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Abstract

WebAssembly is the new low-level language for the web and
has now been implemented in all major browsers since over a
year. To ensure the security, performance, and correctness of
future web applications, there is a strong need for dynamic
analysis tools for WebAssembly. However, building such
tools from scratch requires knowledge of low-level details
of the language and its runtime environment.

This paper presents Wasabi, the first general-purpose
framework for dynamically analyzing WebAssembly. Wasabi
provides an easy-to-use, high-level API that supports heavy-
weight dynamic analyses. It is based on binary instrumen-
tation, which inserts calls to analysis functions written in
JavaScript into a WebAssembly binary. Dynamically ana-
lyzing WebAssembly comes with several unique challenges,
such as the problem of tracing type-polymorphic instruc-
tions with analysis functions that have a fixed type, which
we address through on-demand monomorphization.

Our evaluation on compute-intensive benchmarks and
real-world applications shows that Wasabi (i) faithfully pre-
serves the original program behavior, (ii) imposes an over-
head that is reasonable for heavyweight dynamic analysis,
and (iii) makes it straightforward to implement various dy-
namic analyses, including instruction counting, call graph
extraction, memory access tracing, and taint analysis.

CCS Concepts - Software and its engineering — Dy-
namic analysis; Software maintenance tools; Frameworks.
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1 Introduction

WebAssembly [2, 25] is a new, low-level binary instruction
format for the web. Its core use case is as a compilation target
for systems programming languages like C, C++, or Rust.
By providing low-level control over the memory layout and
by closely mapping to hardware instructions, WebAssembly
provides near-native and predictable performance [25, 27],
unlike managed languages, such as JavaScript and Java. As
of last year, WebAssembly support is enabled in all major
browsers [46], making it portable across different vendors,
architectures, and devices, after prior attempts to establish
low-level code on the web have failed, e.g., ActiveX [14],
(Portable) Native Client [5, 50], or asm.js [26]. To provide
some safety guarantees when running untrusted web code,
WebAssembly type checks all instructions, strictly separates
code from data, verifies that accesses to the linear memory
are in-bounds, and offers well-defined interfaces for interac-
tion between modules. Despite its young age, WebAssembly
has already been adopted for various applications, includ-
ing games!, cryptography [6], machine learning [23], and
medical applications [18]. WebAssembly, it seems, will be a
ubiquitous and important instruction set for years to come.

Dynamic analysis tools have a long history of success
for languages other than WebAssembly, e.g., to check and
understand correctness, security, and performance proper-
ties [1, 10, 16, 41, 43, 44]. The need for dynamic analysis
is particularly strong for highly dynamic languages, such
as JavaScript [4] and for languages with a lot of low-level
control, such as C and C++. As a compilation target of sys-
tems languages and with JavaScript as the host environment,
WebAssembly sits exactly at the intersection of these two
kinds of languages, making it a prime target for dynamic
analysis.

Creators of a dynamic analysis usually can choose be-
tween two options. One option is to implement the analysis
from scratch. A common strategy is to add instrumentation
code to the program, but this requires an in-depth under-
standing of the instruction set and tools to manipulate it.
Another common strategy is to modify the runtime environ-
ment of the program, e.g., a virtual machine. Unfortunately,
such modifications require detailed knowledge of the vir-
tual machine implementation, and they tie the analysis to a
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Pin [31] Valgrind [34] DiSL [32]  RoadRunner [19]  Jalangi [40] Wasabi
(Primary) platform x86-64 x86-64 JVM JVM JavaScript WebAssembly
Instrumentation of ...  native binaries native binaries byte code  byte code source code binary code
Analysis language C/C++ C Java Java JavaScript JavaScript
API style instrumentation %ow—level . aspect— event stream callbacks/hooks  callbacks/hooks
+ callbacks/hooks  instrumentation  oriented

Table 1. Overview of existing dynamic analysis frameworks and Wasabi.

particular version of the runtime environment. Since Web-
Assembly serves as a compilation target of other languages,
source-level instrumentation of these languages might ap-
pear to be another possible strategy. However, typical web ap-
plications heavily rely on third-party code, for which source
code is unavailable at the client-side.

Instead of implementing a dynamic analysis from scratch,
the second option is to build upon general-purpose dynamic
analysis frameworks. Table 1 lists some popular frameworks:
Pin [31] and Valgrind [34] for native programs, DiSL [32]
and RoadRunner [19] for JVM byte code, and Jalangi [40]
for analyzing JavaScript programs. Building on an existing
framework reduces the overall effort required to build an
analysis and enables the analysis author to focus on the de-
sign of the analysis itself. Unfortunately, there currently is
no general-purpose dynamic analysis framework for Web-
Assembly.

This paper presents Wasabi, the first general-purpose
framework for dynamic analysis of WebAssembly.? Wasabi
provides an easy-to-use, high-level API to implement heavy-
weight analyses that can monitor all low-level behavior. The
framework is based on binary instrumentation, which in-
serts WebAssembly code that calls into analysis functions
in between the program’s original instructions. The anal-
yses themselves are written in JavaScript and implement
analysis functions, called hooks, to perform arbitrary opera-
tions whenever a particular instruction is executed. To limit
the overhead that a dynamic analysis imposes, Wasabi sup-
ports selective instrumentation, i.e., it instruments only those
instructions that are relevant for a particular analysis.

As a simple example of a Wasabi-based analysis, Figure 1
shows our re-implementation of the profiling part of a cryp-
tomining detector [47]. Unauthorized use of computing re-
sources is detected by monitoring the WebAssembly pro-
gram and gathering an instruction signature that is unique
for typical mining algorithms. Implementing this analysis in
Wasabi takes ten lines of JavaScript, which use the frame-
work’s binary hook to keep track of all executed binary
operations. In contrast, the original implementation is based
on a special-purpose instrumentation of WebAssembly that
the authors of [47] implemented from scratch. This and more

2“Wasabi” stands for WebAssembly dynamic analysis using binary
instrumentation.

const signature = {};
Wasabi.analysis.binary = function(loc, op) {
switch (op) {
case "i32.add":
case "i32.and":
case "i32.shl":
case "i32.shr_u":
case "i32.xor":
signaturelop] = (signaturelop] || @) + 1;
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Figure 1. Cryptominer detection through instruction profil-
ing, as described in a recent WebAssembly analysis [47].

sophisticated analyses (Section 4.2) show that Wasabi allows
implementing analyses with little effort.

Apart from being the first dynamic analysis framework
for WebAssembly, Wasabi addresses several unique technical
challenges. First, to provide a high-level API for tracking low-
level behavior, the approach abstracts away various details
of the WebAssembly instruction set. For example, Wasabi
bundles groups of related instructions into a single analysis
hook, resolves relative target labels of branch instructions
into absolute instruction locations, and resolves indirect call
targets to actual functions. Second, Wasabi transparently
handles the interaction of the WebAssembly code to ana-
lyze and the JavaScript code that implements the analysis.
A particular challenge is that WebAssembly functions must
statically declare fixed parameter types, while some Web-
Assembly instructions are polymorphic, i.e., they can be
executed with different numbers and types of arguments. To
insert hook calls for polymorphic instructions, a different
monomorphic variant of the hook must be generated for
every concrete combination of argument types. Wasabi uses
on-demand monomorphization to automatically create such
monomorphic hooks, but only for those type variants that
are actually present in the given WebAssembly code. Third,
Wasabi faithfully executes the original program and even
preserves its memory behavior, which is useful to imple-
ment memory profilers. To this end, none of the inserted
instructions requires access or modification of the program’s
original memory. Instead, analyses can track memory op-
erations in JavaScript, i.e., in a separate heap that does not
interfere with the WebAssembly heap.



For our evaluation, we implement eight analyses on top
of Wasabi, including basic block profiling, memory access
tracing, call graph analysis, and taint analysis. We find that
writing a new analysis is straightforward and typically takes
at most a few dozens of lines of code. As expected by de-
sign, Wasabi faithfully preserves the original program be-
havior. The framework instruments large binaries quickly
(e.g., 40 MB in about 15 seconds). The increase in binary
size and the runtime overhead imposed by Wasabi depend
greatly on the program and which instructions in it shall be
analyzed. For most instructions, thanks to selective instru-
mentation, code size increases by less than 1%, but in the
worst case, when every single instruction in PolyBench/C
is instrumented, code size increases by 742%. The runtime
overhead can be below 1.02x for analyzing instructions such
as drop and select, 2.8x for analyzing calls, and up to 163x
when analyzing every single instruction of heat-3d from the
PolyBench/C benchmark suite. These results are in line with
existing frameworks for heavyweight dynamic analysis.

In summary, this paper contributes the following:

e We present the first general-purpose framework for dy-
namically analyzing WebAssembly code, an instruction
format that is becoming a cornerstone of future web ap-
plications.

e We present techniques to address unique technical chal-
lenges not present in existing dynamic analysis frame-
works, including on-demand monomorphization of analy-
sis hooks and static resolution of relative branch targets.

e We show that Wasabi is useful as the basis for a diverse
set of analyses, that implementing an analysis takes very
little effort, and that the framework imposes an overhead
that is reasonable for heavyweight dynamic analysis.

e We make Wasabi available as open-source, enabling others
to build on it: http://wasabi.software-lab.org.

2 Approach

This section describes our framework for dynamically analyz-
ing WebAssembly programs. We give an overview of Wasabi
and the design decisions that have led to it (Section 2.1),
introduce Mini-Wasm, a WebAssembly core language, (Sec-
tion 2.2), describe the analysis API (Section 2.3), and finally
present some details of the instrumentation (Section 2.4).

2.1 Overview

Figure 2 gives on overview of Wasabi. The inputs are a Web-
Assembly binary to analyze (top-left) and a dynamic analysis
written in JavaScript (bottom-left). The rationale for choos-
ing JavaScript as the analysis language is twofold. First, it is
widely used in the web and hence well-known to people in-
terested in dynamic analysis for the web. Second, JavaScript
is the only high-level language that is directly supported by
all platforms that currently execute WebAssembly.
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Figure 2. Wasabi’s instrumentation and analysis phases.

The framework has two phases: static instrumentation and
analysis at runtime. The first phase augments the given Web-
Assembly binary with instructions that call into the analysis
implementation. To this end, the instructions of the original
program are interleaved with calls to low-level analysis hooks.
The low-level hooks are implemented in JavaScript code and
generated by Wasabi. At runtime, the low-level hooks then
call high-level analysis hooks, which the analysis author im-
plements. The Wasabi runtime provides further information,
e.g., the types of functions in the program, to the analysis.

Ahead-of-time binary instrumentation offers three impor-
tant advantages over alternative designs. First, it is inde-
pendent of the execution platform that WebAssembly runs
on and robust to changes in current platforms. Suppose we
would instead modify a specific implementation of Web-
Assembly, e.g., in Firefox, then Wasabi could not analyze
programs executed elsewhere. Moreover, Wasabi would risk
to become outdated when the execution platform evolves.
Second, binary instrumentation enables Wasabi to support
all languages that compile to WebAssembly, which currently
include C/C++ [52], Rust [15], Go [33], and TypeScript [39].
Alternatively, we could rely on source-level instrumentation
for these languages, but since the source code of WebAssem-
bly running on websites is often unavailable, this is not an
option if we want to support, e.g., security applications like
reverse engineering. Third, ahead-of-time instrumentation
avoids runtime overhead compared to instrumenting code
during the execution [9, 31, 34]. Since WebAssembly, in con-
trast to other binary formats, does not suffer from language
features that make ahead-of-time instrumentation inherently
difficult, such as self-modifying code or mixed code and data,
Wasabi can reliably instrument code ahead-of-time.

2.2 Mini-Wasm

For a self-contained and concise presentation, we now in-
troduce Mini-Wasm, a simplified core of WebAssembly. The
Wasabi implementation supports the entire WebAssembly
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Module and sections

module ::= function® global* start® table” memory’

function ::= typeg e (import | code) export”
global ::= type,, (import | init) export®
start = idxpyp,
table ::= import” idxpyn." export™
memory ::= import’ byte® export*
import ::= "name",  export ::= "name"
code ::= (local type,,)" instr*

init == instr*

instr ::= nop | drop | select Instructions
| type,q;-const value | unary | binary

| type,qr-load | type,,;.store | memory.grow

| (set | get | tee)_local idxj,cq | (set | get)_global idxgiopal

| call idxpyp, | call_indirect typefyn. | return

| block | loop | if | else | end

| br label | br_if label | br_table label*
unary ::=1i32.eqz | ... | f32.neg | ... | f32.convert_s/i32 | ...
binary ::=i32.add | ... | i32.eq | ...

typeyq v= 132 | i64 | £32 | f64 Types, labels, indices
typefunc = typeyal” — typeya”

label € N, idxfunc | global | local € N

Figure 3. Abstract syntax of Mini-Wasm.

language. Figure 3 shows the grammar of Mini-Wasm mod-
ules. A module corresponds to a single binary file and con-
tains functions, global variables, an optional start function,
and at most one table and memory. Each of these have a name
only when they are imported or exported, and otherwise
are referenced by integer indices. The table maps indices to
functions and is used for indirect calls, e.g., to implement
function pointers or virtual calls. Similar to native programs,
and unlike in managed languages with garbage collection,
WebAssembly memory is a linear sequence of bytes, which
can be increased at runtime with memory . grow.

WebAssembly execution is a stack machine with per-function

locals, similar to the JVM [29]. One distinctive feature of Web-
Assembly, which is relevant for Wasabi, is how control-flow
is encoded. Unlike in the JVM or native code, instructions are
structured into well-nested, implicitly labeled blocks. Instead
of unrestricted gotos that directly jump to an instruction off-
set, branch instructions can only target blocks in which they
are enclosed. The destination block is referenced by a non-
negative integer label, where zero indicates the immediately
enclosing block. Depending on the block type, the next exe-
cuted instruction is either the first one inside the block (for
loop blocks, rendering the branch a backward jump) or the
next instruction after the block’s matching end instruction
(for block, if, and else blocks, thus a forward jump). For
example, in Figure 4, the label 1 at line 4 references the block
at line 1, and hence is a jump forward to line 8. Section 2.4
describes how Wasabi handles this control-flow encoding.

1 block <==-----== s

2 block |

3 get_local 0 |

4 br_if 1 --='; block reference by label
5 ;5 next instruction if local #0 == false

6 end

7 end ;; matching end for first block

8 ;; next instruction if local #0 == true

Figure 4. Structured control-flow in WebAssembly.

WebAssembly is statically type checked and knows four
primitive types for globals, locals, and stack values: 32 and 64
bit integers (132, 164), and single and double precision floats
(f32, f64). Many WebAssembly instructions are polymorphic
in the sense that the input and result types vary depending
on the context in which the instruction is executed. For
example, call and return pop and push different types
depending on the function type of the called and current
function, respectively. Similarly, the instruction types for
accesses to locals and globals depend on the referenced local
and global variable.

For drop, which removes the current stack top, and select,
which pushes one of two values depending on a condition,
the types cannot be simply looked up in the module, but de-
pend on the previously executed code. For example, a drop
following an 132.const has 132 as input type, whereas a
drop following a call that returns an 64 value has f64 as
input type. The many possible typed instructions pose a
challenge for generating Wasabi’s hooks, which we explain
along with our solution in Section 2.4.

2.3 Analysis API

Wasabi offers analysis authors an API with hooks to be
implemented by the analysis. The API is both powerful
enough to enable arbitrary dynamic analyses and high-level
enough to spare the analysis author dealing with irrelevant
details. Table 2 shows the hooks,® along with their argu-
ments and types. The hooks can be roughly clustered into
six groups: Instructions related to stack manipulation (const,
drop, select), operations (unary, binary), accesses and
management of variables and memory (local, global, load,
store, memory_grow), function calls (call_pre, call_post,
return), control flow (br, br_if, br_table), and blocks
(begin, end). Each hook implementation receives details
about the respective instruction, e.g., its inputs and outputs,
as well as the code location of the instruction.

The API is designed to ensure four important properties.

o Full instruction coverage. It covers all WebAssembly in-
structions and provides all their inputs and results to the
analysis. This property is crucial to implement arbitrary
dynamic analyses that can observe all runtime behavior.

3For brevity, the table leaves out five additional hooks that Wasabi supports,
start, nop, unreachable, if, and memory_size, for a total of 23 hooks.
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Figure 5. Mapping of WebAssembly types to JavaScript.

We describe in Section 2.4 how selective instrumentation

limits the costs to be paid for this flexibility.
e Grouping of instructions. The API groups related WebAs-
sembly instructions into a single hook, which significantly
reduces the number of hooks analyses must implement.
Providing one hook per instruction to the analysis would
require a huge number of hooks (e.g., there are 123 nu-
meric instructions alone), whereas Wasabi’s API provides
23 hooks only. To distinguish between instructions, if nec-
essary, the hooks receive detailed information as argu-
ments. For example, the binary hook receives an op ar-
gument that specifies which binary operation is executed.
To hide the various variants of polymorphic instructions
from analyses authors, Wasabi also maps all variants of
the same kind of instruction into a single hook. For ex-
ample, the call instruction can take different numbers
and types of arguments, depending on the called function,
which are represented in the hook as an array of varying
length.
Pre-computed information. Wasabi provides pre-computed
information along with some hooks because the runtime
values on their own are not informative enough for an
analysis. For example, the three branch-related hooks re-
ceive target objects that contain the statically resolved,
absolute location of the next instruction that will be ex-
ecuted, if the branch is taken, alongside the low-level
relative branch label. Similarly for indirect calls, Wasabi
resolves the runtime table index to the actually called
function.
Faithful type mappings. Finally, the API faithfully maps
typed values from WebAssembly to JavaScript. Figure 5
shows the four primitive WebAssembly types and how
they are represented without loss of precision in a Wasabi
analysis. 132, f32, and f64 are represented as a JavaScript
number. Since JavaScript has no native support for 64-bit
integers, Wasabi transparently maps them to long. js*
objects. Conditions, which are i32s with value 0 or 1 in
WebAssembly, are mapped to JavaScript’s booleans.

The API gives analysis authors the power to implement so-
phisticated dynamic analyses with little effort. In particular, it
is straightforward to implement memory shadowing [34, 53],
a feature useful, e.g,. for tracking the origin of undesired val-
ues or for taint analysis. To associate some meta-information
with a memory value, all an analysis must do is to maintain

*https://github.com/dcodel O/longjs

Hook Name Arguments and Types

const /drop value: type,

select condition: boolean, first: type,,, second: type,q
unary op, input: type,,;, result: type,q;
binary op, first: type,q, second: type,,;, result: type,,
local / global op, index: number, value: type,,
where op: instruction string, e.g., i132.add or get_local

memory_grow
load / store

delta: number, previousSize: number
op, memarg, value: type,

where memarg: {addr: number, offset: number }
call_pre func: number, args, tableIndex: (number | null)
where args: [type,,], tableIndex == null iff direct call

call_post /return results: [type, ]

br target
br_if target, condition: boolean

br_table table: [ target], tableIndex: number
where target: { label: number, location: location}
begin type
end type, begin: location
where type: string € {function,block, loop, if,else}
every hook location: { func: number, instr: number 3}, ...

Table 2. API of the high-level analysis hooks.

a map of memory locations to meta-information, and to up-
date the meta-information on memory-related instructions.
One of our example analyses (Section 4.2) is a taint analysis
that implements memory shadowing in this way.

2.4 Binary Instrumentation

The following presents the core of Wasabi: its binary instru-
mentation component, which inserts code that eventually
calls the high-level analysis hooks described in the previous
subsection. We first describe the instrumentation of indi-
vidual WebAssembly instructions (Section 2.4.1) and how
Wasabi reduces overhead via selective instrumentation (Sec-
tion 2.4.2). Then, we highlight four instrumentation chal-
lenges that are unique to WebAssembly and describe how
Wasabi addresses them (Sections 2.4.3 to 2.4.6).

2.4.1 Instrumentation of Instructions

To keep track of all instructions that occur during the execu-
tion, Wasabi inserts for each instruction a call to an analysis
hook. Table 3 illustrates the instrumentation for a subset
of all instructions. Row 1 shows the simplest case: a const
instruction that pushes an immediate value on the stack.
The instrumentation adds a call to the corresponding hook.
Since the hook receives the value produced by the const
instruction as an argument, the value is pushed once more
on the stack prior to the call. After the call to the hook, the
stack will be the same as in the original, uninstrumented
program.


https://github.com/dcodeIO/long.js

Instructions

Originall = Instrumented Explanations and other changes made to the module

Constants (type,q;.const), similarly simple instructions that only produce a value:

i32.const value i32.const value original instruction
1 i32.const value duplicate constant value for the hook
call idxhooks.i32.const instrumentation hook, also needs to be added as function import to module

General instructions (unary, binary, load, store):

tee_local idxyemp input local store instruction input(s) into freshly generated local(s)
f32.abs f32.abs
2 tee_local idxXiemp result local store instruction result into freshly generated local

get_local idxtemp input local

get_local idxtempresultlocal ) )
call idxhooks.f32.abs one low-level hook per instruction

push inputs and results on stack as hook arguments

Calls (call and call_indirect), similarly also returns:
tee_local idXiemp input local store call argument(s) in freshly generated local(s)
i32.const idxpn pass index of called function to hook

1 1 i . .
get_ oca idtemp input local } pass stored inputs to monomorphized call_pre hook
3 call ldxhooks.call_pre_(typelml)*
call idxpyn call idxpn.
tee_local idxemp result local store call result(s) in freshly generated local(s)

et_local id i .
get- 1@Xtemp input local } pass stored results to monomorphized call_post hook

call idxhooks .call_post_(typejocar)”

Polymorphic drop and select instructions:
type check all instructions to keep track of abstract stack

4 (preceding code) (preceding code) here: assuming preceding instructions produce a stack top value of type type,,;,
. L then the following drop has type [type, ;1 — []
drop call idxhooks.drop_types matching monomorphic hook call is inserted (consumes stack top in place of drop)

Blocks/structured control-flow (block, loop, if, else, end) and branches (br, br_if, br_table):

label: block label: block label is implicit and not encoded in the Wasm binary
call idxhooks.begin_block every block type (block/loop/if/else) has own low-level begin hook
otherlabel: loop otherlabel: loop
call idxhooks.begin_loop loop begin hook is called once per iteration

i32.const 1 (label) “raw” (i.e., unresolved relative) target label is passed to hook as integer
i32.const resolve(label) resolved (at instrumentation time) label to next executed instruction is also passed
5 call idXhooks.br branch hooks must come before the instruction

call idxhooks.end,loop
call idxhooks.end_block
br 1 (label) br 1 (label)

} explicitly call end hooks of all “traversed” blocks, for dynamic block nesting

o (not shown:) end hooks receive location of the end and of the matching block begin
call idxhooks.end_loop every block type (block/loop/if/else) has own end hook (cf. begin_* hook)

end end
call idxhooks .end_block
end end

Instructions with 164 inputs or results, value is split for passing to hook:

i64.const value i64.const value if instruction has side-effects, its result is duplicated via a local instead (but const here)

i64.const value } push lower 32-bit half of 164 value as 132 on stack
i32.wrap/i64

6 i64.const wvalue
i64.const 32
i64.shr_s
i32.wrap/i64
call idxhooks.i64.const cannot pass 164 values to hooks, so they take a tuple of (132, i32) instead

shift upper 32-bit half of 164 value to right, then push as 132 on stack

Table 3. Instrumentation of (a subset of) WebAssembly instructions. Every hook also takes two i32s that represent the original
instruction’s location. For brevity, we have omitted the corresponding 132.const instructions here.



Row 2 of Table 3 shows an instruction that takes inputs
and produces results. To pass both to the inserted hook call,
we need to duplicate values on the stack. For this purpose,
Wasabi generates a fresh local of the appropriate type and
writes the current stack top to this local with tee_local.
Before the hook call, the inserted code retrieves the stored
input and its result with get_local. Row 3 illustrates how
Wasabi instruments call instructions. In contrast to other
instructions, we surround the original instruction with two
calls into the analysis, so that an analysis author can execute
analysis behavior before and after the call.

All inserted calls go to JavaScript functions that are im-
ported into the WebAssembly binary. These imported func-
tions are not yet the high-level hooks from Section 2.3, but
low-level hooks that are automatically generated by Wasabi.
There are several reasons for this indirection. First, it allows
Wasabi to map typed WebAssembly instructions to untyped
JavaScript hooks in a seamless way (Section 2.4.3). Second, it
helps providing information that is useful in high-level hooks
but not available at the current instruction (Section 2.4.4).
Third, Section 2.4.5 shows that Wasabi sometimes also calls
other hooks at runtime, because the necessary information
which hooks to call is available only then. Finally, the low-
level hooks can convert values before passing them to the
high-level hooks (Section 2.4.6). All of these issues can be
solved by automatically generated low-level hooks that are
hidden from analysis authors.

2.4.2 Selective Instrumentation

Not every analysis uses all of the hooks provided by the API
from Section 2.3. To reduce both the code size and the run-
time overhead of the instrumented binary, Wasabi supports
selective instrumentation. That is, only those kinds of instruc-
tions are instrumented that have a matching high-level hook
in the given analysis. Wasabi ensures that the instrumenta-
tion for different kinds of instructions are independent of
each other, so that instrumenting only some instructions still
correctly reflects their behavior. Sections 4.5 and 4.6 show
that selective instrumentation significantly reduces code size
and runtime overhead.

2.4.3 On-demand Monomorphization

An interesting challenge for the instrumentation comes from
static typing in WebAssembly. While there are polymorphic
instructions, WebAssembly functions, including our hooks,
must always be declared with a fixed, monomorphic type.
For polymorphic instructions, Wasabi cannot simply gener-
ate one hook per kind of instruction: Consider drop with
the polymorphic instruction type [a] — []. (That is, it pops
an argument of any type « from the stack and pushes no
value.) Inserting a call to the same hook after each drop is
not possible, because the hook’s function type would then be

polymorphic. Instead, Wasabi generates multiple monomor-
phic variants of a polymorphic hook and inserts a call to the
appropriate monomorphic low-level hook.’

For many polymorphic instructions, determining which
monomorphic hook variant to call is straightforward. For
example, the instruction type of set_global depends only
on the type of the referenced variable. The types of drop and
select, however, cannot be simply looked up. Instead, as
shown in row 4 of Table 3, their type depends on all preceding
instructions. Wasabi thus performs full type checking during
instrumentation, that is, it keeps track of the types of all
values on the stack [25, 48]. When the drop in the last line
of the example is encountered, its input type is equal to the
top of the abstract stack and Wasabi can insert the call to
the matching monomorphic low-level hook.

While creating monomorphic variants of hooks yields
type-correct WebAssembly code, doing so eagerly leads to
an explosion of the required number of monomorphic hooks.
Since functions can have an arbitrary number of arguments
and results®, the number of monomorphic hooks for calls
and returns is even unbounded. One way to address this
problem would be to set a heuristic limit, e.g., by generat-
ing hooks for calls with up to ten arguments. However, the
resulting 4!° = 1,048, 576 call-related hooks would cause
unnecessary binary bloat and may still fail to support all
calls.

Instead, Wasabi generates monomorphic hooks on-demand
only for instructions and type combinations that are actu-
ally present in the given binary. We call this approach on-
demand monomorphization of hooks. During instrumenta-
tion, Wasabi maintains a map of already generated low-level
hooks. If a required hook, e.g., for a call instruction with
type [132] — [f32], is present in the map, the function index
of the hook is returned. Otherwise, Wasabi generates the
hook and updates the map. Our evaluation shows that on-
demand monomorphization significantly reduces the num-
ber of low-level hooks, and hence the code size, compared
to the eager approach described above.

2.4.4 Resolving Branch Labels

As described in Section 2.2, WebAssembly relies on struc-
tured control-flow, a feature not present in other low-level
instruction sets. An interesting challenge that arises from
structured control-flow is how and when to resolve the desti-
nation of branches. Row 5 of Table 3 illustrates the problem
with a few control-flow-related instructions. The br instruc-
tion jumps to a destination referenced by a relative integer
label 1. However, passing this label to the high-level dynamic
analysis API would be of limited use, because without addi-
tional static information (namely the surrounding blocks),

5This strategy is similar to the compilation of generic functions in Rust or
instantiation of function templates in C++ [28, 45].

®Strictly speaking, functions in the binary format 1.0 have at most one
result, but the formal semantics already support multiple return values [25].



type begin  end

function -1 Fprpe

grows

block 3 8
loop 4 7

Figure 6. Abstract control stack at the br branch instruction
in row 5 of Table 3 (assuming the example is preceded by
four other instructions).

the dynamic analysis cannot resolve the label to a code loca-
tion.

To enable analysis authors to reason about branch des-
tinations without implementing their own static analysis,
Wasabi resolves branch labels during the instrumentation
and passes the resulting absolute instruction locations to
the high-level API To resolve branch labels, Wasabi keeps
track of an abstract control stack while instrumenting Web-
Assembly code. Whenever the instrumentation enters a new
block, an element is pushed to the control stack, consisting
of the block type (function, block, loop, if, or else), the
location of the block begin, and the location of the matching
end instruction. Whenever the instrumentation encounters
the end of a block, the topmost entry is popped of the control
stack. As an example, Figure 6 shows the control stack for
the code in row 5 of Table 3.

Given the abstract control stack, Wasabi can determine
during instrumentation what code location a branch, if taken,
will lead to. At every branch to a label n, Wasabi queries the
control stack for its n + 1-th entry from the top, to determine
the targeted block, and then computes the location of the
next instruction from the block type and the locations of
the begin and end instructions. This absolute instruction
location is then given as an argument to the branch hook, as
shown in the example in Table 3.

2.4.5 Dynamic Block Nesting

Another control-flow-related challenge is about observing
the end of the execution of a block. Some analyses may
want to observe the block nesting at runtime, i.e., to per-
form some action when a block is entered and left. For this
purpose, Wasabi offers the high-level begin and end hooks
(Section 2.3). The example in row 5 of Table 3 shows that our
instrumentation adds the respective hook calls (e.g., call
idxhooks.begin_block and call idxhooks.end_block) at the begin-
ning of a block and before the matching end.
Unfortunately, branching or returning will jump out of a
block and over the inserted end hook calls. Consider the last
two calls to hooks.end_loop and hooks.end_block in Ta-
ble 3. They are not executed because the earlier br 1 directly
transfers control to after the enclosing block. To account for
that, Wasabi adds additional calls before each branch and
return that invoke every end hook of the blocks that will be

“traversed” during the jump. That is, as the example shows,
Wasabi inserts calls to the end hooks for the two enclosing
blocks prior to the br 1 instruction. Again, the control stack
can tell us which end hooks need to be called, namely all be-
tween the current block (stack top, inclusive) and the branch
target block (also inclusive). For example, in Figure 6, the
instrumented code calls the 1loop and block end hooks. For
a return it would be all blocks on the block stack up to and
including the function block.

For conditional branches (br_if), we call the end hooks
for traversed blocks only if the branch is actually taken.
Similarly, for multi-way branches (br_table), which branch
is taken (and thus which blocks are left) is known only at
runtime. Thus, the instrumentation statically extracts the list
of ended blocks for every branch table entry and stores this
information. Inside the low-level hook for br_table, one of
the stored branch table entries will then be selected, before
calling the corresponding end hooks at runtime.

2.4.6 Handling i64 Values

As mentioned in Section 2.2, 164 values cannot be passed to
JavaScript functions (and thus our hooks), since JavaScript
has only double precision float numbers. To nevertheless
enable dynamic analyses to faithfully observe all runtime
values, including 164 values, Wasabi splits a 64-bit integer
into two 32-bit integers to pass them to JavaScript. For every
164 stack value (either produced by a const or by any other
instruction), we thus insert instrumentation as shown in
row 6 of Table 3. The inserted code duplicates the 164 value
twice, from the first of which only the lower 32 bits are
extracted and the second of which is shifted to result in the
upper 32 bits. Both 132 values can then be passed to the
hook in question. On the JavaScript side, the low-level hook
joins the two 32-bit values into a long. js object’, enabling
an analysis to faithfully reason about 64-bit integers.

3 Implementation

We have implemented the Wasabi instrumenter, including
the static analyses it performs, in about 5000 lines of Rust
code. Rust programs themselves can be compiled to Web-
Assembly, which gives us the option to run Wasabi in the
browser and instrument WebAssembly programs at load time
in the future. To reduce the time required for instrumenting
large binaries, Wasabi can instrument multiple WebAssem-
bly functions in parallel. The only synchronization point
is the map of low-level hooks created during on-demand
monomorphization, which is guarded by an upgradeable
multiple readers/single writer lock.

Our implementation is available to the public under the
permissive MIT license at http://wasabi.software-lab.org.

7 An alternative would be to use the recently proposed BigInt support
for JavaScript (https://github.com/tc39/proposal-bigint), but this feature is
currently only available in Chrome.
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Analysis Hooks LOC
Instruction mix analysis all 42
Basic block profiling begin 9
Instruction coverage all 11

Branch coverage if,br_if, br_table, select 14

Call graph analysis call_pre 18
Dynamic taint analysis all 208
Memory access tracing load, store 11
Cryptominer detection binary 10

Table 4. Analyses built on top of Wasabi.

4 Evaluation
To evaluate Wasabi, we focus on five research questions:
RQ1 How easyisit to write dynamic analyses with Wasabi?

RQ2 Do the instrumented WebAssembly programs remain
faithful to the original execution?

RQ3 How long does it take to instrument programs?
RQ4 How much does the code size increase?

RQ5 What is the runtime overhead due to instrumenta-
tion?

4.1 Experimental Setup

We apply Wasabi to 32 programs. 30 of them are from the
PolyBench/C benchmark suite®, which has been used in the
paper introducing WebAssembly [25]. In total, the PolyBench
benchmark suite comprises 5,163 non-empty, non-comment
lines of C code. We compile the PolyBench programs to
WebAssembly with emscripten 1.38.8, resulting in 790 KB of
WebAssembly binaries. Moreover, we use two complex, real-
world programs: the Unreal Engine 4 Zen Garden demo’, as
an example of a major game engine running in the browser,
and the PSPDFKit benchmark!?, which exercises a commer-
cial library for in-browser rendering and annotation of PDFs.
Their WebAssembly binaries are 39.5 MB and 9.5 MB in size,
respectively.

All experiments are performed on a laptop with an Intel
Core i7-7500U CPU (2 cores, hyper-threading, 2.7 to 3.5 GHz,
4 MB L3 cache) and 16 GB of RAM. The operating system is
Ubuntu 17.10 64-bit. To execute WebAssembly programs, we
use a nightly version of Firefox 63.0a1 (2018-08-02).

4.2 Ease of Implementing Analyses (RQ 1)

We have implemented eight dynamic analyses on top of
Wasabi. Table 4 lists them, along with the hooks they imple-
ment and their total lines of JavaScript code.

8http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
?https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.
html

Ohttps://pspdfkit.com/webassembly-benchmark/

1 const coverage = [];

2 function addBranch({func, instr}, branch) {

3 coverage[func] = coveragel[func] || [1;

4 coverage[func][instr] = coveragel[func][instr] || [];
5 if (!coveragelfunc]llinstr].includes(branch)) {

6 coverage[func][instr].push(branch);

7 }

8 | 2

9 Wasabi.analysis = {

10 if_(loc, cond) { addBranch(loc, cond) },

11 br_if(loc, target, cond) { addBranch(loc, cond) 3},
12 br_table(loc, tbl, df, idx) { addBranch(loc, idx) 3},
13 select(loc, cond) { addBranch(loc, cond) 3},

14 };

Figure 7. Branch coverage analysis with Wasabi.

Instruction Mix Analysis This analysis counts how often
each kind of instruction is executed, which can serve as a
basis for performance and security analyses.

Basic Block Profiling A classic dynamic analysis [12] that
counts how often each function, block, and loop is executed,
which is useful, e.g., for finding “hot” code.

Instruction and Branch Coverage These analyses record
for each instruction and branch, respectively, whether it is
executed, which is useful to assess the quality of tests.

Call Graph Analysis This analysis creates a dynamic call
graph, including indirect calls and calls between functions
that are neither imported nor exported. Call graphs are the
basis of various other analyses, e.g., to find dynamically dead
code or to reverse-engineer malware.

Taint Analysis The analysis associates a taint with every
value and tracks how taints propagate through instructions,
function calls, and memory accesses, to detect illegal flows
from sources to sinks.

Memory Access Tracing The analysis tracks all memory
accesses and stores them for a later off-line analysis, e.g., to
detect cache-unfriendly access patterns.

Cryptominer Detection As discussed in the introduction,
this analysis gathers a signature based on the frequency of bi-
nary instructions to identify mining of cryptocurrencies [47].

As illustrated by the low numbers of lines of code in Table 4,
each of these analyses can be implemented with little effort.
For further illustration, Figure 7 shows the implementation
of the branch coverage analysis. It implements four hooks, if,
br_if, br_table, and select to keep track of all branches.

4.3 Faithfulness of Execution (RQ 2)

To validate that Wasabi’s instrumentation does not modify
the semantics of the original program, we compare the be-
havior of each unmodified binary with the behavior of the
fully instrumented binary. For the PolyBench programs, we
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Program Binary Size (B) Runtime (ms) %
PolyBench (avg.) 26332 + 299 23+ 14 115
PSPDFKit 9615389 5129+ 65 1.87
Unreal Engine 4 39510398 15481 + 293 2.55

Table 5. Time taken to instrument programs, averaged
across 20 runs (and averaged across 30 programs for the
PolyBench suite).

compile each program with an option to output interme-
diate results of every calculation on the console. Similarly,
the Unreal Engine demo has a mode to check that the pixel
values of rendered frames are the same as pre-defined refer-
ence frames. For all these programs, the behavior remains
unchanged after instrumentation. The PSPDFKit benchmark
does not provide any built-in correctness check; based on
our manual observations the behavior of the original and
instrumented code appear to be the same.

As another way to validate the instrumented WebAssem-
bly code, we use the static WebAssembly validator, which
offers some well-formedness guarantees and checks that the
code is type correct [24]. Running wasm-validate from the
WebAssembly Binary Toolkit!! on all 32 fully instrumented
programs shows that all the instrumented code passes the val-
idator. We also instrument and successfully validate Wasabi’s
output on all programs of the official WebAssembly specifi-
cation test suite!?, which consists of 63 additional programs.

4.4 Time to Instrument (RQ 3)

Table 5 shows how long Wasabi takes to instrument the
programs. The x + y notation means a mean value of x and
a standard deviation of y after 20 repetitions. For readabil-
ity, we have summarized the results for all 30 PolyBench
programs in one row. While the PolyBench programs are of
similar, small size (26.3 KB + 299 B), the PSPDFKit and Unreal
Engine binaries are considerably larger (9.6 MB and 39.5 MB,
respectively). Instrumentation takes 23ms, on average, for
the PolyBench programs, i.e., it is almost instantaneous, and
still quick for the larger PSPDFKit (5s) and Unreal Engine
binaries (15.5s). Wasabi’s instrumentation is parallelized (Sec-
tion 3), and these numbers are obtained with four threads
running on two physical cores. The single-threaded instru-
mentation time on the large Unreal Engine binary is on
average 26.5s, showing that the parallelization reduces the
execution time to 15.5/26.5 ~ 0.58 of the single-threaded time.
The last column of Table 5 reports the throughput, i.e., binary
code processed per second, showing that the throughput in-
creases with larger binary sizes.

4.5 Increase of Code Size (RQ 4)

Figure 8 presents the increase in binary code size after instru-
menting a program. Since many analyses need only a small
subset of all hooks (e.g., block profiling needs only begin),
we evaluate code size increase per required hook, as provided
by selective instrumentation (Section 2.4.2). For each hook
on the x-axis, the figure shows on the y-axis the increase
in binary size as a percentage of the original program size.
That is, 0% means the instrumented binary has the same size
as the original one and 100% means the program doubled in
size due to instrumentation.

With selective instrumentation, more than half of the
hooks increase the binary size only by a negligible amount
or not at all (less than 1% increase for nop, unreachable,
memory_size, memory_grow, select,and br_table;less than
10% for drop, return, unary, global, if, br,and br_if, on
average). In fact, in several cases the Unreal Engine binary
decreased by 1% because Wasabi encodes indices more com-
pactly than the original binary.'®

Naturally, hooks for instructions that appear very often in
the program have the largest influence on the code size, e.g.,
memory load and store (between 39% and 58% increase),
begin and end of blocks (11% — 84%), pushing to the stack
with const (59 - 71%), operations on locals (128 - 180%),
and finally binary instructions (83 — 190%). The difference
for the binary hook between PolyBench and the other pro-
grams can be explained by the former being mostly numeri-
cal computation (thus having more binary instructions such
as 132.mul), whereas PSPDFKit and the Unreal Engine have
more diverse code. When instrumenting for all hooks to-
gether, which is not required for many analyses, the size
increases between 495% (Unreal Engine 4) and 743% (mean
across the 30 PolyBench/C programs). This result shows that
selective instrumentation is very effective in reducing the
binary size, compared to blindly instrumenting all instruc-
tions.

To evaluate Wasabi’s on-demand monomorphization of
hooks, we count how many low-level hooks are inserted
during full instrumentation. For PolyBench, between 110
(floyd-warshall program) and 122 (deriche) hooks are in-
serted, 302 hooks for PSPDFKit, and 783 hooks for the Unreal
Engine. In the original Unreal Engine binary, i.e., a real-world
WebAssembly program, the call with the largest number of
arguments passes 22 132 values, which clearly shows that
eagerly generating all possible monomorphic combinations
of call hooks (4% ~ 1.7 x 10'3) is simply not possible. Even
in the small PolyBench programs, calls to functions with
6 arguments are common. For these programs, generating
no more than 122 hooks on-demand is much better than

Uhttps://github.com/WebAssembly/wabt
2https://github.com/WebAssembly/spec/tree/master/test

13WebAssembly uses the variable length LEB128 encoding for integers, also
known from the DWARF debug information format [49]. This allows for
multiple possible encodings with different lengths of the same number.
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Figure 8. Binary size increase in percent of the original size, when instrumenting the test programs for different analysis
hooks. For readability, binary sizes for the 30 PolyBench programs are shown averaged.
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Figure 9. Runtime of the instrumented programs relative to the uninstrumented runtime, per analysis hook. Results are
averaged over 20 runs (and again for readability, over the 30 PolyBench programs).

generating all 4° = 4,096 hooks for call instructions plus
some more for other instructions.

4.6 Runtime Overhead (RQ 5)

Figure 9 shows how much runtime overhead the instrumen-
tation imposes. On the y-axis, we show the runtime of the
instrumented program relative to the original program, that
is, a value of 1.0x means the runtime does not increase due
to instrumentation. As for code size, most of the hooks con-
tribute only a small runtime overhead: nop, unreachable,
memory_size, memory_grow, select, drop, and unary each
impose less than 1.02x overhead, on average. Instrumenting
for return or call hooks, which are sufficient for many
interesting analyses at the function level, incurs a reasonable
overhead of up to 1.3x or 2.8x, respectively. More expensive
hooks are begin and end for observing blocks, which incur
between 1.5x and 9.9x runtime overhead, 1.8x — 20x for load,
up to 6.5x for store, 2x —32x for const, 4x —48.5x for op-
erations on locals, and 2.6x — 77.5x for binary operations.
When instrumenting for all hooks, the runtime overhead
is between 49x and 163x. Note that the overheads for the
PolyBench programs, which perform only numerical compu-
tations, are much higher than for the real-world workloads
in PSPDFKit and the Unreal Engine. Typical WebAssembly
programs call out to the host environment, e.g., to perform
shading in WebGL, modify the DOM, or interact with some
other Web API, so any overhead imposed by Wasabi con-
tributes only to parts of the total execution time.

Comparing the overhead results to existing heavy-weight
dynamic analysis frameworks for other languages shows that
Wasabi’s overhead is reasonable. The widely-used JavaScript
analysis framework Jalangi reports overheads with the empty
analysis in the same order of magnitude, namely 26x during
record plus 30x during replay, on average [40]. Similarly, the
RoadRunner analysis framework for JVM byte code reports
an average slowdown of 52x without any analysis [19].

5 Related Work

WebAssembly WebAssembly has been first publicly an-
nounced in 2015 and since 2017 is implemented by four ma-
jor browser engines (Chrome, Edge, Firefox, and Safari). A
paper by Haas et al. [25] formalizes the language and its type
system, and explains the design rationales. Watt describes
the mechanized, formal verification of the WebAssembly
specification [48]. Herrera et al. study the performance of
WebAssembly, compared to JavaScript, for numerical bench-
marks [27].

Dynamic Analysis of WebAssembly Despite its young
age, several dynamic analyses for WebAssembly have already
been proposed, including two taint analyses [20, 42] and a
cryptomining detector [47]. These analyses have been imple-
mented by modifying the V8 engine [20], by implementing
a new WebAssembly virtual machine in JavaScript [42], and
through custom binary instrumentation [47], respectively.
Our evaluation shows that these analyses and others can be
implemented in top of Wasabi with significantly less effort.



Binary Instrumentation Tools Binary instrumentation
has been a popular strategy to implement dynamic analyses.
Often used tools for x86 binaries include DynamoRIO [9],
Pin [31], and Valgrind [34], which have provided inspira-
tion for Wasabi. These tools instrument binaries at run-
time by translating basic blocks just before their execution,
and by storing translations in a code cache. In contrast,
Wasabi instruments binaries statically, i.e., ahead-of-time,
which avoids any instrumentation overhead during execu-
tion. Wasabi also differs w.r.t. the API it provides to analysis
authors: While DynamoRIO provides an API to manipulate
instructions, Wasabi provides an API to observe the execu-
tion of instructions. Analyses written for Pin can specify
“instrumentation routines”, which determine where to place
calls to analysis routines. Instead, Wasabi automatically se-
lects which kinds of instructions to instrument based on the
hooks implemented by the analysis. Umbra [53] is a dynamic
binary instrumentation tool that focuses on efficient memory
shadowing. In contrast, Wasabi provides a general-purpose
framework for arbitrary dynamic analysis, including mem-
ory shadowing. A difference compared to all the above tools
is that in Wasabi, the dynamic analysis is written and exe-
cuted in a high-level language, JavaScript, instead of being
compiled to binary code. The rationale is that JavaScript is
already very popular in the web, making it easier for analysis
authors to adopt Wasabi.

Dynamic Analysis in General Dynamic analysis [7] has
since long been recognized as an effective way to comple-
ment static analysis [17]. Various analyses have been pro-
posed, including dynamic slicing [3], taint analyses for x86
binaries [35] and Android [16], tools to find concurrency
bugs [11, 30, 36] and heap-related bugs [13], an analysis to
track the origin of null and undefined values [8], and anal-
yses to understand performance problems [51]. Given the
increasing interest in WebAssembly, we expect an increased
demand for dynamic analyses for WebAssembly, for which
Wasabi provides a reusable platform.

Dynamic Analysis for the Web Motivated by the dynamic
features of JavaScript, such as runtime loading of code, vari-
ous dynamic analyses for JavaScript-web applications have
been presented. For example, recent approaches include
analyses to find type inconsistencies [38], JIT-unfriendly
code [21], bad coding practices [22], and data races [37].
Many of these analysis are built on top of Jalangi [40], a
general-purpose dynamic analysis framework for JavaScript.
To the best of our knowledge, there is no comparable tool
for WebAssembly yet, a gap this paper aims to fill.

6 Conclusion

This paper presents Wasabi, a general-purpose dynamic anal-
ysis framework for WebAssembly, the new low-level instruc-
tion set for the web. The framework instruments binaries

ahead-of-time and inserts code into the binary that calls into
an analysis implemented in JavaScript. Besides being the
first dynamic analysis framework for WebAssembly, Wasabi
addresses several unique challenges that did not occur in
dynamic analysis tools for other platforms. In particular, we
handle the problem of tracing polymorphic instructions with
analysis functions that have a fixed type via an on-demand
monomorphization of analysis hooks, and we statically re-
solve relative branch labels in control-flow constructs during
the instrumentation. The high-level API provided to analyses
authors allows for implementing otherwise complex analy-
ses with a few dozens of lines of code, while still providing
a complete view of the execution. Our evaluation with both
compute-intensive benchmark programs and real-world web
applications shows 1.02x to 163x runtime overhead, depend-
ing on the program and which instructions are analyzed,
which is reasonable for heavyweight dynamic analyses.

We believe that Wasabi provides a solid basis for various
analyses to be implemented in the future. As an interesting
challenge for future work, we envision cross-language dy-
namic analysis, in particular, to analyze web applications
that run both JavaScript and WebAssembly code.
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