolution of type annotations within individual projects.
To this end, we measure how many type annotations a project has at
different points during its lifetime, where lifetime means all commits
from creating the project until the end of our measurement period
(end of 2021). Putting the absolute number of type annotations
in perspective, we also measure the number of lines of code at
each point during the project lifetime. A commonality of almost
all studied projects is that the number of type annotations is rarely
decreasing, but instead grows continuously, i.e., once annotations
are added, developers rarely remove them.

By inspecting the evolution of type annotations of various projects,
we identify three common evolution patterns, illustrated in Figure 4
with three representative projects. For each project, the plot shows
how the code size and the number of type annotations have evolved
throughout the project’s history.

o Regular annotation. Some projects, such as facebookresearch-
pytext,® have adopted type annotations throughout their
entire history and regularly add annotations as the project
is growing. The typical evolution pattern of these projects is
that the number of type annotations is growing at roughly
the same rate as the overall code size. As can be observed by
comparing the absolute numbers of lines of code (left axis
in Figure 4) and type annotations (right axis), such projects
often have significantly more type annotations than the av-
erage project. For the specific example, there are about 100
annotations per 1,000 lines of code, whereas the average

8https://github.com/facebookresearch/pytext

Algorithm 2 Determine project-level evolution pattern.

Input: Project P
Output: Evolution pattern of P

Divide P into 10 time steps of equal number of commits
: P.annotations <— Number of annotations for each time step
: P.slope « Annotation evolution slope for each time step
: if max(P.annotations) < 15 or P.slope.count(0.0) > 8 then
return “Occasional use”
. else if P.slope.count(0.0) >= 4 then
return “Type sprints”
. else if Average(P.slope) >= 0 then
return “Regular annotators”
. else
return “Other”

N I B A~ R

-
=4

project reaches, even in 2021, only about 30 annotations per
1,000 lines of code (Figure 2).

o Type sprints. Some other projects, e.g.,
deepinsight-insightface,” have invested into type annota-
tions during a focused, sprint-like effort, where many an-
notations are added at once, but otherwise do not regularly
add annotations. A variant of this pattern is a step-like curve
of the number of type annotations, i.e., projects that add
annotations in multiple yet non-continuous efforts.

e Occasional use. Some projects, such as hhatto-autopeps,'’,
have only a small number of annotations, typically added
in a single or very few files. This kind of project is included
into the study because we consider all projects with at least
one type annotation.

To measure the prevalence of these three patterns across all
studied projects, Algorithm 2 heuristically determines whether a
project fits any of the patterns. The algorithm divides the commit
history of a project into ten equally sized steps, and it then checks
the number of annotations present at each step and the slope from
the previous to the current time step. For example, if the average

“https://github.com/deepinsight/insightface
WOhttps://github.com/hhatto/autopep8
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slope across all time steps is positive, then the algorithm classifies
the project as “Regular annotation”, whereas a project with four
or more time steps that do not add any annotation is classified as
“Occasional use”. In the algorithm, P.slope refers to the list of slopes
observed at different time steps, and P.slope(0.0) checks how many
of these slope values are equal to zero. We validate Algorithm 2
in three steps. First, we generate the evolution plots of all studied
projects. Second, we manually inspected 35 randomly selected plots
and, looking at the curve, manually label each of them. Third, we
run Algorithm 2 and compare the labels produced by the algorithm
with our manual labels. During this validation, the algorithmically
produced labels all match our manual labeling.

Running the algorithm across all 668 projects shows that 44.4%
perform “Regular annotation”, 28.1% use “Type sprints”, and 25.4%
are “Occasional use”. The remaining 2.1% are “Other”, i.e., their
evolution does not fit any of the three patterns.

We also study the relation between the patterns and the charac-
teristics of the project, such as the number of stars and contributors.
While most characteristics are independent of a project’s evolution
pattern, we find a relationship with the number of contributors.
“Regular annotation” projects have an average of 62 contributors,
projects using “Type sprints” have 45 contributors, and projects
with “occasional use” have only 25 contributors, on average. These
numbers show that regularly adding type annotations is practice
followed particularly in large repositories with a more solid or-
ganization, presumably because type annotations help coordinate
between a large number of developers.

Finding 3: Most projects follow one of three evolution pat-
terns when adding type annotations: “regular annotation”,
“type sprints”, and “occasional use”. Projects with more con-
tributors tend to use “regular annotation”, whereas projects
with few contributors tend to follow “occasional use”.

3.3 RQ3: Evolution of Individual Type
Annotations

The following studies how individual type annotations evolve,
which allows us to better understand how developers insert, modify,
and remove type annotations.

3.3.1 When do developers edit types? Since type annotations are
optional in Python, developers can freely choose when to add or
edit them. In particular, a developer can add new type annotations
along with other code, e.g., along with a newly added function,
or in a separate step later on, e.g., as part of a code improvement
session. To understand when developers insert or modify types in
a code base, we analyze all commits in the dataset that affect at
least one type annotation. For each such commit, we compute how
many of all lines edit a type annotation. The resulting value is a
percentage, where 100% means that the commit is only to edit type
annotations, and a value closer to 0% means that more other code
is edited alongside the type annotation edit.

The results are shown in Figure 5. We see a bi-modal distribution,
where the majority of commits edit a significant number of other
lines in addition to editing type annotations. At the same time, there
are a non-negligible number of commits that exclusively edit type

def pdist2(X: torch.Tensor,
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Figure 5: Percentage of annotation-related, edited lines
among all edited lines.

(a) Commit 1. (b) Commit 2.

def pdist2( X,

Z = None,

order = PDist20rder.d_second):
# type: (torch.Tensor, torch.Tensor,
# PDist20rder) -> torch.Tensor

Z: torch.Tensor = None,
order: PDist20rder = PDist20rder.d_second)
-> torch.Tensor:

Figure 6: Example of removing a type annotation.

annotations, showing that developers at least sometimes specifically
focus on editing type annotations.

Finding 4: Most type annotations are edited alongside other
code, but developers also occasionally (1.3% of all type-editing
commits) work on the type annotations only.

3.3.2  How long do type annotations remain in a code base? Answer-
ing this question helps understand whether adding type annotations
is a long-term investment. We address the question in two ways.
At first, we study how many of all ever added type annotations
are still present in the latest version of the projects. To this end,
we compute for each repository the number of type annotation
changes that insert an annotation. In addition, we analyze the latest
version of each repository, cloned on March 7, 2022, and compute
how many type annotations it contains. In absolute values, 70.4%
of all annotations “survive” until the latest version of a repository.
For some projects, shown in the upper-right corner of the figure,
all ever added annotations are still present in the latest version.
Second, we consider all type annotation histories in the dataset
where the last change is a commit that removes the annotation.
We compute the lifetime of each such annotation as the difference
between the first and the last date in the history. In total, we find that
29.6% of all type annotations eventually get removed. We analyze
in detail the removed type annotations. Their average lifetime is
160 days, showing that even annotations that get removed remain
in the code for a while. An example is shown in Figure 6, where the
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Figure 7: Number of times that the same type annotation is
updated by developers. Not shown are the 90.1% of all type
annotations with zero updates.

types are removed from the source code and saved in a comment.!!

The commit messages says that the developers are adding support
for Python 2.7, which does not support the type annotation syntax
yet. We inspect a random sample of 25 of all removed annotations
and classify them into three categories. We find that in 48% of the
cases the entire files are removed or renamed, in 40% of the cases
the program element is removed or renamed, and in 12% of cases
types are explicitly removed, e.g., for supporting Python 2 or to
simplify the code as shown in Figure 6. As a result, we can affirm
that type annotations are a long-term investment because only in
very few cases types are explicitly removed again.

Finding 5: 70.4% of all ever inserted type annotations are
still present in the latest version of a repository, and those
type annotations that get removed at some point “live” for an
average of 126 days.

3.3.3  (How) do type annotations change? Once type annotations
are added, developers may modify them, e.g., to fix a wrong anno-
tation or because the annotated code is evolving. In this research
question we do not consider types that are removed. We study
type annotation changes by, at first, investigating how often type
annotations are updated at all. To this end, we analyze all extracted
type annotation histories and compute how many updates of a type
annotation they contain.

Figure 7 shows how many type annotations we find that are
updated a specific number of times. The plot does not show the
vast majority (90.1%) of all type annotations that are never updated.
Overall, we count 139,586 annotation updates, with an average
of 1.8 updates for each type annotation that gets updated at least
once. The maximum number of observed updates is 25, which is
an outlier though. Out of those annotations that get updated at all,
most are updated five times or less. Figure 8 shows an example. In

https://github.com/erikwijmans/Pointnet2_PyTorch/commit/a89c4d1
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this case the type annotation is updated to Sequence,'?, and later to
the user type ModelField.!

To better understand how annotations that get updated evolve,
we analyze which kind of type annotation updates are most com-
mon. Figure 9 shows the results of this analysis, where the three
plots show the five most commonly observed updates for argument
types, return types, and variable types, respectively. We show all
types that are part of the Python language and its standard library
as-is, e.g., str and Optional[int], and abstract all user-defined types
into UserType. The results allow for two observations. First, many
type annotation updates involve custom types. Second, many up-
dates affect optional types, e.g., changing str to Optional[str]. In
total, we count 14,750 type annotation updates involving optional
types. A manual inspection of some of these updates shows that de-
velopers easily get confused about whether a parameter is optional
or whether a variable should be immediately initialized. Figure 10
shows an example, where the code on the left is type-incorrect,
which the developer then fixed.!*

Finding 6: Most type annotations (90.1%) never get updated.
For those that get updated, a frequent update pattern involves
custom and optional types, which seems a common source of
confusion.

3.4 RQ4: Type Errors vs. Type Annotations

In this last research question, we inspect the number of type errors
and their relationship with type annotations. We divide this analysis
into three parts. First, we compute how many type errors are in
these repositories. Second, we check if there is a correlation between
the number of type errors and type annotations. Third, we analyze
if insertions of type annotations increase the number of type errors.
These three parts are performed on all the 668 projects that have at
least one annotation.

3.4.1 How common are type errors? This research question is im-
portant to understand what value gradual type checkers could
add to real-world Python projects and whether today’s developers
are using these tools. For each analyzed project, we run the type
checker on each commit in the project’s history and then count the
number of non-dependency-related type errors (Section 2.3). We
find that 78.3% of the analyzed snapshots have at least one type
error. On average, there are 6 type errors per 1000 lines of code.
This result indicates that type checking is not yet part of the typi-
cal development routine, calling for better tool support and more
developer awareness.

To better understand the kinds of detected type errors, we an-
alyze what kinds of errors are most common in the most recent
versions of the studied projects. We find a total of 90,871 type errors
and that a few kinds of errors occur repeatedly, in particular the er-
ror incompatible variable types (17.6%) and incompatible parameter
types (12.6%).1°

2https://github.com/tiangolo/fastapi/commit/c20c9d8
Bhttps://github.com/tiangolo/fastapi/commit/f7b7ed0
Yhttps://github.com/gogcom/galaxy-integrations-python-api/commit/18f6cd7
Bhttps://pyre-check.org/docs/errors/#error-codes
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(a) Commit 1.

def request_params_to_args(
required_params: List[Field],
) -> Tuple[Dict[str, Any], List[ErrorWrapper]]:

(b) Commit 2.

def request_params_to_args(
required_params: Sequence[Field],
) -> Tuple[Dict[str, Any],

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

(c) Commit 3.

def request_params_to_args(
required_params: Sequence[ModelField],

List[ErrorWrapper]]: ) -> Tuple[Dict[str, Any], List[ErrorWrapper]]:

Figure 8: Example of a type annotation updated multiple times.
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Figure 9: Most common kinds of type annotation changes.

(a) Commit 1. (b) Commit 2.

class LicenseInfo():
license_type: str
owner: str = None

class LicenseInfo():
license_type: str
owner: Optional[str] = None

Figure 10: Example of adding a wrong type annotation and
then updating it with Optional type.
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Figure 11: Relation between type errors and type annotations
in a project (correlation: 0.704).

Finding 7: Most projects have statically detectable type er-
rors, and type errors seem to not prevent developers from
committing code. A few kinds of mistakes account for most
type errors.

3.4.2 How does the number of type errors depend on the number of
type annotations? One major goal of introducing type annotations is
to statically detect otherwise missed type errors. The reason is that
most gradual type checkers, including the pyre tool used here, run
additional type checks if more annotations are present. Even if these
tools are not perfect, several studies proved the usefulness of type
checkers [12, 28], so we decide to use pyre for this research question.
To check if type annotations indeed provide this benefit in practice,
we compute the correlation between the number of type errors and
the number of type annotations in each project. Figure 11 visualizes
the relation between these two measures, showing that there is a
significant correlation (Pearson coefficient of 0.704) between them.
We conclude that adding type annotations is only the first step
toward improving type correctness, and the developers also need
to introduce type checking into their developing routine.

Finding 8: Adding type annotations positively correlates with
an increase in the number of detected type errors (correlation:
0.704). Developers should introduce type checks in their devel-
oping routine to find and fix such errors early on.

3.4.3 How does the number of type errors evolve when type anno-
tations evolve? The following aims to understand how evolving
the type annotations of a project impacts the statically detectable
type errors. For this purpose, we extract from all type annotation
changes only those where all lines changed in the commit corre-
spond to only adding type annotations, which we call pure commits.
Pure commits are interesting because they allow us to study in
isolation the effect on the code base of adding type annotations.
For each pure commit, we compare the number of type errors
before and after the type annotation change. We find that 81 com-
mits introduce more errors, 34 commits reduce the type errors and
319 commits keep the same number of errors. While in most cases
(319) the number of type errors remains the same, the kind of pure
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commit has a significant impact on incrementing the number of
errors.

Finding 9: Adding type annotations can introduce new type
errors, so this process should come with the usage of type
checkers.

4 DISCUSSION

Implications for developers and project managers. The overall
trend is that type annotations are increasingly popular (RQ 1),
suggesting that developers should pick up the habit of adding anno-
tations as they write code. Regularly adding annotations is common
especially for projects with many contributors (RQ 2). Adding to
benefits reported by others [12, 18, 28], our results provide em-
pirical motivation for adding type annotations, such as the fact
that more annotations help find more type errors (RQ 4) and the
observation that most annotations remain in the code for a long
time (RQ 3). We also pinpoint specific update patterns for individ-
ual annotations, which could help developers to avoid recurring
mistakes, e.g., related to optional types (RQ 3). Finally, we show
that developers do not need to annotate every program, because
even in projects with heavy use of annotations, self-explanatory
parameters and variables often remain unannotated (RQ 1).

Implications for researchers and tool builders. Even though type
annotations are being used more and more, the large majority of
code elements that could be annotated currently remains unanno-
tated (RQ 1). While probably not all code in all projects needs type
annotations, we see a huge potential for techniques that automate
the process of adding types into an existing code base, such as
neural type prediction models [1, 23, 30, 38]. Another promising
direction is to improve the integration of type checking into the
development process. The fact that many commits contain type
errors found by a type checker (RQ 4), but nevertheless are commit-
ted, shows that type checking currently is not yet standard. Better
understanding the reasons for this phenomenon will be interesting
future work.

Threats to validity. Our selection of projects is based on popular-
ity and the projects’ creation time. Another selection strategy, e.g.,
based on application domains, might give other results. We focus
on popular projects because they overall have a higher impact and
are more likely to represent serious development efforts than, e.g.,
small toy projects or student assignments. To study type errors, we
use a single type checker, pyre, and other type checkers may give
other type errors. See ? ] for a discussion of the subtle differences be-
tween the type systems behind pyre and mypy. Some of our results
are based on manual inspection and heuristic algorithms, which
likely are imperfect. To mitigate this threat, we carefully check all
results and make them available as a reference for future work.
Finally, our study focuses on a single language, Python, and we
cannot claim that our results will generalize to others. Comparing
the evolution of type annotations across different languages will
be interesting future work.
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5 RELATED WORK

Studies of Type Annotations. Some prior work studies type anno-
tations. The perhaps most closely related study is by ? ], who study
type annotations and type errors in a single version of popular
Python projects. In contrast to this work, they do not analyze the
evolution of type annotations and type errors.

Jin et al. [26] study type annotations in 17 Python projects. They
find six patterns that type annotations practices follow and they
find three features of Python type annotation files. Our study differs
from their result, because we analyze many more projects and we
focus on different kinds of research questions focusing more on
single type annotations and type errors.

Khan et al. [28] study type errors in Python repositories using
mypy. They conclude that many type defects can be avoided (15%)
by simply integrating a type checker in the software development
process. Then, they find that junior and senior Python developers
make a similar number of errors, concluding that the experience is
not always enough to avoid this kind of errors. Our study differs
from this one, because we not only analyze the number of type
errors, but we study the relationship and the evolution between
type annotations and type errors. Moreover, our study focuses on
type annotations and not only type errors.

Researchers also study type annotations in programming lan-
guages other than Python, e.g., relating static type checking in
JavaScript with known bugs [12]. Bogner and Merkel [4] compare
JavaScript and TypeScript focusing on code quality and readability.
However, also as our findings show, they find that TypeScript does
not always guarantee fewer errors. Another study suggests that the
time spent adding static types to programs is helpful in impacting
the overall effort required for bug resolution [53]. Finally, several
studies of dynamically typed languages focus on questions comple-
mentary to ours, e.g., the use of dynamic language constructs [42],
performance issues [43], and security vulnerabilities [44].

Type Prediction for Dynamically Typed Languages. Techniques
for predicting type annotations in dynamically typed languages
fall into three categories. First, static type inference [3, 11, 22, 25]
computes types using, e.g., abstract interpretation or type constraint
propagation. While sound by design, these approaches are limited
by the dynamic nature of the languages like JavaScript and Python.
Second, dynamic type inference [2, 41] tracks data flows during an
execution of a program, which yields precise types but is limited
by code coverage. Third, probabilistic type prediction propagates
and combines type hints using probabilistic rules [52] or learns a
machine learning from existing type annotations [1, 23, 30, 38, 40].
Our work underlines the need for such techniques and motivates
future improvements.

Program Analysis for Python. Beyond type prediction, several
other analyses for Python have been proposed, including techniques
to find type-related bugs [51], an analysis to reveal inconsistencies
between the name of a variable and the runtime values stored in
it [37], and a general-purpose dynamic analysis framework [8].
These analyses are all based on dynamic analysis, which is at least
partially motivated by the lack or incompleteness of type annota-
tions in Python.
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Tracking Code Elements Across Version Histories. Tracking code
elements across the different commits in a project is a challenging
problem due to the various ways how code may change, and because
there is no universally accepted definition of when a code element
remains “the same” across a change. Grund et al. [15] propose
CodeShovel, which addresses this problem on the method level
through an AST-based, heuristic algorithm. Ketkar et al. [27] focus
on type changes in Java, using type fact graphs to represent code
changes. Our algorithm for extracting type annotation changes is
the first attempt at tracking annotations in a dynamically typed
language.

Analyzing Code Changes. There are many approaches to analyze
and study code changes. Several techniques build edit scripts on
ASTs [9, 10, 20], providing an abstract representation of a change
that can then be applied in different scenarios [31]. Lase general-
izes multiple code changes into a single edit script [32]. Paletov et
al. [36] study code changes related to crypto APIs and they extract
security fixes from code histories. Weissgerber et al. [47] identify
code changes that have a high chance to be refactored. Hashimoto
et al. propose a technique for reducing a diff to the essence of a
bug [21]. SCC [13] and Deep]JIT [24] are predictive models that
estimate the correlation between the insertion of a code change and
introducing a bug. A related problem is to find the bug-inducing
code change for a given bug report [48, 49]. To simplify studies on
code changes, techniques for matching commit histories against
specific queries have been proposed, e.g., Prequel [29] and Diff-
Search [14]. Because type annotation changes typically affect only
a single code location, using a complex representation, such as AST
edit scripts, is unnecessary for our study, but we instead analyze
annotation changes using custom algorithms.

Studies of Code Evolution. Software is continuously evolving and
many researchers perform interesting studies. Nguyen et al. [33]
study the repetitiveness of code changes in code histories, modeling
a code change as a pair of AST sub-trees within a method. Gu et
al. [16] analyze large project histories to study problems related
to multi-thread programming. Dagenais et al. [6] study code evo-
lution to recommend relevant changes with a high precision. Our
paper contributes the first in-depth study of the evolution of type
annotations in Python.

Gradual Type Checking and Type Errors. Gradual type check-
ers [35, 46] have developed into powerful tools for dynamically
typed languages. Chen et al. build a framework to check type bugs,
extracting information from source code using static analysis [5].
Dolby et al. use static analysis with types to track TensorFlow be-
havior and find bugs [7]. The results of our study underline the need
for better integrating such tools into the development workflow.

6 CONCLUSION

This paper presents a large-scale empirical study of the characteris-
tics and evolution of type annotations and type errors in Python.
Our methodology statically analyzes individual commits of projects,
extracts type annotations, combines them into histories that show
the evolution of the annotations, and type checks different com-
mits of projects. We extract 1.4 million type annotation changes
from 9,655 repositories. Our results show that type annotations are
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clearly gaining traction, yet the large majority of code elements that
could be annotated currently remains unannotated. While probably
not all code in all projects needs type annotations, we see a huge
potential for techniques that automate the process of adding types
into an existing code base, such as neural type prediction mod-
els [1, 23, 30, 38]. Finally, many developers seem to not regularly
check their code for statically detectable type errors, or if they do,
commit the code despite such errors. We recommend to increase
developer awareness and to better integrate gradual type checkers
into the development process to alleviate this situation.
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