Preventing Dynamic Library Compromise on Node.js
via RWX-Based Privilege Reduction

Nikos Vasilakis
MIT CSAIL
nikos@vasilak.is

Cristian-Alexandru Staicu
CISPA Helmbholtz Center for
Information Security

Grigoris Ntousakis
TU Crete
gntousakis@isc.tuc.gr

staicu@cispa.de

Konstantinos Kallas
University of Pennsylvania
kallas@seas.upenn.edu

Ben Karel
Aarno Labs
bkarel@aarno-labs.com

André DeHon
University of Pennsylvania
andre@acm.org

Michael Pradel
University of Stuttgart
michael@binaervarianz.de

ABSTRACT

Third-party libraries ease the development of large-scale software
systems. However, libraries often execute with significantly more
privilege than needed to complete their task. Such additional privi-
lege is sometimes exploited at runtime via inputs passed to a library,
even when the library itself is not actively malicious. We present
MIR, a system addressing dynamic compromise by introducing
a fine-grained read-write-execute (RWX) permission model at the
boundaries of libraries: every field of every free variable name in
the context of an imported library is governed by a permission set.
To help specify the permissions given to existing code, MIR’s auto-
mated inference generates default permissions by analyzing how
libraries are used by their clients. Applied to over 1,000 JavaScript
libraries for Node.js, MIr shows practical security (61/63 attacks
mitigated), performance (2.1s for static analysis and +1.93% for
dynamic enforcement), and compatibility (99.09%) characteristics—
and enables a novel quantification of privilege reduction.

CCS CONCEPTS

- Software and its engineering — Automated static analysis; Dy-
namic analysis; Scripting languages; « Security and privacy —
Software and application security.

KEYWORDS
Supply-chain attacks, Third-party libraries, Program analysis

ACM Reference Format:

Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstanti-
nos Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Prevent-
ing Dynamic Library Compromise on Node.js via RWX-Based Privilege

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3484535

Reduction. In Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’21), November 15-19, 2021, Vir-
tual Event, Republic of Korea. ACM, New York, NY, USA, 18 pages. https:
//doi.org/lO.l145/3460120.3484535

1 INTRODUCTION

Modern software development relies heavily on third-party libraries.
Applications use several dozens or even hundreds of libraries, cre-
ated by many different authors and accessed via public repositories.
The heavy use of libraries is particularly common in JavaScript
applications [38, 51], and especially in those running on the Node.js
platform [83], where developers have millions of libraries at their
fingertips through the node package manager (npm).!

Reliance on libraries introduces the risk of dynamic compromise,
i.e, the runtime exploitation of a benign library via its inputs, affect-
ing the security of the entire application and its broader operating
environment. For example, consider a (de)serialization library that
uses JavaScript’s built-in eval function to parse a string into a run-
time object. While the library itself is benign, accessing no other
external API apart from eval, an attacker may pass a malicious seri-
alized object to the deserialization function, which in turn will pass
it to eval. As a result, the library may be subverted into malicious
behavior, e.g., accessing the file system or the network, that goes
far beyond what a (de)serialization library is supposed to do.

The underlying problem is that each library running on Node.js
has all privileges offered by the JavaScript language and its run-
time environment. In particular, each library is allowed to access
any built-in API, global variables, APIs of other imported libraries,
and even import additional libraries. The left-hand side of Fig. 1
illustrates this current default situation.

This paper reduces the risk of dynamic compromise on Node.js
through a system called MIR, which allows specifying, enforcing,
inferring, and quantifying the privilege available to libraries. The
goal of MIR is to permit a library to access only the functionality
that it really needs, preventing attackers from subverting it into
behavior that goes beyond its intended behavior. Our key insight
to reach this goal is that if a library does not need access to some

I This paper uses the terms library, module, and package interchangeably.

https://doi.org/10.1145/3460120.3484535
https://doi.org/10.1145/3460120.3484535
https://doi.org/10.1145/3460120.3484535

global.x
require("net")
fs ;read("~/l<ey .pem")

@J\,ﬁ {eval: X}
e\A/al r O3 e\A/al

Analysis Permissions

™ ;Output “ ™. ;Output

Malicious Input Malicious

Input Input Input

Compromisable Library +Mir Techniques

Fig. 1: MIR analyzes a library, possibly compromisable by malicious
inputs, to infer a set of permissions. It then enforces this set at run-
time, to lower the library’s privilege over the application and its sur-
rounding environment. It also computes a privilege reduction score
for this set and, if needed, allows the set to be inspected or changed
(leading to a new score).

functionality statically (i.e., as visible in the library’s source code),
then it should not be able to use that functionality dynamically—
even when being subverted.

Specifically, MIr introduces a fine-grained read-write-execute
(RWX) permission model at the boundaries of libraries. To aid in spec-
ifying these permissions, MIR provides a program analysis compo-
nent that infers permissions automatically. The permission model is
first-order—less powerful than membranes [49], higher-order con-
tracts [25], or information-flow monitoring [13]—and the analysis
aims at a level of simplicity comparable to linting and minification,
tools commonly used by Node.js developers today. Combined, the
permission model and associated analysis, aim at reducing the risk
of attacks while maintaining practical performance and automa-
tion characteristics to enable adoption. By coupling default-deny
semantics with explicit and statically-inferrable whitelisting, MIr
minimizes the effects of dynamic compromise, as illustrated on the
right-hand side of Fig. 1. Our key contributions can be summarized
as follows:

Permission model & language: Our first contribution is a per-
mission model and associated domain-specific language to express
read-write-execute permissions (RWX). Permissions guard access paths
in individual libraries. Access paths correspond to free variable
names and their fields in the top-level scope of the library. They
point to functionality imported from other libraries or available
through built-in language features, such as globals, process argu-
ments, require capabilities. The aforementioned (de)serialization
library would only be given an execute permission X over the eval
built-in primitive, allowing the library to execute eval but restrict-
ing its accesses to all other APIs.

Permission inference: Our second contribution is a program
analysis for automatically inferring permissions. This automation
is critical for dealing with (1) continuous codebase evolution, which
requires updating the specification for every code change, (2) nam-
ing issues, such as variable aliasing, and (3) library-internal code,
possibly not intended for humans. The analysis identifies name us-
ages within a library to infer the permissions that a library requires.
We design the analysis to be scalable, conservative, and to make no
assumptions about the existence of tests. The majority of the analy-
sis is static, augmented with a short phase of dynamic, import-time

analysis addressing runtime meta-programming patterns common
in npm packages.

Quantification of privilege reduction: Our third contribution
is a metric for quantifying the privilege reduction achieved by Mir.
This metric characterizes the remaining privilege that a library
can exercise at runtime and is a direct byproduct of the permis-
sion model’s design. The quantification is achieved by comparing
the permissions granted by MIr to those a library would have by
default—i.e., statically counting all the access paths in the lexical
scope of a library. The metric is designed to operate in harmony
with the permission model and analysis, functioning as a proxy
of the attack surface that remains available to runtime subversion
after applying the chosen permissions.

Implementation & evaluation: Our last contribution is an open-
source implementation and evaluation of Mir. We implement the
majority of the analysis in Java, and the runtime enforcement in
JavaScript. While MIR’s permission model can be encoded in sys-
tems that implement more powerful protection models [5, 20, 29,
73], we chose a lightweight wrapping strategy that matches the
permission model’s first-order nature. We evaluate MIR on over
1000 libraries, and find that MIr (1) defends against 61/63 attacks
on real-world vulnerable packages, (2) reduces a library’s attack
surface by an average of 143.48X, (3) avoids breaking compatibility
for more than 99% of field accesses and in over 99.3% of test cases,
and (4) averages 2.1s per library for its permission inference and
1.93% for its runtime enforcement overhead.

The paper is structured as follows. It starts with an example illustrat-
ing dynamic library compromise and how MIr’s techniques address
it (§2), followed by a discussion of MIR’s threat model (§3). It then
presents MIR’s permission model and its specification language (§4),
MIRr’s automated permission inference (§5), MIR’s privilege reduc-
tion quantification (§6), and MIr’s runtime enforcement compo-
nent (§7). It then discusses MIR’s security, compatibility, and perfor-
mance evaluation (§8), and compares to prior work (§9). It finally
concludes (§10) that MIR’s automation and performance characteris-
tics make it an important addition to a developer’s toolbox—similar
to a minifier or a linter—in many circumstances working in tandem
with defenses that focus on other threats.

Appendices A-C contain additional evaluation results. The URL
below contains an accompanying material—including the source
code, benchmarks, and exploits: github.com/andromeda/mir. Mir
is also available as an npm package and can be installed using npm
i @andromeda/mir.

2 BACKGROUND AND OVERVIEW

This section uses a server-side JavaScript application to illustrate
the problem of dynamic application compromise due to third-party
code (§2.1), and to then show how MIr addresses this problem (§2.2).

2.1 Example: A De-serialization Library

Consider the Node.js scenario mentioned earlier (§1) that uses a
third-party (de)serialization library for converting serialized strings
into in-memory objects. The (de)serialization library is fed client-
generated strings, which may lead to remote code execution (RCE)
attacks. RCE problems due to serialization have been identified

http://github.com/andromeda/mir

let srv = (req, res) => {
let srl, obj;

srl = require("serial");
obj = srl.dec(req.body);
route(obj, res);

¥

let 1g = require("log");
1g.LVL = 1g.levels.WARN;
module.export = {

dec: (str) => {

let obj;

lg.info("srl:dec");

obj = eval(str);

let route = (...) => {...} return obj
})
enc: (obj) => {...}
main serial

Fig. 2: Use of third-party modules. The main module (left) requires
off-the-shelf serialization implemented by the serial third-party
module (right), vulnerable to remote code execution (Cf.§2).

in widely used libraries [2, 3, 9] as well as high-impact websites,
such as PayPal [70] and LinkedIn [71]. Injection and insecure
de-serialization are respectively ranked number one and eight in
OWASP’s ten most critical web application security risks [56].

Fig. 2 zooms into the two fragments of this Node.js (de)serialization
scenario. The main module (left) requires off-the-shelf serializa-
tion functionality through the serial module, whose dec method
de-serializes strings using eval, a native language primitive. The
serial module requires log and assigns it to the 1g variable.?

Although serial is not actively malicious, it is subvertible by
attackers at runtime, who can use the input str for several attacks:
(1) overwrite info, affecting all (already loaded) uses of log.info
across the entire program; (2) inspect or rewrite top-level Object
handlers, built-in libraries, such as crypto, and the cache of loaded
modules; (3) access global or pseudo-global variables, such as pro-
cess to reach into environment variables; and (4) load other mod-
ules, such as fs and net, to exfiltrate files over the network.

2.2 Overview: Applying MIR on Serial

Our work address these security problems by first developing a
permission model at the boundaries between and around libraries.
The model specifies access to functionality that is defined outside
a library with RWX permissions. A part of this functionality comes
from imported libraries; for example, among other permissions,
serial needs to be able to execute info from module log—i.e.,
log.info is X. Another part of this functionality comes directly
from the programming language itself; for example, serial clearly
needs X permissions for require and eval. In all these three cases
of X permissions, it is not serial that provides all this functionality
but rather the language and its runtime environment.

let 1g = require("log");
lg.LVL = 1g.levels.WARN;
lg.info("srl:dec");
(JRead(R) [@write(W) [JExec(X)

These three permissions are a
part of the total nine required for
serial’s normal operation. To aid
developers in identifying the re-
maining permissions, MIR comes with a static inference component
that analyzes how libraries use the available names. The figure
on the right exemplifies a small fragment of this analysis: levels

?Naming is important in this paper: we differentiate between the module log and
the variable 1g. MIR tracks permissions at the level of modules, irrespective of the
variables they are assigned to. To aid the reader, modules, and more broadly, contexts,
are typeset in purple sans serif, fields in olive teletype, and plain variables in
uncolored teletype fonts.

and WARN are read, thus are annotated as R; LVL is written, thus W;
and info is executed, thus X. The analysis also infers permissions
for require, eval, module, and exports. Names that do not show
up—even if they are built-in language objects—get no permissions.

After extracting all necessary permissions, the developer can
start the program using MIR’s runtime enforcement component.
MiIr shadows all variable names that cross a boundary with vari-
ables that point to modified values. When accessing a modified
value, MIR checks the permissions before forwarding access to the
original value. If a module does not have permission to access a
value, MIR throws a special exception that prevents the access.

The attacks described at the end of the previous section (§2.1) are
now impossible: (1) overwriting info from serial will throw a W
violation, (2) inspecting Object handlers, built-in libraries, such as
crypto, and the cache of loaded modules will all throw R violations,
and (3) accessing global or pseudo-global variables, such as process,
to reach into the environment will also throw R violations. Moreover,
a refinement of the base RWX model (§4) shields against loading
unexpected libraries by allowing require to be executed only with
argument log.

3 THREAT MODEL

Focus: MIR focuses on the dynamic compromise of possibly buggy
or vulnerable libraries, and does not target actively malicious or
obfuscated libraries. Attacks are performed by passing malicious
payloads to libraries through web interfaces, programmatic APIs,
or shared interfaces, such as global variables. Prominent examples
include libraries that offer some form of object de-serialization or
runtime code evaluation, allowing attackers to invoke names from
the language or other libraries by using malicious payloads. These
libraries implement their features using runtime interpretation,
subvertible by attacker-controlled inputs (see §8).

The focus of these attacks is the confidentiality and integrity
of data and code that reside outside the library under attack. Such
confidentiality concerns include reading global state, loading other
libraries, and exfiltrating data; integrity concerns include writing
global variables and tampering with the library cache. These con-
cerns extend to the broader environment within which a program
is executing—including environment variables, the file system, and
the network. Specific accesses include (1) language-level APIs, such
as stack inspection, reflection capabilities, and prototype pollution;
(2) ambient authority to process.env, process.args, global vari-
ables, the module cache, and require ability; (3) interfaces to the
standard library, e.g., to access the file-system or network; and (4)
interfaces to other third-party libraries shipped with the program.
Tab. 7 in Appendix B offers many more real-world examples of
vulnerabilities MIR defends against.

Assumptions: MIR’s static analysis is assumed to be performed
prior to execution, otherwise a malicious library can rewrite the
code of a benign library upon load. For the same reason, MIR’s
runtime enforcement component is assumed to be loaded prior to
any other library. At the time of loading, MIR places trust in the
language runtime and built-in modules, such as f's, which is needed
to locate and load permissions.

Non-threats: MIR does not consider native libraries written in
lower-level languages, such as C/C++, or libraries available in binary

s,m € String

r:= Rle ReadPerm
w:= Wle WritePerm
x:= Xl|e ExecPerm
i:= Ile ImpoPerm
pi= [rwxi] Mode

fi= fs|*xf]|fx]|s AccessPath
p:= fiplfimp ModPermSet
w:= m:{p}|m:{p},w FullPermSet

Fig. 3: MIR’s permission language. The DSL captures the full set of
specifications for modeling permissions across libraries (Cf.§4).

form. These libraries are out of scope for two reasons: (i) they cannot
be analyzed by MIr’s static analysis, which operates on source code,
and (ii) they can bypass MIR’s runtime protection, which depends on
memory safety. In the context of JavaScript, these can be addressed
by complementary techniques [33, 76, 77] (see also §9).

MIR blocks accesses to names, such as eval, or access paths,
such as fs.read, if these names are not used in the lexical scope of
alibrary. If a library already uses that name, however, MIr does not
check or sanitize its input. Such command injection or sanitization
attacks, in which attackers pass malicious input to APIs already used
by the library, are outside of MIR’s threat model and are handled by
complementary techniques [14, 68]. Notably, if a library invokes
such a name, it will show up in the results of MIR’s inference—
allowing developers to audit them. MIr also does not consider
availability, denial-of-service, and side-channel attacks.

4 PERMISSION MODEL AND LANGUAGE

MIR’s goal is to reduce the privilege that libraries possess. At the
core of our approach is a model that can express the set of first-
order permissions that should be granted to each library. The model
is instantiated per-library using a domain-specific language (DSL,
Fig. 3) that focuses on read (R), write (W), execute (X), and import
(I) permissions.

Core Permission Model: The core of MIR’s permission model and
associated DSL is a per-library permission set: ModPermSet maps
names accessible within the library context to a Mode, i.e., a set of
access rights encoded as RWX permissions. Names represent access
paths within the object graph reachable from within the scope of
the library—e.g., String.toUpperCase. Access paths start from a
few different points that can be grouped into two broad classes.
The first class contains a closed set of known root points that are
provided by the language, summarized in the first four rows of
Tab. 1. These names are available by default through (and shared
with) the library’s outer context, i.e., resolving to a scope outside
that of a library and pervasively accessible from any point in the
code. Examples include top-level objects and functions, such as pro-
cess.args and eval, functions to perform I/O, such as console.log,
ability to require other libraries.

The second class contains access paths that start from explicitly
importing a new library into the current scope. Such an import
results in multiple names available through the imported library’s
(equivalent of) export statement. Examples of such paths from
Fig. 2 include log.info and srl.dec (§2.1).

Tab. 1: Access paths start from a variable name that is free in the
top-level scope of the library. They resolve to values that reside out-
side the module, and fall in the following broad classes: (1) core Ec-
maScript names, (2) Node.js-specific names, (3) library-local names,
(4) user-defined global names, (5) the require name.

Class Example Names
es Math, Number, String, JSON, Reflect, ...
node Buffer, process, console, setImmediate, ...

lib-local exports, module.exports, __dirname, ...
globs GLOBAL, global, Window

require require(lib),

MIR’s model can thus be thought as an access-path protection
service: access rights are expressed as permissions associated with
paths starting from a set of variable names that are free at the top-
level scope of the library. Names in this set are bound to values
outside the scope of the library, pointing to functionality that is
not implemented by the library. These values often contain fields,
defining recursive maps from names to values. Names or values
created within the scope of a library are not part of this model: Mir
does not allow specifying or enforcing access restrictions on, say,
arbitrary objects or function return values.

Semantics: The semantics behind the core set of permissions can

be summarized as follows:

e A read permission (R) grants clients the ability to read a value,
including assigning it to variables and passing it around to other
modules.

e A write permission (W) grants clients the ability to modify a
value, and includes the ability to delete it. The modification will
be visible by all modules that have read permissions over the
original value.

e An execute permission (X) grants clients the ability to execute a
value, provided that it points to an executable language construct,
such as a function or a method. It includes the ability to invoke
the value as a constructor (typically prefixed by new).

RWX permissions are loosely based on the Unix permission model,

with a few key differences. Reading a field of a composite value

x.f requires R permissions on the value x and the field f—that

is, an R permission allows only a single de-reference. Reading or

copying a function only requires an R-permission, but perform-
ing introspection requires X permissions over its subfields due to

introspection facilities being provided by auxiliary methods (e.g.,

toString method). A W permission on the base pointer allows

discarding the entire object. While a base write may look like it
bypasses all permissions, modules holding pointers to fields of the
original value will not see any changes.

Example: To illustrate the base permission model on the de-

serialization example (§2), consider main’s permissions:

1 main:

2 require: RX
require("serial"): I

4 require("serial").dec: RX

The set of permissions for serial is:

1 serial:
eval: RX

3 require: RX

4 module: R

5 module.exports: W
require("log"): I
require("log").levels: R
require("log").levels.WARN: R

9 require("log").info: RX

10 require("log").LVL: W

Importing: A simple X permission to the built-in require function
gives libraries too much power. Thus, MIR needs to allow specifying
which imports are permitted from a library.

This is achieved through an additional I permission. This permis-
sion is provided to an AccessPath that explicitly specifies the abso-
lute file-system path of a library.? Using the absolute file-system
path is a conscious decision: the same library name imported from
different locations of a program may resolve to different libraries
residing in different parts of the file system and possibly corre-
sponding to different versions.

Using a separate permission I provides additional flexibility
by distinguishing from R. Libraries are sometimes imported by a
program only for their side-effects (i.e., not for their interface). In
these cases, their fields should not necessarily be accessible by client
code. Typical examples include singleton configuration objects and
stateful servers.

Wildcards: MIr’s model offers wildcards to allow for all possible
matches of a segment within a path to have a single permission
mode. Wildcards match any string and are semantically similar
to shell expansion (i.e,, the * in cat *.txt). The form *.f assigns
a mode to all fields named f reachable from any object, and o.*
assigns a mode to all fields of an object (or path) o. These forms
may also be combined, as in 0.*.f.

Wildcards have many practical uses. The primary use case is
when fields or objects are altered through runtime meta-programming.
In such cases, the fields are not necessarily accessible from a sin-
gle static name and might depend on dynamic information. Often,
these fields (not just the paths) are constructed at runtime, i.e., they
are not available for introspection by MIr at library-load time.

Transitive & higher-order permissions: The default-deny se-
mantics of MIR’s permission model involves some nuanced charac-
teristics. First, the absence of any permission to a function translates
to absence of all permissions to all the functions (or, more generally
access paths) that the first function points to. Conversely, holding
a permission to a function or a library does not translate to holding
permissions to all of its access paths—but only the paths to which
that function or library has access to. By providing the ability to
specify multiple layers of permission sets, MIR minimizes transitive
permission leakage across multiple library levels.

The RWX model is first-order, in that it applies directly to access
paths like fs.read and Ig.LVL. It does not apply to arguments of
functions, such as the names req and res found in function srv,
nor to module-internal functions, such as route.

3For portability, MIR prefixes records with a __PWD_PREFIX__ variable that can be
instantiated to different values across environments.

However, if a value provided to a function is itself an access path
then its permissions are governed by the caller context. For example,
if the path fs.read was provided as an argument to Ig.info, then
read’s permissions would be governed by the context providing it.
More generally, a higher-order value passed to a module, such as a
closure or an object, is governed by the permissions in the lexical
scope of the module that created that value: if a module creating a
closure f has no permission to access fs, then f will not be able to
invoke fs in any context.

These transitivity and first-order properties are also related to
permissions over an object’s prototype chain. Mir’s model—and
associated analysis and enforcement components—is oblivious to
where a property resolves in the prototype chain. For example, the
invocation of a toString method on the return value of a different
library is governed by the permissions of that library (or the library
that created that value) to toString name.

5 PERMISSION INFERENCE

To aid users in expressing permissions, MIrR automatically infers
permissions that describe how a library uses its dependencies and
built-in APIs. These permissions are inferred by an analysis that
identifies and resolves accesses of functions and properties provided
by third-party libraries. To be practical and to effectively reduce
the risk of dynamic compromise, the analysis must fulfill three
requirements. First, the analysis should work for arbitrary libraries,
without assuming anything apart from access to the library’s source
code. In particular, the analysis should not rely on the existence
of test suites or client code that uses the library. Second, the in-
ferred permissions should be conservative, in the sense that the
analysis should infer a permission only if there is evidence that the
library indeed needs that permission. Third, the analysis should be
efficient and scale well to complex libraries, as we want to apply
it to real-world libraries. We are not aware of such an analysis in
the literature; hence this section describes a permission analysis
designed to fit these requirements.

With the first requirement in mind, the core of our permission
inference is a static analysis of the library code (§5.1), augmented
with a lightweight dynamic analysis that loads the library but does
not rely on any client code (§5.2). Given the difficulties of stati-
cally analyzing JavaScript [8, 24], our static analysis aims neither at
soundness nor completeness. Instead, it takes a pragmatic approach
designed to work well for programming patterns common in real-
world libraries, but not every conceivable corner-case. With the
second requirement in mind, the static analysis grants a permission
only if the analysis sees a possibly feasible path that uses the per-
mission. Finally, with the third requirement in mind, the core of the
static analysis is intra-procedural, i.e., it reasons about a function
without analyzing all other functions called by it. While in principle,
these decisions could lead to missing permissions, the evaluation
shows this rarely to happen for real-world libraries. Moreover, if
indeed a permission is missing, M1r will produce a runtime error
that a user can address by refining the permissions.

5.1 Static Analysis of Required Permissions

The core of the analysis is an intra-procedural, flow-sensitive, for-
ward data flow analysis. The analysis visits each statement of a

Tab. 2: MIR’s analysis updates. Updates performed by the static analysis when visiting specific kinds of statements.

Kind of statement

Updates

Example

Assignment [hs = rhs at location [:
For each a € getAPIs(lhs)
For each a € getAPIs(rhs)

Add (a, W) to permission set C
Add (a, R) to permission set C x = require("someModule")

someModule.foo = 5

Add lhs at | — ato DefToAPI

Call of function f:
For each a € getAPIs(f)

Any other statement that contains a reference r:
For each a € getAPIs(r)

Add (a, X) to permission set C

Add (a, R) to permission set C

someModule. foo()

foo(someModule.bar)

module by traversing a control flow graph of each function. During
these visits, it updates two data structures. First, it updates the set
C of (API, permission) pairs that eventually will be reported as the
inferred permission set. The set C grows monotonically during the
entire analysis, and the analysis adds permissions until reaching a
fixed point. Second, the analysis updates a map DefToA PI, which
maps definitions of variables and properties to the fully qualified
API that the variable or property points to after the definition. For
example, when visiting a definition x = require("foo0").bar, the
analysis updates DefToAPI by mapping the definition of x to
“foo.bar”. The DefToAPI map is a helper data structure discarded
when the analysis completes analyzing a function.

Transfer Functions: Table 2 summarizes how the transfer func-
tions of the analysis update C and DefToA PI when visiting specific
kinds of statements. The updates to C reflect the way that the ana-
lyzed module uses library-external names. Specifically, whenever a
module reads, writes, or executes an API g, then the analysis adds
to C a permission (g, R), (a, W), or (a, X), respectively. The updates to
DefToAPI propagate the information about which APIs a variable
or property points to. For example, suppose that the analysis knows
that variable a points to a module “f00” just before a statement
b = a.bar; then it will update DefToA PI with the fact that the
definition of b now points to “foo.bar”.

While traversing the control flow graph, the analysis performs
the updates in Table 2 for every statement. On control flow branches,
it propagates the current state along both branches. When the
control flow merges again, then the analysis computes the union of
the C sets and the union of the DefToA PI maps of both incoming
branches. M1r handles loops by unrolling each loop once, which is
sufficient in practice for analyzing uses of third-party code, because
loops typically do not re-assign references to third-party APIs.

Resolving Accesses to APIs: The transfer functions in Table 2 rely
on a helper function getA PIs. Given a reference, e.g., a variable or
property access, this function returns the set of fully qualified APIs
that the reference may point to. For example, after the statement
obj.x = require("foo").bar, getAPIs(obj.x) will return the set
{“foo.bar”’}. When queried with a variable that does not point
to any API, getAPIs simply returns the empty set. Algorithm 1
presents the getA PIs function in more detail. We distinguish four
cases, based on the kind of reference given to the function. Given
a direct import of a module, getA Pls simply returns the name of
the module. Given a variable, the function queries pre-computed
reaching-definitions information (see below) to obtain possible def-
initions of the variable, and then looks up the APIs these variables

Data: Reference r
Result: Set of APIs that r may point to
if r is an import of module “m” then
| return{“m”}
end

if r is a variable then
A0
defs « get reaching definitions of r

for each d in defs do
| A« AU DefToAPI(d)

end

return A
end

if r is a property access base.prop then
Apase — getAPIs(base)
return {a + “.” + prop | a € Apase }
end

return 0
Algorithm 1: Helper function getAPIs.

point to in DefToAPI. Given a property access, e.g., X.y, the func-
tion recursively calls itself with the reference to the base object,
e.g., X, and then concatenates the returned APIs with the property
name, e.g., “y”. Finally, for any other kind of reference, getAPIs
returns an empty set. The latter includes cases that we cannot han-
dle with an intra-procedural analysis, e.g., return values of function
calls. In practice, these cases are negligible, because real-world code
rarely passes around references to third-party APIs via function
calls. We therefore have chosen an intra-procedural analysis, which
ensures that the static permission set inference scales well to large
code-bases.

To find the APIs a variable may point to, Algorithm 1 gets the
reaching definitions of the variable. This part of the analysis builds
upon a standard intra-procedural may-reach definitions analysis,
which MIR pre-computes for all functions in the module. To handle
nested scopes, e.g., due to nested function definitions, MIr builds a
stack of definition-use maps, where each scope has an associated
set of definition-use pairs. To find the reaching definitions of a
variable, the analysis first queries the inner-most scope, and then
queries the surrounding scopes until the reaching definitions are
found. To handle built-in APIs of JavaScript, e.g., console. log, MIr
creates an artificial outer-most scope that contains the built-in APIs
available in the global scope.

Returning to the running example in Figure 2. For main, the
static analysis results in the following permission set:

{(“serial”’,R), (“serial.dec”’,R), (“serial.dec”’, X)}

As illustrated by the example, the inferred permission set allows
the intended behavior of the module, but prevents any other, un-
intended uses of third-party APIs. Our evaluation shows that the
static analysis is effective also for larger, real-world modules (§8.4).
Limitations: Inline with MIR’s design goal of being conservative
in granting permissions, the analysis infers a permission only if
there exists a path that uses the permission. In contrast, the analysis
may miss permissions that a module requires. For example, missed
permissions may results from code that passed a reference to a
module across functions:

1 X = require("foo");
2 bar(x);

In this example, the analysis misses any permissions on “foo” that
bar relies on. Tracking object references across function bound-
aries would require an inter-procedural analysis, which is difficult
to scale to a module and its potentially large number of transitive
dependencies [83]. Another example of potentially missed permis-
sions is code that dynamically computes property names:

1 X = require("foo");
. p = "ba' 4 "r":
3 x[p] S ...

In this example, the analysis misses the W permission for “foo.bar”.
Tracking such dynamically computed property names is known to
be a hard problem in static analysis of JavaScript [66].

5.2 Dynamic, Import-time Permission Analysis

To augment the number of permissions inferred by static analysis,
MIR adds a short phase of dynamic import-time analysis. This
dynamic analysis is performed by simply importing the analyzed
library, i.e., without invoking its APIs, and records all accesses to
third-party libraries until the analyzed library is fully loaded. The
underlying insight is that many libraries wrap or re-export existing
APIs using dynamic meta-programming, which is not captured
by plain static analysis. The import-time analysis thus collects
additional permissions, which are added to the ones inferred by the
static analysis. The following code snippet demonstrates a simple
but common pattern:

i for (let k in require("fs")) {
module.exports[k] = fs[kl;
3

Inferring statically such meta-programming permissions poses a
challenge due to the aforementioned limitations, and thus simply
loading the library enables a more complete view into the library’s
behavior. We evaluate the improvement of import-time analysis on
permission inference (§8.3). Note that import-time analysis does
not depend on the existence of library tests or any consuming code,
as it does not call any library interfaces.

6 QUANTIFYING PRIVILEGE REDUCTION

Any policy—whether created automatically or manually—on exist-
ing programs aims at striking a balance between compatibility and
security: an ideal policy would allow only the necessary accesses
but no more. Unfortunately, statically inferring such an ideal policy

in the context of any language is known to be undecidable. How-
ever, some analyses are better than others, i.e., they infer policies
with fewer accesses, even if they do not infer the ideal policy. To
be able to quantitatively evaluate the security benefits offered by
such analyses, we propose a novel privilege reduction metric.

Privilege Reduction: Informally, the single-library privilege re-
duction is calculated as the ratio of disallowed permissions over
the full set of permissions available by default within the lexical
scope of the library. The default permission set is calculated by
statically expanding all names available in scope; the disallowed set
of permissions is calculated by subtracting the allowed permissions
from the default permission set. Single-library privilege reductions
across the full dependency tree are then combined into a single
reduction metric for a program and its dependencies. The following
paragraphs explain the details.

Informal Development: Before formalizing privilege reduction,
we use the de-serialization example (Fig. 2) to build an intuition.
We first need to identify two sets of objects: (i) the subject mod-
ules Ms, whose privilege we are interested in quantifying; and (ii)
the target critical resources M; that can be potentially accessed
by the subject modules. Let’s assume that from the two modules
presented in Fig. 2, we are only interested in quantifying main’s
privilege; thus, My = {main}. As implied earlier (§4), the set of
critical resources contains many paths available to main. For sim-
plicity, we now assume it only contains globals, fs, and require;
thus, M; = {globals, fs, require}. Module main needs an X per-
mission on require to be able to load serial, and an X permission
on serial.dec to be able to call the dec function. With this simple
configuration, MIr disallows all accesses except for P(Ms, M;) =
{(require, X), (serial.dec, X)}.

MIR’s goal is to quantify this privilege with respect to the permis-
sions available to a library by default. If main was executed with-
out additional protection, its privilege would be Py, ;. (Mg, M;) =
{{globals.*, RWX), (fs.read, RWX), ...}.

Formal Development: More formally, by default at runtime any
module has complete privilege on all exports of any other module.
Thus, for any modules m1, mo the baseline privilege that m; has
on ms is:

Ppgse(m1, ma) = {(a, ,U>|a € APl j1 € Mode}

where p € Mode is a set of orthogonal permissions on a resource,
which for Mir is # = {R, W, X'}. Name a can be any field that lies
arbitrarily deeply within the values exported by another module.

MIR reduces privilege by disallowing all but the white-listed
permissions at module boundaries:

Ps(m1,m2) = {{a, p)|a € APIp,,S gives m1 p on a}

To calculate the privilege reduction across a program that contains
several different modules, we lift the privilege definition to a set of
subject and target modules:

P(Ms, M) =] P(m1,ma)
mi €M
mo €My,

let old_srl = srl;
srl = {}
srl.dec = (...args) => {
if (o(srl.dec, perms.X)) {
return old_srl.dec(...args);

var CONTEXT = {
eval: mir.wrap(eval, {X}),

Number: mir.wrap(Number),
Array: mir.BT(Array),

} toString: mir.BT(toString),

} [anot ries der

(a) Object-wrapping fragment

(b) Custom context creation

import: mir.wrap(require, ["log"]),
deniec
deni

function (cxt) {
var eval = cxt.eval;
var require = ctx.require;
var Number = ctx.Number;
var Array = ctx.Array;
var toString = ctx.toString;

}
(c) Context rebinding

Fig. 4: MIR’s runtime enforcement transformations. MIR’s basic wrapping traverses objects and wraps fields with inline monitors (a, line 4). A
new modified context is created by wrapping all values available in a module’s original context (b). The modified context is bound to the module
by enclosing the module source (c, half-visible code fragment) in a function that redefines all non-local variable names as function-local ones

(c), pointing to values from the modified context (Cf.§7).

We can now define privilege reduction, a metric of the permissions
restricted by a privilege-reducing system S such as MIr:

|Pbase(MSa Mt)|
|Ps(Ms, My)]

A higher reduction factor implies a smaller attack surface since the
subjects are given privilege to a smaller portion of the available
resources. Py, is an under-approximation of base privileges, as
a source module can, in principle, import and use any other mod-
ule that is installed in the execution environment. Consequently,
the measured privilege reduction is actually a lower bound of the
privilege reduction that Mir achieves in practice.

PR(MS, M) =

Transitive Permissions: Fig. 2’s main is not allowed to directly
call eval; however, it can call eval indirectly by executing se-
rial.dec. Accurately quantifying such transitive privilege requires
tracking transitive calls across such boundaries, which requires
heavyweight information flow analysis. MIR’s privilege reduction
quantification does not attempt such an analysis to keep runtime
overheads low. As a result, MIR’s estimate is necessarily conser-
vative, i.e., MIR reports a lower number than the one achieved in
practice.

7 RUNTIME PERMISSION ENFORCEMENT

During program execution, MIR’s runtime component enforces the
chosen permissions—automatically inferred, developer-provided,
or a combination thereof. MiRr’s load-time code transformations
operate on the string representation of each module as well as the
context to which it is about to be bound. The context is a mapping
from all free variables in the scope of the library to the values
they point to, and the transformations insert enforcement-specific
wrappers into the module before it is loaded.

MIR’s enforcement component conceptually builds on previous
work [5, 20, 29, 73, 77], employing program transformations to tra-
verse and wrap selected values with interposition proxies. However,
it differs in a few key points because of two characteristics related
to the goals of MIr. The first characteristic is the first-order nature
of MIR’s permission model: MIr checks an X permission for every
srl.dec in Fig. 2.1’s main, but does not enforce permissions over
its arguments—offering a potential for runtime performance gains.
This characteristic motivates the need to wrap all access paths in
the context, but not the values passed as arguments to these paths.
The second characteristic is that the same paths in different libraries
may be governed by different permissions: main may need an X
permission for srl.dec, but a different module might need an R for

srl.enc. This characteristic motivates the need to apply a distinct
set of wrappers per library context.

MIR’s transformations can be grouped into four phases. The first
phase simply modifies require so that calls yield into MIR rather
than the built-in locate-and-load mechanism. For each module,
the second phase creates a fresh copy of the runtime context—i.e.,
all the name-value mappings that are available to the module by
default. The third phase binds the modified context with the module,
using a source-to-source transformation that re-defines names in
the context as library-local ones and assigns to them the modified
values. After interpreting the module, the fourth phase further
transforms the module’s interface so that its client can only access
the names—e.g., methods, fields—it is allowed to access.

Base Transform: These transformations have a common struc-
ture that traverses objects recursively—a base transformation wrap,
which we review first. At a high level, wrap takes an object O and a
permission set p and returns a new object O’. Every field f of O is
wrapped with a method f” defined to enclose the permissions for f.
Effectively, f/ implements a security monitor—a level of indirection
that oversees accesses to the field and ensures that they conform to
the permissions corresponding to that field. At runtime, f”’ checks
f’s permission for the current access type: if the access is allowed,
it forwards the call to f; otherwise, it throws a special exception,
AccessControlException, that contains contextual information
for diagnosing root cause—including the type of violation (e.g., R),
names of the modules involved, names of accessed functions and
objects, and a stack trace.

The result of applying the wrap transformation to the object

(returned by) serial is shown in Fig. 4a. The wrapper function
uses a MIr-built-in function o that checks f’s X permission (in code:
perm.X) for this particular type of access. If the check succeeds,
MIR calls the original dec, passing it the arguments of the call to
the dec wrapper; if the check fails, o will throw an exception and
stop execution.
Context Creation: To prepare a new context to be bound to a li-
brary being loaded, MIR first creates an auxiliary hash table (Fig. 4b),
mapping names to newly transformed values: names correspond
to implicit modules—globals, language built-ins, module-locals, etc.
(Tab. 1); transformed values are created by traversing individual
values in the context using the wrap method to insert permission
checks.

User-defined global variables are stored in a well-known location
(i.e., a map accessible through a global variable named global).

However, traversing the global scope for built-in objects is generally
not possible. To solve this problem, MIr collects such values by
resolving well-known names hard-coded in a list. Using this list,
MIR creates a list of pointers to unmodified values upon startup.

Care must be taken with module-local names—e.g., the module’s
absolute filename, its exported values, and whether the module
is invoked as the application’s main module: each module refers
to its own copy of these variables. Attempting to access them di-
rectly from within MiRr’s scope will fail subtly, as they will end up
resolving to module-local values of Mir itself —and specifically, the
module within MIR applying the transformation. Mir solves this
issue deferring these transformations for the context-binding phase
(discussed next).

Fig. 4b shows the creation of serial’s modified context.

Context Binding: To bind the code whose context is being trans-
formed with the freshly created context, Mir applies a source-to-
source transformation that wraps the module with a function clo-
sure. By enclosing and evaluating a closure, Mir leverages JavaScript’s
lexical scoping to inject a non-bypassable step in the variable name
resolution mechanism.

The closure starts by redefining default-available non-local names
as module-local ones, pointing to transformed values that exist in
the newly-created context. It accepts as an argument the customized
context and assigns its entries to their respective variable names in
a preamble consisting of assignments that execute before the rest of
the module. Module-local variables (a challenge outlined earlier) are
assigned the return value of a call to wrap, which will be applied
only when the module is evaluated and the module-local value
becomes available. MIR evaluates the resulting closure, invokes it
with the custom context as an argument, and applies further wrap
transformations to its return value.

The result of such a source-to-source linking of serial’s context
is shown in Fig. 4c.

8 EVALUATION

To evaluate MIR, we apply it to hundreds of real-world npm pack-
ages, investigating the following questions:

e Q1 How effective is MIR at defending against attacks that exploit
real-world vulnerabilities? (§8.1)

e Q2 How much does MIR reduce the attack surface in terms of
privilege reduction? (§8.2)

e Q3 How compatible is MIR with existing code—i.e., what is the
danger of breaking legacy programs? (§8.3)

e Q4 How efficient and scalable are M1Rr’s inference and enforce-
ment components? (§8.4)

e Q5 How does MiR’s techniques compare to other techniques,
such as library debloating? (§8.5)

Implementation: Our implementation targets JavaScript pack-
ages in the Node.js ecosystem and is available via npm i -g
@andromeda/mir. The static analysis component, available also as
a standalone component at @andromeda/mir-sa, is implemented
as a compiler pass in the Google Closure Compiler [26], amounting
to about 2.1 KLoC. The runtime enforcement component, avail-
able also as a standalone component at @andromeda/mir-da, is
implemented in about 2.8 KLoC of JavaScript on top of Lya, a

63 7 6 33

0 25 50 75 100 125

Relevant Subset Could Not Exploit Could Not Install
Outside Thread Model B Other PL/Platform Exploit Exists ® Exploit Added
Dynamic Enforcement Crashes M Successful Defense

Fig. 5: Overview of real-world vulnerabilities used to evaluate Mir’s
effectiveness in preventing vulnerabilities (Cf.§8.1).

coarse-grained dynamic analysis and instrumentation framework
for Node.js [78]. The permissions inferred by the static analysis
stage are combined with ones inferred by the load-time analysis
and then provided to the runtime enforcement component as JSON
files.

Libraries and Workloads: We apply MIr to hundreds of real-
world npm packages, using different sets of packages for different
research questions, depending on what is required for a specific
question. To address Q1, we apply MIr to real-world vulnerabili-
ties obtained by systematically going through all publicly known
vulnerabilities in npm packages [65].

For Q2 and Q3, we need extensive tests to be able to test com-
patibility. As not all of the Q1 libraries contain tests, and because
some contain tests that require an elaborate setup, we augment the
Q1 set with 50 popular packages [55] that provide comprehensive
test suites executable via npm test. The additional libraries also
answer Q2 and Q3 for modules that do not necessarily make use of
security-critical APIs. The 50 libraries range between 1-3.2K lines
of JavaScript code with extensive tests. For Q4, we apply the static
analysis to an additional 986 npm packages gathered from the most
depended-upon packages, which in total comprise 5,826,357 LoC.

Setup: Experiments were conducted on a modest server with 4GB
of memory and 2 Intel Core2 Duo E8600 CPUs clocked at 3.33GHz,
running a Linux kernel version 4.4.0-134. The JavaScript setup uses
Node.js v12.19, bundled with V8 v7.8.279.23, LibUV v1.39.0, and npm
version v6.14.8. MiR’s static inference runs on Java SE 1.8.0_251,
linked with Google Closure v20200927.

8.1 Real-World Vulnerability Defense (Q1)

This section evaluates MIr effectiveness at its ultimate goal—pre-
venting attackers from exploiting vulnerabilities. To obtain a large,
unbiased, and realistic set of vulnerabilities, we systematically go
through all publicly known vulnerabilities in npm packages [65]
and select those covered by our threat model (§3). Fig. 5 summarizes
the results of our analysis, Tab. 3 highlights a few cases outlined
later, and Tab. 7-8 in Appendix B show the full results.

Relevant Subset: Starting from all Snyk [65] vulnerabilities, we
first keep only vulnerabilities labeled as “arbitrary code execution”,
“remote code execution”, and “sandbox escape” (Fig. 5, top bar: 132).
We ignore other categories such as “malicious package”, “denial
of service”, and “use after free”, because they fall outside MIRr’s
threat model. We then filter out 23 vulnerabilities for platforms
other than Node.js (e.g., Android, browser) or languages other than
JavaScript (e.g., PHP, Python), 33 misclassified vulnerabilities (e.g.,

Tab. 3: Examples of vulnerabilities used in Q1, along with the permissions MIRr infers for them, and whether MIr defends against the proof-
of-concept (PoC) exploit (Cf.§8.1). See Tab. 7-8 in Appendix B for the full list of vulnerabilities and their breakdown.

Name CWE Snyk categorization R W X I RWXI Attack PoC Defense
ejs CWE-94 Arbitrary Code Execution 135 22 64 14 235 Create file ejs-success Mir authors Yes
grunt CWE-94 Arbitrary Code Execution 192 25 101 22 340 Return Date.now Snyk Yes
pg CWE-94 Arbitrary Code Execution 105 9 41 22 177 Print process.env Snyk Yes
safe-eval CWE-265 Sandbox Breakout 9 1 5 1 16 (Multiple) Snyk Yes
safer-eval CWE-94 Arbitrary Code Execution 24 4 14 3 45 (Multiple) Snyk Yes
serialize-to-js CWE-502 Arbitrary Code Execution 38 17 23 7 85 Executels Snyk Yes
static-eval CWE-94 Arbitrary Code Execution 39 1 25 14 79 Print process.env Snyk Yes

XSS, path traversal, sanitization), 6 modules we were not able to
set up, and 7 modules we were not able to exploit. We note that
we spent significant time on the last two classes, up to five hours
per vulnerable module to (i) set up the module, and (ii) create
or reproduce an exploit. Overall, we end up with 63 reproduced
vulnerabilities: 46 with exploits provided in the vulnerability report
and 15 with exploits that we newly created for vulnerabilities that
do not come with an exploit.

We apply MIR to the 63 vulnerable modules and check whether
the approach defends against the exploit. M1R’s static analysis works
on all of the libraries, but Mir’s dynamic enforcement crashes on
two libraries (even without applying the exploit): the vm2 package
applies itself complex runtime wrapping, not handled correctly by
MIR’s runtime wrapping, and the typed-function package affects the
Function prototype chain in a way that is currently not supported
by MIr. MIR successfully protects against all other 61 attacks to
vulnerable modules.

Examples: We show a few of these successfully defended attacks
on popular modules in Tab. 3, and proceed to highlight a couple of
noteworthy examples. Library serialize-to-js performs some form
of unsafe serialization; its PoCs either (1) import child_process to
call 1s or id, or (2) invoke console.log. As none of these is part
of the library’s permission set, MIr disallows access to these APIs.
Libraries safe-eval and safer-eval check their input prior to calling
eval. Their PoCs either execute the id command to return the user
identity or print process. env, both of which Mir defends. The case
of static-eval is interesting because it accepts abstract syntax trees
(ASTs) rather than strings; the PoC cleverly passes process.env
crafted as AST through the Esprima parser—which MIr solves by
disallowing access to process.env.

We note that, for many of these attacks, Mir blocks the PoC
at multiple levels. For example, even if node-serialize’s import of
child_process was allowed, Mir would still block exec.

Take away: MIr defends against 61/63 real-world attacks on
vulnerable Node.js packages.

8.2 Privilege Reduction (Q2)

To quantify the extent to what MIr reduces the exploitable attack
surface, we measure the privilege reduction (§6) achieved by the
statically inferred permissions. We use all 31 libraries from the 63 Q1
attacks that we were able to set up for this experiment, excluding ten
libraries that do not have tests; seven duplicate libraries, i.e., cases

where a second attack targets the same library; seven libraries for
which we were not able to setup or run the test suite; two libraries
for which MIr crashes (same as Q1); and six libraries for which Mir
crashes on test cases (details in Tab. 7, Appendix B). We augment
this set with another 50 libraries that have extensive test suites, to
understand privilege reduction in modules that do not necessarily
use security-critical APIs. The total is 81 libraries.

The total number of

50
permissions per library 40 35 L EX mw ER
ranges between 2-658 0

2]
(avg: 42.2), spread un- £ 2 % 143
evenly between 1-341 é 10 277x258x-X215xlﬁ" _ZISXEX
R(avg:22.1),0-29W(avg: &£ o == =
3.3),0-209 X (avg: 12.5), \f‘; & &“f\@/\“%%% y‘;téo @&\@ o
and 0-87 I (avg: 4.1). TS S S ®
P . O

Privilege is reduced by MO

up to three orders of

magnitude, ranging between 3.5x-706x (avg: 143.48x). The privi-
lege reduction is high when developers use only a small fraction of
the available APIs, and thus it is inversely correlated to the library
size: smaller libraries see larger reduction in privilege. The figure
on the right shows results for the first ten libraries (alphabetically),
and Appendix C shows the full results for all libraries.

We manually inspect the inferred permissions to get a sense
of their security criticality. We define as security-critical, system-
wide permissions the union of X permissions to child_process. *,
X permissions fs.{read,write}file[Sync], and R permissions
to a subset of process.env. We also define security-concerning,
library-specific permissions the set of RWX permissions to unusual
field names.* Our inspection indicates that after applying MIr, only
one library maintains permissions to security-critical, system-wide
interfaces. Additionally, only five libraries maintain permissions to
library-specific, security-concerning interfaces.

Take away: Mir reduces the attack surface by an average of
143.48%, usually blocking access to security-critical interfaces.

8.3 Compatibility Analysis (Q3)
To a large extent, backward-compatibility drives practical adoption
of tools such as Mir. If a tool requires significant effort to address

“In one library, react-dom, Mir disallows access to fields of an object called
__SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED.

Tab. 4: Compatibility across 81 libraries (Cf.§8.3).

Mir without Full M1r
import-time
analysis
Inferred permissions (avg.) 423 155.9

Compatibility:
Field access locations (out of 3,431)
Fully compatible packages (out of 81)
Test cases (out of 2,557)

2,422 (70.59%)
58 (71.60%)
2,151 (84.12%)

3,400 (99.09%)
73 (90.12%)
2,541 (99.37%)

compatibility, chances are developers will avoid it despite any se-
curity benefits it provides. To investigate compatibility, we use the
same 81 npm libraries from Q2 and their test suites. Tab. 4 summa-
rizes the compatibility characteristics of testing these 81 libraries
using two MIR configurations, and Tab. 5 and 6 in Appendix A
break down compatibility results for the 31 Q1 libraries and the
additional 50 Q2 libraries.

Permitted Accesses: There is a total of 3,431 unique code loca-
tions where accesses are attempted, and full MIr correctly allows
3,400 (99.09%) of them. Counting repeated accesses, as many ac-
cesses are attempted multiple times during a single execution of a
program, MIR correctly allows 226,497 (99.98%) of 226,553 accesses
(not shown in Tab. 4). The reason repeated-access results look better
is that straightforward accesses, such as export or global objects,
are accessed multiple times, whereas difficult-to-infer accesses (see
below) are accessed only once during a program’s execution. As
a result, for 2,541 (99.6%) of all 2,557 tests, all field accesses are
correctly permitted by Mir.

Influence of Import-Time Analysis: An important element of
MIR’s inference is its assistance of static analysis with a dynamic
import-time analysis (§5.2). To understand the benefits of this ap-
proach, we compare the compatibility of full Mir with a variant
that does not use the dynamic import-time analysis (Tab. 4, col. 2).
The static analysis alone infers fewer permissions, which signifi-
cantly reduces MIR’s compatibility: the number of compatible field
access locations falls from 3,400 to 2,422, i.e., only 70.59% instead
of 99.09% of all field access locations are compatible. For example,
fs-promise dynamically computes wrappers for all methods pro-
vided by the built-in f's package; rather than explicitly naming all
fs methods, it computes them by traversing the object returned
by f's. MIR’s import-time analysis captures this traversal, correctly
assigning R and W permissions to all these fields.

Highlights of Remaining Incompatibilities: The remaining 31
(0.91%) unique accesses are not permitted by the full Mir, cor-
responding to 0.02% of total accesses (when including repeated-
accesses) and spread across 8 (9.88%) of libraries. The vast majority
of these incompatibilities are related to npm test loading keywords
from the module’s package. json. This loading is not inferable by
MIR’s combined static and import-time analyses, but does not occur
if a library is not under test or if the tests are not invoked via npm
test. Another class of incompatibilities is due to the higher-order
Function.prototype constructor, which is not visible to MiRr’s
static analysis and is not invoked at import-time. For example, to
understand if a function is a generator is-generator reads the

name property of the function’s constructor field—which implic-
itly accesses the same property from the top-level Function object,
which is not inferable by Mir’s combined analyses.

Take away: MIR correctly infers 99% of all accesses on a set of
widely used packages with extensive test suites, indicating a small
risk of breakage by applying MIr.

8.4 Efficiency and Scalability (Q4)

Static Analysis: To evaluate the Min 1/4 2/4 3/4 Max

efficiency and scalability of the static R 0 13 39 156 27736

analysis, we run it on 1,036 npm W 0 1 4 19 9018

. X 0 6 20 78 16,638

packages that comprise 5,826,357 I 0 2 6 20 16639
LoC. Mi1R’s static analysis operates

S0 25 73 295 66,559

successfully on all packages with-
out errors, except for malformed
files on which the base Google Clo-
sure Compiler (i.e., without our anal-
ysis) also fails—e.g., files containing
syntax errors.

The analysis takes 42 minutes in
total, i.e., an average of 2.5 seconds per npm package. To put these
results into context, we also measure the performance of a popular
linter—a lightweight static analysis pass flagging common human
errors. We use eslint (v5.0.1) [82] and each library’s default linting
configuration, falling back to Google’s style rules when no such
configuration exists. eslint ranges between 0.94 and 6.017 sec-
onds per package, with an average of 1.34 seconds. These results
show that the static inference scales well to real-world packages
and that its efficiency is comparable to other tools that developers
use regularly. The resulting permissions of this large-scale analysis,
averaging one permission per 10 LoC, are shown in Fig 6. Most per-
missions are R and X permissions (50.33% and 22.97%, respectively),
showing that client packages rarely write to references outside of
their boundaries, e.g., to global variables or the API of the packages
they use.

Fig. 6: Number of inferred
RWXI permissions: 1/4, 2/4
and 3/4 represent the first
quartile, the median, and
the third quartile.

Take away: The static analysis scales to millions of lines of
code, analyzing 1,036 of the most depended upon packages in 2.5
seconds, on average.

Dynamic Enforcement: We compare the performance of run-
ning the tests suite of the 81 libraries from Q2 and Q3 with Mir
enforcement against that of the unmodified libraries. M1r’s adds be-
tween 0.13-4.14ms of slowdown to executions that range between
324ms and 2.77s. Slowdowns average about 3.3ms per library, in-
creasing the execution time by 1.93% on average. Based on these
results, we do not anticipate a need for users to trade in runtime
security to gain performance. The figure on the right shows results
for the first 10 libraries (alphabetically, same sample as Q2 plot).

MIRr applies an average of 346 wrappers per library, applying a
total of 25,609 wrappers. The distribution of accesses at runtime
is bimodal: on average, only 21 (6.06%) of all wrapped values are
accessed per library, but those that do get accessed are accessed
multiple times—on average, 795 times each.

Take away: The runtime enforcement imposes a runtime per-
formance overhead of 3.3ms (1.93%), on average.

8.5 Comparison with Debloating (Q5)

We now compare against a possible alternative to MIr targeting a
similar domain: Mininode [34] is a state-of-the-art static-analysis de-
bloating tool for Node.js. We apply the latest Mininode (v.f604d9¢)
in its -—sof't (coarse-grained) and --hard (fine-grained) mode on
a total of 88 libraries: 81 libraries from Q2 and Q3, and the seven
from Q1 for which MIr crashes on tests (§8.2).

Mininode runs to completion for 81/88 libraries, which we check
for compatibility using tests, as in Q2. Both soft and hard fail
tests on three libraries: soft fails due to changes in whitespace
(in safe-eval), hard eliminates a function (hypenToCamel in ejs),
and both fail due to white-space differences (in js-yaml) and the
removal of a critical file (compile-dots. js in mol-proto). White-
space incompatibilities are due to Mininode’s back-end, which uses
escodegen to generate JavaScript from the debloated AST, affecting
the resulting white-spaces and indentation. Mininode crashes on
7/88 libraries, failing to find the entry point (5 libs.), exiting due
to dynamic imports (1 lib.), and running out of memory (1 lib.).
Mininode’s analysis takes 0.82-4.013 seconds, comparable to MIR,
and incurs no overhead during library execution. All 63/63 PoC
attacks succeed because (i) the debloated libraries still have access
to functionality built into Node.js (e.g., Object, Array.of, Math,
String), and (ii) JavaScript’s dynamic behavior, such runtime code
evaluation, falls outside Mininode’s focus.

Take away: Mininode’s debloating achieves better compatibility
than MIr and adds no runtime overhead, but does not protect
against the specific dynamic threats that are the focus of Mir.

9 RELATED WORK

MIRr’s techniques touch upon a great deal of previous work in
several distinct domains.

Privilege Reduction: A number of works have addressed priv-
ilege reduction [4, 10, 15, 16, 20, 27, 32, 42, 57, 59, 60, 81], often
offering significant automation. This automation often comes at
the cost of lightweight annotations on program objects—e.g., config-
urations in Privman [32], priv directives in Privtrans [16], tags in
Wedge [15], and compartmentalization hypotheses in SOAAP [27].
TRON [12] introduced a permission model similar to MIR, but at
the level of processes rather than libraries.

Wedge and SOAAP stand out as offering some automation via
dynamic and static analysis, respectively. However, Wedge still
requires altering programs manually to use its API, and SOAAP
mostly checks rather than suggests policies. In comparison to these
works, MIR (1) leverages existing boundaries, and (2) offers signifi-
cantly more automation.

To ameliorate manual annotations on individual objects, more
recent library-level compartmentalization [37, 43, 77] leverages run-
time information about module boundaries to guide compartment
boundaries. These systems automate the creation and management
of compartments, but do not automate the specification of policies

through some form of inference. Mir (1) focuses on benign-but-
buggy libraries, rather than actively malicious ones, and (2) offers
a simplified RWX permission model rather than more expressive
(often Turing-complete) policies—both in exchange for significant
automation in terms of the permissions.

Pyxis [18] and PM [41] reduce the problem of boundary infer-
ence to an integer programming problem by defining several per-
formance and security metrics. These systems are complementary
to MIR, as they focus on separating the application code into a
sensitive and insensitive compartment to minimize these metrics,
while MIR tries to automatically infer and restrict the permissions
between different libraries.

Program Analysis: The static permission inference of MIR re-
lates to work on statically inferring permissions that an application
requires in the Java permission model [36]. Jamrozik et al. [31] de-
scribe a dynamic analysis to infer pairs of Android permissions and
Ul events that trigger the need for a permission. We rely on static in-
ference instead, to avoid the problem of automatically exercising the
analyzed code. An important difference to both above approaches
is that MIR focuses on RWX permissions for specific access paths,
instead of the more coarse-grained permissions supported by Java
and Android. Pailoor et al. [54] also propose static inference of priv-
ilege reduction policies, but they focus on system calls accessible to
C/C++ programs and describe a more heavyweight static analysis
than this paper. By employing more sophisticated static analysis
techniques for JavaScript one can reduce some of the compatibility
issues of MIR, e.g., by adopting the approach of Santos et al. [61]
for handling dynamically computed field names.

Chen [17] is an analyzer for privilege escalation attacks on
browser extensions written in JavaScript. Chen’s constraint-based
analysis aims at detecting vulnerabilities, whereas MIR aims at
preventing their exploitation.

JavaScript Protection: There is prior work on JavaScript protec-
tion [5, 29, 47, 48, 62, 67, 69, 74] motivated by multi-party mashups
on the web. MIR is unusual in its model and inference: it only al-
lows first-order RWX permissions rather than more powerful and
expressive policies [47, 69], and offers automation via static and
import-time analysis. ZigZag [80] proposes hardening client-side
JavaScript code by dynamically inferring invariants that capture
benign program use. The invariants are then introduced in the an-
alyzed code through program instrumentation to detect runtime
deviations from the benign behavior. In contrast, MIr infers RWX
permissions statically and uses load-time interposition to insert
runtime checks. NodeSentry [75] proposes powerful server-side
JavaScript protection—but its policies are Turing-complete and
written manually. Akhawe et al. [7] describe a mechanism to en-
force privilege reduction in HTML5 applications by building on the
same-origin policy. Instead, MIr focuses on Node.js and proposes
an instrumentation-based enforcement mechanism.

Realms [28] specify a way for executing scripts in different global
environments to avoid cross-contamination, while SES [72] advo-
cates for a shared immutable global realm. These proposals dras-
tically reduce privileges for JavaScript code, but aggressively pre-
vent all accesses to powerful APIs such as require. Once access
is granted to this API, there are no further restrictions on how it

can be used. MIR’s permission model can be used to refine these
coarse-grained mechanisms.

Following the separation between mechanism and policy [39],
we also note that much of the aforementioned work focuses on
providing powerful security mechanisms [5, 28, 48, 69, 74], whereas
MIRr focuses on the language and analysis for expressing and in-
ferring an effective security policy—which could be synergistically
enforced using the security mechanisms provided by these systems.

Software Debloating: Functionality elimination [58] and, more
recently, software debloating [11, 30, 34, 35] have similar goals to
MIR, but approach the problem differently. Rather than locking
what functionality a piece of code can access at runtime, these
techniques completely eliminate unused functionality altogether. A
benefit of these techniques is that an attacker circumventing MIR’s
runtime enforcement would still not be able to call non-existent
functionality in a de-bloated application. A case where MIR offers
benefits over these techniques is when two program fragments use
disjoint halves of functionality: while no half can be eliminated,
MIRr still restricts each fragment to half the permissions.

Language- & Capability-Based Isolation: Software fault isola-
tion [79] modifies object code of modules written in unsafe lan-
guages to prevent them from writing or jumping to addresses out-
side their domains. Singularity’s software-isolated processes [6]
ensure isolation through verification. Leveraging memory safety,
MIR supports environments with runtime code evaluation, for which
verification and static transformation might not be an option. Ca-
pability systems [40, 64] and object-capability systems [22, 50] re-
strict the ability to name a resource. Joe-E for Java [46] and Caja for
JavaScript [50] restrict languages to object-capability-safe subsets.
Similar to capability systems, MIR augments a program’s ability to
name a resource with a permission check. Mir does not focus on a
language subset, and its static analysis offers significant automation.
Prior work has developed formal frameworks for stating and prov-
ing strong isolation properties in the context of new languages or
subsets of existing languages [1, 21, 23, 44, 45]. MIR instead targets
the full JavaScript language and quantifies privilege reduction.

Ecosystem Approaches: The challenges of third-party libraries [53,
63, 65] can be addressed by checking for known vulnerabilities in

a program’s dependency chain or by freezing dependencies [52].

These approaches may cause users to forego valuable bug and vul-
nerability fixes, whereas MIr allows the permissions to evolve with

the codebase. The Deno runtime offers a coarse-grained allow-deny

permission model focusing on the file-system and the network [19],

but it lacks MIR’s automation and fine granularity.

10 CONCLUSION

Dynamic library compromise due to problems in benign libraries
poses a serious security threat. Mir is a system for Node.js that
addresses this problem by augmenting the module system with a
fine-grained read-write-execute (RWX) permission model for spec-
ifying privilege at the boundaries of libraries. It infers these per-
missions automatically using static and import-time analysis, and
introduces privilege reduction, a metric capturing Mir’s effects on
prevented permissions. MIR’s evaluation shows that it prevents
tens of attacks on real-world vulnerable modules without major
functionality disruptions and while imposing modest performance

overhead. We envision MIR’s automation and performance charac-
teristics to make it an important addition to a developer’s toolbox,
similar to a minifier or a linter—in many circumstances working in
tandem with defenses that focus on other threats, such as command-
injection or sanitization attacks. MIR is available for installation via
npm and its source code is available on GitHub:

http://github.com/andromeda/mir

ACKNOWLEDGMENTS

We would like to thank Jirgen Cito, Sage Gerard, Catalin Hritcu, Sotiris
Ioannidis, Dimitris Karnikis, Mary McDavitt, Jeff Perkins, MIT CSAIL’s
PAC group, and MIR’s open-source contributors. We are indebted to our
shepherd, Peter Snyder. Much of Mir’s design was informed by interac-
tions with the broader community; we are particularly thankful to Isaac
Z. Schlueter and CJ Silverio from npm, and Petros Efstathopoulos, Daniel
Katz, Daniel Marino, and Kevin Roundy from Symantec/NortonLifeLock
Research Group. This research was funded in part by DARPA contracts
HR00112020013, HR001120C0191, and HR001120C0155. NSF awards CNS-
1513687 and CCF-1763514, by the European Research Council (ERC, grant
agreement 851895), and by the German Research Foundation within the
ConcSys and Perf4]S projects. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect those of DARPA or other agencies.

REFERENCES

[1] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans,
Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C. Pierce, Marco
Stronati, and Andrew Tolmach. 2018. When Good Components Go Bad: Formally
Secure Compilation Despite Dynamic Compromise. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS ’18).

ACM, New York, NY, USA, 1351-1368. https://doi.org/10.1145/3243734.3243745

Ajin Abraham. 2017. Snyk: Arbitrary Code Execution in node-serialize. https:

//snyk.io/vuln/npm:node-serialize:20170208. https://snyk.io/vuln/npm:node-

serialize:20170208 Accessed: 2020-03-19.

[3] Ajin Abraham. 2017. Snyk: Arbitrary Code Execution in serialize-to-js. https:
//snyk.io/vuln/npm:serialize-to-js:20170208. https://snyk.io/vuln/npm:serialize-
to-js:20170208 Accessed: 2020-03-19.

[4] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. 1986. Mach: A New Kernel Foundation for
UNIX Development. In USENIX Technical Conference.

[5] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: Complete Client-side Sandboxing of Third-party
JavaScript Without Browser Modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC ’12). ACM, New York, NY,
USA, 1-10. https://doi.org/10.1145/2420950.2420952

[6] Mark Aiken, Manuel Fihndrich, Chris Hawblitzel, Galen Hunt, and James Larus.

2006. Deconstructing Process Isolation. In Proceedings of the 2006 Workshop on

Memory System Performance and Correctness (MSPC ’06). ACM, New York, NY,

USA, 1-10. https://doi.org/10.1145/1178597.1178599

Devdatta Akhawe, Prateek Saxena, and Dawn Song. 2012. Privilege Separation

in HTML5 Applications. In Proceedings of the 21th USENIX Security Symposium,

Bellevue, WA, USA, August 8-10, 2012, Tadayoshi Kohno (Ed.). USENIX Associa-

tion, 429-444. https://www.usenix.org/conference/usenixsecurity12/technical-

sessions/presentation/akhawe

[8] Esben Andreasen, Liang Gong, Anders Meller, Michael Pradel, Marija Selakovic,

Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis

and Test Generation for JavaScript. Comput. Surveys (2017).

Unknown Author. 2020. Snyk: Arbitrary Code Injection in serialize-javascript.

https://snyk.io/vuln/SNYK-]JS-SERIALIZEJAVASCRIPT-570062. https://snyk.io/

vuln/SNYK-JS-SERIALIZEJAVASCRIPT-570062 Accessed: 2020-03-19.

Niels Avonds, Raoul Strackx, Pieter Agten, and Frank Piessens. 2013. Salus:

Non-hierarchical memory access rights to enforce the principle of least privilege.

In International Conference on Security and Privacy in Communication Systems.

Springer, 252-269.

Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is

more: quantifying the security benefits of debloating web applications. In 28th

{USENIX} Security Symposium ({USENIX} Security 19). 1697-1714.

[2

—_
=

—
X2

http://github.com/andromeda/mir
https://doi.org/10.1145/3243734.3243745
https://snyk.io/vuln/npm:node-serialize:20170208
https://snyk.io/vuln/npm:node-serialize:20170208
https://snyk.io/vuln/npm:node-serialize:20170208
https://snyk.io/vuln/npm:node-serialize:20170208
https://snyk.io/vuln/npm:serialize-to-js:20170208
https://snyk.io/vuln/npm:serialize-to-js:20170208
https://snyk.io/vuln/npm:serialize-to-js:20170208
https://snyk.io/vuln/npm:serialize-to-js:20170208
https://doi.org/10.1145/2420950.2420952
https://doi.org/10.1145/1178597.1178599
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/akhawe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/akhawe
https://snyk.io/vuln/SNYK-JS-SERIALIZEJAVASCRIPT-570062
https://snyk.io/vuln/SNYK-JS-SERIALIZEJAVASCRIPT-570062
https://snyk.io/vuln/SNYK-JS-SERIALIZEJAVASCRIPT-570062

[12

[13

[14

[15]

[16]

[17]

[18

[19]

[20

[21

[22]

[23]

[24]

[25]

[26

[27]

[28]

[29

[31]

Andrew Berman, Virgil Bourassa, and Erik Selberg. 1995. TRON: Process-specific
File Protection for the UNIX Operating System. In Proceedings of the USENIX
1995 Technical Conference Proceedings (TCON’95). USENIX Association, Berkeley,
CA, USA, 14-14. http://dLacm.org/citation.cfm?id=1267411.1267425

Nataliia Bielova and Tamara Rezk. 2016. A taxonomy of information flow mon-
itors. In International Conference on Principles of Security and Trust. Springer,
46-67.

Prithvi Bisht and V. N. Venkatakrishnan. 2008. XSS-GUARD: Precise Dynamic
Prevention of Cross-Site Scripting Attacks. In Detection of Intrusions and Malware,
and Vulnerability Assessment, 5th International Conference, DIMVA 2008, Paris,
France, July 10-11, 2008. Proceedings. 23-43.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-privilege Compartments. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation
(NSDI'08). USENIX Association, Berkeley, CA, USA, 309-322. http://dl.acm.org/
citation.cfm?id=1387589.1387611

David Brumley and Dawn Song. 2004. Privtrans: Automatically Partitioning
Programs for Privilege Separation. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13 (SSYM’04). USENIX Association, Berkeley, CA,
USA, 5-5. http://dl.acm.org/citation.cfm?id=1251375.1251380

Stefano Calzavara, Michele Bugliesi, Silvia Crafa, and Enrico Steffinlongo. 2015.
Fine-Grained Detection of Privilege Escalation Attacks on Browser Extensions. In
Programming Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes
in Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 510-534. https://doi.
org/10.1007/978-3-662-46669-8_21

Alvin Cheung, Owen Arden, Samuel Madden, and Andrew C Myers. 2012. Au-
tomatic partitioning of database applications. arXiv preprint arXiv:1208.0271
(2012).

Ryan Dahl and the Deno Contributors. 2019. Deno. https://deno.land/
manual/getting_started/permissions. https://deno.Jand/manual/getting_started/
permissions Accessed: 2020-06-11.

Willem De Groef, Fabio Massacci, and Frank Piessens. 2014. NodeSentry: Least-
privilege Library Integration for Server-side JavaScript. In Proceedings of the 30th
Annual Computer Security Applications Conference (ACSAC ’14). ACM, New York,
NY, USA, 446-455. https://doi.org/10.1145/2664243.2664276

Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. 2014. Declar-
ative policies for capability control. In 2014 IEEE 27th Computer Security Founda-
tions Symposium. IEEE, 3-17.

Sophia Drossopoulou and James Noble. 2013. The Need for Capability Policies.
In Proceedings of the 15th Workshop on Formal Techniques for Java-like Programs
(FIf7P °13). ACM, New York, NY, USA, Article 6, 7 pages. https://doi.org/10.
1145/2489804.2489811

Sophia Drossopoulou, James Noble, Mark S. Miller, and Toby Murray. 2016.
Permission and Authority Revisited, Towards a Formalisation. In Proceedings
of the 18th Workshop on Formal Techniques for Java-like Programs (FIfJP’16).
Association for Computing Machinery, New York, NY, USA, Article 10, 6 pages.
https://doi.org/10.1145/2955811.2955821

Asger Feldthaus, Max Schifer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013.
Efficient construction of approximate call graphs for JavaScript IDE services. In
35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013.

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-order
Functions. In Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming (ICFP °02). ACM, New York, NY, USA, 48-59. https:
//doi.org/10.1145/581478.581484

Inc Google. 2009. Closure. https://developers.google.com/closure/.
developers.google.com/closure/ Accessed: 2019-06-11.

Khilan Gudka, Robert NM Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G Neumann, and Alex Richardson. 2015.
Clean application compartmentalization with SOAAP. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM, 1016~
1031.

Jordan Harband and Kevin Smith. 2021. ECMAScript® 2020 Language Spec-
ification. https://262.ecma-international.org/11.0/#sec-code-realms. https:
//262.ecma-international.org/11.0/#sec-code-realms Accessed: 2021-04-14.
Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
Tracking information flow in JavaScript and its APIs. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing. 1663-1671.

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
program debloating via reinforcement learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 380-394.
Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller. 2016. Mining
sandboxes. In Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem
Visser, and Laurie A. Williams (Eds.). ACM, 37-48. https://doi.org/10.1145/
2884781.2884782

https://

(32

[33

(34

(35]

&
2

[37

[38

@
20,

[40]

[41

[42

[43

[44

=
i)

=
&

‘o
=

Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Applications. In
USENIX Annual Technical Conference, FREENIX Track. 273-284.

Yoonseok Ko, Tamara Rezk, and Manuel Serrano. [n. d.]. SecureJS Compiler:
Portable Memory Isolation in JavaScript. In SAC 2021-The 36th ACM/SIGAPP
Symposium On Applied Computing.

Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID} 2020).

Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.
Configuration-Driven Software Debloating. In Proceedings of the 12th European
Workshop on Systems Security. 1-6.

Larry Koved, Marco Pistoia, and Aaron Kershenbaum. 2002. Access rights analysis
for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2002, Seattle, Wash-
ington, USA, November 4-8, 2002, Mamdouh Ibrahim and Satoshi Matsuoka (Eds.).
ACM, 359-372. https://doi.org/10.1145/582419.582452

Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann
Hartig. 2017. Sandcrust: Automatic Sandboxing of Unsafe Components in Rust.
In Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS’17). ACM, New York, NY, USA, 51-57. https://doi.org/10.1145/
3144555.3144562

Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. (2017).

R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. 1975. Policy/Mechanism
Separation in Hydra. In Proceedings of the Fifth ACM Symposium on Operating
Systems Principles (SOSP '75). ACM, New York, NY, USA, 132-140. https://doi.
org/10.1145/800213.806531

H. M. Levy. 1984. Capability Based Computer Systems. Digital Press.
/lwww.cs.washington.edu/homes/levy/capabook/

Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant,
Trent Jaeger, and Gang Tan. 2019. Program-mandering: Quantitative Privilege
Separation. (2019).

Marcela S Melara, Michael J Freedman, and Mic Bowman. 2019. EnclaveDom:
Privilege separation for large-TCB applications in trusted execution environ-
ments. arXiv preprint arXiv:1907.13245 (2019).

Marcela S Melara, David H Liu, and Michael] Freedman. 2019. Pyronia: Redesign-
ing Least Privilege and Isolation for the Age of IoT. arXiv preprint arXiv:1903.01950
(2019).

Darya Melicher. [n. d.]. Controlling Module Authority Using Programming Lan-
guage Design. Ph.D. Dissertation. Carnegie Mellon University.

Darya Melicher, Yangqingwei Shi, Valerie Zhao, Alex Potanin, and Jonathan
Aldrich. 2018. Using Object Capabilities and Effects to Build an Authority-safe
Module System: Poster. In Proceedings of the 5th Annual Symposium and Bootcamp
on Hot Topics in the Science of Security (HoTSoS ’18). ACM, New York, NY, USA,
Article 29, 1 pages. https://doi.org/10.1145/3190619.3191691

Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented
Subset of Java.. In Networked and Distributed Systems Security (NDSS’10), Vol. 10.
357-374.

Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the browser. In 2010
IEEE Symposium on Security and Privacy. IEEE, 481-496.

James Mickens. 2014. Pivot: Fast, synchronous mashup isolation using generator
chains. In 2014 IEEE Symposium on Security and Privacy. IEEE, 261-275.

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control. Ph.D. Dissertation. Baltimore, MD, USA.
Advisor(s) Shapiro, Jonathan S. AAI3245526.

Mark S Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2009. Caja:
Safe active content in sanitized JavaScript, 2008. Google white paper (2009).
Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 736-747.

npm, Inc. 2012. npm-shrinkwrap: Lock down dependency versions. https://docs.
npmjs.com/cli/shrinkwrap. https://docs.npmjs.com/cli/shrinkwrap

Erlend Oftedal et al. 2016. Retire]S. http://retirejs.github.io/retire.js/

Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Automated
policy synthesis for system call sandboxing. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 135:1-135:26. https://doi.org/10.1145/3428203

Andrea Parodi. 2009. Awesome Micro npm Packages (latest commit: Oct 5, 2020;
a302e14). https://git.io/JUpA4. https://git.io/JUpA4 Accessed: 2020-10-07.
Open Web Application Security Project. 2018. OWASP Top Ten Project’17.
https://www.owasp.org/index.php/Top_10-2017_Top_10. https://www.owasp.
org/index.php/Top_10-2017_Top_10 Accessed: 2018-09-27.

Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege
Escalation. In Proceedings of the 12th Conference on USENIX Security Symposium
- Volume 12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 16-16. http:

http:

http://dl.acm.org/citation.cfm?id=1267411.1267425
http://dl.acm.org/citation.cfm?id=1387589.1387611
http://dl.acm.org/citation.cfm?id=1387589.1387611
http://dl.acm.org/citation.cfm?id=1251375.1251380
https://doi.org/10.1007/978-3-662-46669-8_21
https://doi.org/10.1007/978-3-662-46669-8_21
https://deno.land/manual/getting_started/permissions
https://deno.land/manual/getting_started/permissions
https://deno.land/manual/getting_started/permissions
https://deno.land/manual/getting_started/permissions
https://doi.org/10.1145/2664243.2664276
https://doi.org/10.1145/2489804.2489811
https://doi.org/10.1145/2489804.2489811
https://doi.org/10.1145/2955811.2955821
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/581478.581484
https://developers.google.com/closure/
https://developers.google.com/closure/
https://developers.google.com/closure/
https://262.ecma-international.org/11.0/#sec-code-realms
https://262.ecma-international.org/11.0/#sec-code-realms
https://262.ecma-international.org/11.0/#sec-code-realms
https://doi.org/10.1145/2884781.2884782
https://doi.org/10.1145/2884781.2884782
https://doi.org/10.1145/582419.582452
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/800213.806531
https://doi.org/10.1145/800213.806531
http://www.cs.washington.edu/homes/levy/capabook/
http://www.cs.washington.edu/homes/levy/capabook/
https://doi.org/10.1145/3190619.3191691
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/shrinkwrap
http://retirejs.github.io/retire.js/
https://doi.org/10.1145/3428203
https://git.io/JUpA4
https://git.io/JUpA4
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
http://dl.acm.org/citation.cfm?id=1251353.1251369

//dl.acm.org/citation.cfm?id=1251353.1251369

Martin Rinard. 2011. Manipulating program functionality to eliminate security

vulnerabilities. In Moving target defense. Springer, 109-115.

[59] J. M. Rushby. 1981. Design and Verification of Secure Systems. In Proceedings
of the Eighth ACM Symposium on Operating Systems Principles (SOSP °81). ACM,
New York, NY, USA, 12-21. https://doi.org/10.1145/800216.806586

[60] Jerome H Saltzer. 1974. Protection and the control of information sharing in
Multics. Commun. ACM 17, 7 (1974), 388-402.

[61] José Fragoso Santos, Thomas Jensen, Tamara Rezk, and Alan Schmitt. 2015.
Hybrid typing of secure information flow in a JavaScript-like language. In Trust-
worthy Global Computing. Springer, 63-78.

[62] José Fragoso Santos and Tamara Rezk. 2014. An information flow monitor-

inlining compiler for securing a core of javascript. In IFIP International Information

Security Conference. Springer, 278-292.

Node Security. 2016. Continuous Security monitoring for your node apps. https:

//nodesecurity.io/

[64] Jonathan S Shapiro, Jonathan M Smith, and David J Farber. 1999. EROS: a fast

capability system. Vol. 33. ACM.

Snyk. 2021. Snyk Vulnerability Database. https://snyk.io/vuln?type=npm

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schéfer, and Frank Tip. 2012.

Correlation Tracking for Points-To Analysis of JavaScript. In ECOOP 2012 - Object-

Oriented Programming - 26th European Conference, Beijing, China, June 11-16,

2012. Proceedings. 435-458.

Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schifer, Anders Mgller,

and Michael Pradel. 2020. Extracting taint specifications for JavaScript libraries.

In ICSE °20: 42nd International Conference on Software Engineering, Seoul, South

Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,

198-209. https://doi.org/10.1145/3377811.3380390

Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. Synode:

Understanding and Automatically Preventing Injection Attacks on Node. js. In

Networked and Distributed Systems Security (NDSS’18). https://doi.org/10.14722/

ndss.2018.23071

Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,

Brad Karp, and David Maziéres. 2014. Protecting Users by Confining JavaScript

with COWL. In 11th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 14). USENIX Association, Broomfield, CO, 131-146. https:

//www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan

Michael Stepankin. 2016. [demo.paypal.com] Node.js code injection (RCE). http://

artsploit.blogspot.com/2016/08/pprce2.html. http://artsploit.blogspot.com/2016/

08/ppree2.html Accessed: 2018-10-05.

Michael Stepankin. 2016. Snyk: Code Injection in dustjs-linkedin. https://snyk.io/

vuln/npm:dustjs-linkedin:20160819. https://snyk.io/vuln/npm:dustjs-linkedin:

20160819 Accessed: 2019-03-19.

TC39. 2021. Draft Proposal for SES (Secure EcmaScript). https://github.com/tc39/

proposal-ses. https://github.com/tc39/proposal-ses Accessed: 2021-04-20.

Mike Ter Louw, Phu H Phung, Rohini Krishnamurti, and Venkat N Venkatakr-

ishnan. 2013. SafeScript: JavaScript transformation for policy enforcement. In

Nordic Conference on Secure IT Systems. Springer, 67-83.

[74] Jeff Terrace, Stephen R Beard, and Naga Praveen Kumar Katta. 2012. JavaScript

in JavaScript (js. js): sandboxing third-party scripts. In Presented as part of the

3rd USENIX Conference on Web Application Development (WebApps 12). 95-100.

Neline van Ginkel, Willem De Groef, Fabio Massacci, and Frank Piessens. 2019. A

Server-Side JavaScript Security Architecture for Secure Integration of Third-Party

Libraries. Security and Communication Networks 2019 (2019).

Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,

and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active

Learning and Regeneration. In Proceedings of the 2021 ACM SIGSAC Conference

on Computer and Communications Security (CCS 21). Association for Computing

Machinery, New York, NY, USA, 16. https://doi.org/10.1145/3460120.3484736

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,

and Jonathan M. Smith. 2018. BreakApp: Automated, Flexible Application Com-

partmentalization. In Networked and Distributed Systems Security (NDSS’18).
https://doi.org/10.14722/ndss.2018.23131

Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard. 2021.

Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module

Recontextualization. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE 2021). Association for Computing Machinery, New York,

NY, USA, 1202-1213. https://doi.org/10.1145/3468264.3468574

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient Software-based Fault Isolation. In Proceedings of the Fourteenth ACM

Symposium on Operating Systems Principles (SOSP *93). ACM, New York, NY, USA,

203-216. https://doi.org/10.1145/168619.168635

Michael Weissbacher, William K. Robertson, Engin Kirda, Christopher Kruegel,

and Giovanni Vigna. 2015. ZigZag: Automatically Hardening Web Applications

Against Client-side Validation Vulnerabilities. In 24th USENIX Security Sympo-

sium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015, Jaeyeon Jung

and Thorsten Holz (Eds.). USENIX Association, 737-752. https://www.usenix.

[58]

[63]

[68

[69

[70

[71]

[72]

[73]

[75]

[76]

[77]

[78]

[79]

[80]

Tab. 5: Compatibility results only for 31 Q1 libraries (Cf.§8.3).

MIr without Full MIr
import-time
analysis
Inferred permissions (avg.) 88.9 379.5

Compatibility:

Field access locations (out of 2387)
Packages (out of 31)

Test cases (out of 1511)

1660 (69.54%)
16 (51.61%)
1119 (74.06%)

2363 (98.9%)
26 (83.87%)
1499 (99.2%)

Tab. 6: Compatibility results only for 50 additional Q2 li-
braries (Cf.§8.3).

MIr without Full Mir
import-time
analysis
Inferred permissions (avg.) 13.3 17.38

Compatibility:

Field access locations (out of 1,044)
Packages (out of 50)

Test cases (out of 1,046)

762 (72.9%)
42 (84%)
1,032 (98.6%)

1,037 (99.3%)
47 (94%)
1,042 (99.6%)

org/conference/usenixsecurity15/technical-sessions/presentation/weissbacher
[81] Yongzheng Wu, Sai Sathyanarayan, Roland HC Yap, and Zhenkai Liang. 2012.
Codejail: Application-transparent isolation of libraries with tight program in-
teractions. In European Symposium on Research in Computer Security. Springer,
859-876.
Nicholas C. Zakas and ESLint contributors. 2013. ESLint—Pluggable JavaScript
linter. https://eslint.org/. https://eslint.org/ Accessed: 2018-07-12.
Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Small world with High Risks: A Study of Security Threats in the Npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC’19). USENIX Association, USA, 995-1010.

[82

(83]

A COMPATIBILITY BREAKDOWN (Q3)

Tab 5 and 6 report the compatibility results for (Q3) for the Q1
library subset and the Q2 popular libraries independently.

B DETAILED SECURITY ANALYSIS (Q1)

The two tables below present the details of MIR’s security evalua-
tion. Tab. 7 presents the first half—vulnerabilities we can install, for
which we have or have managed to create exploits, and which fall
under M1R’s threat model. Mir defends against 61/63 exploits and
crashes on the other two libraries; Mir crashes on these libraries
even when run without the exploit. The exploit used in MIR’s evalu-
ation was either the one was provided with the vulnerability report,
or one manually developed by the authors when no exploit came
with the vulnerability report. (The last column of Tab. 7 presents
information related to MIr’s compatibility analysis, and specifically
which Q1 libraries were part of MIr’s compatibility evaluation and
why.) Tab. 8 contains vulnerable libraries on which we did not apply
MIr and the reason why. Within a 5-hour human-effort timeout
per library, 7 libraries could not be exploited and 6 libraries could
not be installed; 33 libraries fall outside MIR’s threat model; and 23
libraries were made for a different language or platform.

C DETAILED PRIVILEGE ANALYSIS (Q2)

Tab. 9 below contains the results for MiR’s privilege analysis.

http://dl.acm.org/citation.cfm?id=1251353.1251369
https://doi.org/10.1145/800216.806586
https://nodesecurity.io/
https://nodesecurity.io/
https://snyk.io/vuln?type=npm
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.14722/ndss.2018.23071
https://doi.org/10.14722/ndss.2018.23071
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/stefan
http://artsploit.blogspot.com/2016/08/pprce2.html
http://artsploit.blogspot.com/2016/08/pprce2.html
http://artsploit.blogspot.com/2016/08/pprce2.html
http://artsploit.blogspot.com/2016/08/pprce2.html
https://snyk.io/vuln/npm:dustjs-linkedin:20160819
https://snyk.io/vuln/npm:dustjs-linkedin:20160819
https://snyk.io/vuln/npm:dustjs-linkedin:20160819
https://snyk.io/vuln/npm:dustjs-linkedin:20160819
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://doi.org/10.1145/3460120.3484736
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.1145/3468264.3468574
https://doi.org/10.1145/168619.168635
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/weissbacher
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/weissbacher
https://eslint.org/
https://eslint.org/

Tab. 7: Mir defends against 61/63 exploits against real-world libraries and crashes on the other two libraries; Mir crashes on these libraries
even when run without the exploit. The exploit used in MIR’s evaluation was either the one was provided with the vulnerability report, or
one manually developed by the authors when no exploit came with the vulnerability report (noted with M). The last column of the table lists
which libraries from the Q1 dataset where included in Q3 and which were excluded (and the reasons for their exclusion).

Name CWE Snyk Category R W X I Total Attack Exploit? Q1 Q3
access-policy CWE-78 Arbitrary Code Execution37 6 21 5 69 Print 123 yes Included
angular-expressions ~ CWE-94 Remote Code Execution 15 7 8 1 31 Write file angular-expressions-success M yes Included
cd-messenger CWE-78 Arbitrary Code Execution 242 9 144 27 422 Print JHU yes Included
cryo CWE-502 Arbitrary Code Execution 203 9 117 33 362 Print defconrussia yes Included
dns-sync CWE-9%4 Remote Code Execution 44 3 21 10 78 Write file test yes Included
domokeeper CWE-200,23,94 Arbitrary Code Execution 8 0 3 1 12 Write file domokeeper-success M yes No tests
domokeeper CWE-9%4 Arbitrary Code Execution 8 0 3 1 12 Write file domokeeper-success M yes Duplicate
ejs CWE-9%4 Arbitrary Code Execution 135 22 64 14 235 Write file ejs-success M yes Included
eslint-utils CWE-94 Arbitrary Code Execution 19 35 11 0 65 Write file eslint-utils-success M yes Crash on test
front-matter CWE-94 Arbitrary Code Execution 19 2 11 5 37 Print 1 yes Included
fun-map CWE-78 Arbitrary Code Execution 4 16 1 0 21 Print 123 yes No tests
growl CWE-9%4 Arbitrary Code Injection 25 3 12 5 45 Execute Is yes Included
grunt CWE-9%4 Arbitrary Code Execution 192 25 101 22 340 Returns Date.now yes Included
heroku-exec-util CWE-9%4 Remote Code Execution 13 9 1 2 25 Write file HACKED yes No tests
hot-formula-parser CWE-9%4 Arbitrary Code Injection 183 77 62 31 353 Write file test yes Crash on test
is-my-json-valid CWE-9%4 Arbitrary Code Execution 41 3 25 9 78 Execute cat /etc/passwd yes Included
jingo CWE-94 Arbitrary Code Execution 341 71 173 116 701 Returns Date.now yes Cannot run suite
js-yaml CWE-9%4 Arbitrary Code Execution 341 71 173 116 701 Returns Date.now yes Included
kme CWE-94 Arbitrary Code Injection 313 7 192 83 595 Write file kme-success yes Included
m-log CWE-94 Arbitrary Code Injection 20 1 17 2 40 Print injected yes No tests
marsdb CWE-9%4 Arbitrary Code Injection 457 64 167 122 810 Write file marsdb-success yes Included
mathjs CWE-9%4 Arbitrary Code Execution 5113 808 3093 1753 10767 Execute ps yes Crash on test
meta-git CWE-94 Remote Code Execution 14 0 10 7 31 Execute Is yes Included
mixin-pro CWE-9%4 Arbitrary Code Injection 28 1 18 4 51 Print hacked yes Included
mobile-icon-resizer CWE-9%4 Arbitrary Code Injection 13 7 4 2 26 Print hacked yes No tests
mock2easy CWE-94 Arbitrary Code Injection 382 49 188 136 755 Write mock2easy-success M yes No tests
modjs CWE-9%4 Arbitrary Code Injection 955 263 572 199 1989 Write modjs-succes M yes Crash on test
modulify CWE-94 Arbitrary Code Injection 16 2 8 3 29 Print hacked yes Included
mol-proto CWE-9%4 Arbitrary Code Injection 57 2 37 8 104 Write file mol-proto-success M yes Included
mongo-edit CWE-9%4 Arbitrary Code Injection 239 17 110 62 428 Write file mongo-edit-success M yes Cannot run suite
mongo-express CWE-9%4 Remote Code Execution 331 48 164 53 59 Execute id yes Cannot run suite
mongo-parse CWE-9%4 Arbitrary Code Injection 42 5 19 7 73 Write file hacked yes Crash on test
mongodb-query-parser CWE-94 Remote Code Execution 4 2 1 1 8 Write file test-file yes Included
mongoosemask CWE-94 Arbitrary Code Injection 35 7 23 9 74 Print evil code yes Included
mongui CWE-94 Arbitrary Code Injection 158 28 85 32 303 Write file mongui-sucess M yes No tests
morgan CWE-94 Arbitrary Code Injection 24 4 17 5 50 Print hello yes Included
mosc CWE-78 Arbitrary Code Execution 7 1 5 2 15 Write file Song yes Included
node-extend CWE-78 Arbitrary Code Execution 13 2 7 2 24 Print 123 yes No tests
node-import CWE-78 Arbitrary Code Execution 26 5 11 1 43 Write file JHU yes Cannot run suite
node-rules CWE-78 Arbitrary Code Execution 55 4 36 17 112 Print 123 yes Included
node-serialize CWE-502 Arbitrary Code Execution 15 3 10 3 31 Execute Is yes Included
notevil CWE-693 Remote Code Execution 70 6 42 16 134 Return this context yes Crash on test
notevil CWE-94 Remote Code Execution 70 6 42 16 134 Print pwned yes Duplicate
pg CWE-9%4 Arbitrary Code Execution 105 9 41 22 177 Print process.env yes Cannot run suite
pixl-class CWE-78 Arbitrary Code Execution 12 1 5 2 2 Print 123 yes No tests
protojs CWE-9%4 Arbitrary Code Injection 149 19 75 16 259 Write file protojs-success M yes Duplicate
realms-shim CWE-265 Sandbox Breakout 204 3 72 5 284 Messed with Object.toString M yes Crash on test
reduce-css-calc CWE-9%4 Arbitrary Code Injection 12 19 2 24 Read /etc/passwd yes Included
safe-eval CWE-265 Sandbox Breakout 9 1 5 1 16 Return process yes Included
safe-eval CWE-265 Sandbox Escape 9 1 5 1 16 Execute whoami yes Duplicate
safer-eval CWE-94 Arbitrary Code Execution 24 4 14 3 45 Execute id yes Included
safer-eval CWE-9%4 Arbitrary Code Execution 24 4 14 3 45 Print process.env yes Duplicate
safer-eval CWE-9%4 Arbitrary Code Execution 24 4 14 3 45 Write file safer-eval-success M yes Duplicate
sandbox CWE-9%4 Arbitrary Code Execution 40 1 22 7 70 Print process.pid yes Included
serialize-to-js CWE-502 Arbitrary Code Execution 38 17 23 7 85 Execute Is yes Included
shiba CWE-9%4 Arbitrary Code Execution 341 71 173 116 701 Returns Date.now yes Cannot run suite
static-eval CWE-9%4 Arbitrary Code Execution 39 1 25 14 79 Print process.env yes Included
static-eval CWE-9%4 Arbitrary Code Execution 39 1 25 14 79 Print process.pid yes Duplicate
thenify CWE-78 Arbitrary Code Execution 9 1 6 2 18 Write file Song yes Included
value-censorship CWE-693 Arbitrary Code Execution 18 2 6 3 29 Access the Function constructor yes Included
typed-function CWE-94 Arbitrary Code Execution 163 10 123 31 327 Execute whoami Crash: Module alters proto Crash on lib
vm2 CWE-265 Sandbox Breakout 0 2 4 1 17 Executes Error command Crash: Module applies wrapping ~ Crash on lib

Tab. 8: This table contains vulnerable libraries on which we did not apply Mir and the reason why. Within a 5-hour human-effort timeout per
library, 7 libraries could not be exploited and 6 libraries could not be installed; 33 libraries fall outside MIR’s threat model; and 23 libraries
were made for a different language or platform.

Name CWE Snyk categorization Why not included Details

addax CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
angular CWE-78 Arbitrary Code Execution Outside MIR’s threat model SVG sanitization

angular CWE-94 Arbitrary Code Execution Outside MIR’s threat model Combines several vulns, incl. XSS
bunyan CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
cocos-utils CWE-94 Arbitrary Code Execution Outside MIR’s threat model Command injection / sanitization
commit-msg CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
constantinople CWE-264 Sandbox Breakout Outside MIr’s threat model Typescript

discord-markdown CWE-79 Remote Code Execution Outside Mir’s threat model XSS / sanitization

express-cart CWE-94 Arbitrary Code Execution Outside MIr’s threat model Path traversal

expressfs CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
git-lib CWE-94 Remote Code Execution Outside MIr’s threat model Command injection / sanitization
git-promise CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
gity CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
handlebars CWE-94 Arbitrary Code Execution Outside MIR’s threat model HTML sanitizer

jsrsasign CWE-94 Remote Code Execution Outside MIR’s threat model Package specific problem
listening-processes CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
local-devices CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
locutus CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
mathjs CWE-94 Arbitrary Code Execution Outside MIR’s threat model Unicode attack

mversion CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
node-os-utils CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
npm-git-publish CWE-94 Remote Code Execution Outside MIR’s threat model Command injection / sanitization
nuclide CWE-94 Arbitrary Code Execution Outside MIr’s threat model XSS-like vulnerability in Atom
office-converter CWE-94 Remote Code Execution Outside MIr’s threat model Command injection / sanitization
open CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
pdf-image CWE-94 Remote Code Execution Outside MIr’s threat model Command injection / sanitization
pomelo-monitor CWE-94 Remote Code Execution Outside MIr’s threat model Command injection / sanitization
require-node CWE-94 Arbitrary Code Execution Outside MIR’s threat model Path traversal

sanitize-html CWE-94 Arbitrary Code Execution Outside MIR’s threat model HTML sanitizer

strapi CWE-94 Arbitrary Code Injection Outside MIR’s threat model Attacker controls which package to install
tomato CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
wifiscanner CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
wiki-plugin-datalog CWE-94 Arbitrary Code Injection Outside MIR’s threat model Command injection / sanitization
windows-edge CWE-94 Remote Code Execution ~Outside MIR’s threat model Command injection / sanitization
sanitize-html CWE-94 Remote Code Execution Different platform Raspbian module

react-dev-utils CWE-94 Arbitrary Code Execution Different platform Windows Platform

jstree CWE-94 Arbitrary Code Injection Different platform Client-side library (Web)

quill CWE-94 Arbitrary Code Execution Different platform Client-side library (Web)
nd-validator CWE-94 Arbitrary Code Injection Different platform Client-side library (Web)

xterm CWE-94 Remote Code Execution Different language C/C++

electron CWE-94 Arbitrary Code Execution Different language C/C++

haraka CWE-94 Remote Code Execution Different language C, incomplete MIME

gifsicle CWE-94 Arbitrary Code Execution Different language Native C add on

electron CWE-228 Arbitrary Code Execution Different language C/C++

electron CWE-264 Arbitrary Code Execution Different language C/C++

electron CWE-94 Arbitrary Code Execution Different language C/C++

electron CWE-453 Arbitrary Code Execution Different language C/C++

electron CWE-1188 Arbitrary Code Execution Different language C/C++

cordova-android CWE-264 Arbitrary Code Execution Different language Java/JDK

soletta-dev-app CWE-94 Arbitrary Code Injection Different language C/C++

electron CWE-284 Arbitrary Code Injection Different language C/C++

logkitty CWE-94 Remote Code Execution Different language Typescript

infraserver CWE-94 Arbitrary Code Execution Different language Python

gitlabhook CWE-94 Arbitrary Code Execution Different language Python

jquery-file-upload CWE-94 Arbitrary Code Execution Different language Php

blueimp-file-upload CWE-434 Arbitrary Code Execution Different language Php

microservicebus.node CWE-94 Arbitrary Code Injection Could not install

nameless-cli CWE-94 Arbitrary Code Injection Could not install

gitlab-workflow CWE-94 Arbitrary Code Execution Could not install

m2m-supervisor CWE-94 Arbitrary Code Injection Could not install

wxchangba CWE-94 Arbitrary Code Injection Could not install

pouchdb CWE-94 Arbitrary Code Injection Could not install

nodebb CWE-94 Arbitrary Code Execution Could not exploit

serialize-javascript CWE-94 Arbitrary Code Injection Could not exploit

total js CWE-94 Remote Code Execution Could not exploit

cordova-plugin-inappbrowser

Arbitrary Code Execution Could not exploit

irc-framework CWE-94 Remote Code Execution Could not exploit
mathjs CWE-94 Arbitrary Code Execution Could not exploit
realms-shim CWE-265 Sandbox Breakout Could not exploit

Tab. 9: This table presents the privilege analysis results across all libraries. Full is the default privilege; R, W, X, and I are the numbers of
permissions, with RWXI being the sum; and PR is the privilege reduction that Mir achieves.

Full R w X I RWXI PR
algebra 1288 9 16 5 7 37 348X
arr-diff 1384 3 1 1 0 276.8X

arr-flatten 1288 3 1 1 0 5 2576X
array-last 1288 6 1 5 1 13 991X
array-range 1288 3 1 2 0 214.7X
array.chunk 1288 6 1 2 0 9 1431X
concat-stream 1288 21 1 9 4 35 368X
deep-bind 1288 4 1 3 1 143.1%
document-ready 1288 3 1 2 0 6 2147X
file-size 1384 5 1 2 0 8 173X
fs-promise 1288 9 0 2 4 15 859X
get-value 1288 6 1 4 1 12 107.3X
group-array 1288 13 1 11 6 31 415X
has-key-deep 1292 1 1 0 0 2 646X
has-value 1288 6 1 4 2 13 991X
he 1288 8 0 3 0 11 117.1X
identity-function 1288 1 1 0 0 2 644X
in-array 1296 1 1 (U] 2 648X
is-empty-object 1288 5 1 2 0 8 161X
is-generator 1288 2 2 0o 0 4 322X
is-number 1288 4 1 2 0 7 184x
is-promise 1288 1 1 0o 0 2 644X
is-sorted 1288 4 1 2 0 7 184X
left-pad 1296 1 1 0 0 2 648X
missing-deep-keys 1288 4 1 3 2 10 1288X
ndarray 1288 18 1 10 2 31 415X
node-du 1400 10 1 7 3 21 66.7X
node-glob 1400 46 3 28 13 90 15.6X
node-slug 1400 5 1 2 1 9 155.6X
node-stream-spigot 1400 16 4 6 3 29 483X
not-defined 1400 4 1 2 0 7 200x
once 1400 9 2 4 1 16 87.5X
pad-left-simple 1400 4 1 2 0 200X
pad-left 1400 3 1 2 1 7 200X
parse-next-json-value 1400 3 1 2 1 7 200X
periods 1400 2 0 0 0 2 700X
property-validator 1400 8 1 2 6 17 824X
rimraf 1400 13 2 6 4 25 56X
rtrim 1400 1 1 0 0 2 700X
schema-inspector 1544 3 1 1 1 6 257.3X
set-value 1400 9 1 5 1 16 875X
static-props 1400 4 2 10 7 200X
syncthrough 1400 10 1 6 4 21 66.7X
through2-map 1292 6 4 3 2 15 861X
through2 1288 12 3 5 2 22 585X
time-stamp 1288 3 1 2 0 6 214.7X
unordered-array-remove 1412 1 1 0 0 2 706X
zipmap 1288 10 1 3 0 14 92X
access-policy 1642 37 6 21 5 69 238X
angular-expressions 659 4 9 25 1 79 83X
cd-messenger 706 32 2 15 7 56 126X
cryo 313 16 1 9 0 26 12X
dns-sync 664 21 2 12 5 40 16.6X
ejs 336 50 14 27 4 95 35X
front-matter 327 13 2 5 1 21 156X
growl 319 13 2 5 1 21 152X
grunt 2559 281 29 159 30 499 51X
is-my-json-valid 327 25 2 17 5 49 67X
js-yaml 3362 341 21 209 87 658 51X
kmc 1899 44 15 19 13 91 209X
marsdb 3638 143 8 112 31 294 124X
meta-git 325 32 5 19 7 63 5.2X
mixin-pro 328 14 1 9 1 25 131X
modulify 312 10 2 5 2 19 164X
mol-proto 4126 23 3 12 7 45 917X
mongodb-query-parser 1326 39 27 21 9 96 13.8X
mongoosemask 310 5 5 10 1 31 10x
morgan 245 24 4 17 5 50 49X
mosc 311 3 1 2 0 6 51.8X
node-rules 664 19 3 9 3 34 195X
node-serialize 313 7 1 4 0 12 261X
reduce-css-calc 3325 60 12 27 7 106 314X
safe-eval 330 9 1 5 1 16 206X
safer-eval 661 20 7 11 3 41 161X
sandbox 326 21 1 10 5 37 88X
serialize-to-js 961 32 3 19 3 57 169X
static-eval 331 8 1 4 1 14 236X
thenify 330 9 1 6 2 18 183X
value-censorship 330 14 2 6 5 27 122X
min 245 1 0 0 0 2 3.5X
max 4126 341 29 209 87 658 706X
average 1212.87 22.12 3.37 12.59 4.11 42.21 143.48X

18

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Example: A De-serialization Library
	2.2 Overview: Applying Mir on Serial

	3 Threat Model
	4 Permission Model and Language
	5 Permission Inference
	5.1 Static Analysis of Required Permissions
	5.2 Dynamic, Import-time Permission Analysis

	6 Quantifying Privilege Reduction
	7 Runtime Permission Enforcement
	8 Evaluation
	8.1 Real-World Vulnerability Defense (Q1)
	8.2 Privilege Reduction (Q2)
	8.3 Compatibility Analysis (Q3)
	8.4 Efficiency and Scalability (Q4)
	8.5 Comparison with Debloating (Q5)

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Compatibility Breakdown (Q3)
	B Detailed Security Analysis (Q1)
	C Detailed Privilege Analysis (Q2)

