DeepBugs: A Learning Approach to Name-based Bug Detection

Michael Pradel
TU Darmstadt, software-lab.org

Joint work with Koushik Sen
Traditional Approach

How to create a new bug detector?

Human expert → Time-consuming process → Program analysis
Traditional Approach

How to create a new bug detector?

- **Human expert**

 Time-consuming process

 - **Heuristics**, e.g., to avoid spurious warnings
 - Carefully **tuned algorithms**, e.g., to ensure scalability

 Program analysis
Learning to Find Bugs

Train a model to distinguish correct from buggy code

Buggy code → Train machine learning model
Correct code → Classifier

New code → Buggy/Okay
Learning to Find Bugs

Train a model to distinguish correct from buggy code

Buggy code → Train machine learning model → Classifier → Buggy/Okay
Correct code

New code

How to get training data?
- Gather past bugs, e.g., from version histories
- Here: Insert artificial bugs via simple program transformations
Learning to Find Bugs

Train a model to distinguish correct from buggy code

How to represent code?
- Token-based, AST-based, graph-based, etc.
- Here: Embeddings of natural language elements in code
Benefits of Learning Bug Detectors

Simplifies the problem

- Before: Writing a program analysis
- Now: Providing examples of buggy and correct code

Catches otherwise missed bugs

- Learns conventions from corpora of existing code
- ML can handle natural language in code, which expresses domain-specific knowledge
Name-related Bugs

What’s wrong with this code?

```javascript
function setPoint(x, y) { ... }

var x_dim = 23;
var y_dim = 5;
setPoint(y_dim, x_dim);
```
Name-related Bugs

What’s wrong with this code?

```javascript
function setPoint(x, y) { ... }

var x_dim = 23;
var y_dim = 5;
setPoint(y_dim, x_dim);
```

Incorrect order of arguments
What’s wrong with that code?

```c
for (j = 0; j < params; j++) {
    if (params[j] == paramVal) {
        ...
    }
}
```
What’s wrong with that code?

```
for (j = 0; j < params; j++) {
    if (params[j] == paramVal) {
        ...
        Should be params.length
    }
}
```
Overview of DeepBugs

Code corpus → Generate training data

Correct code → Represent code as vectors → Correct vectors

Buggy code → Represent code as vectors → Buggy vectors

Train classifier

Classifier → Predict bugs in new code

New code → Bugs
Generating Training Data

Simple code transformations to inject artificial bugs into given corpus
Generating Training Data

Simple code transformations to inject artificial bugs into given corpus

1) Swapped arguments

```python
setPoint(x, y)  →  setPoint(y, x)
```
Generating Training Data

Simple code transformations to inject artificial bugs into given corpus

2) Wrong binary operator

\[i \leq \text{length} \quad \Rightarrow \quad i \% \text{length} \]

Randomly selected operator
Generating Training Data

Simple code transformations to inject artificial bugs into given corpus

3) Wrong binary operand

\[\text{bits} \ll 2 \rightarrow \text{bits} \ll \text{next} \]

Randomly selected operand that occurs in same file
Representing Code as Vectors

Goal: Exploit natural language information in identifier names

How to reason about identifier names?

- Prior work: Lexical similarity
 - x similar to x_{dim}

- Want: Semantic similarity
 - x similar to width
 - list similar to seq
Word2Vec

Word embeddings

- Continuous vector representation for each word
- Similar words have similar vectors

Learn embeddings from corpus of text

- Context: Surrounding words in sentences
Word2Vec

Word embeddings
- Continuous vector representation for each word
- Similar words have similar vectors

Learn embeddings from corpus of text
- Context: Surrounding words in sentences

Diagram
- Input layer: Context words
- Hidden layer
- Output layer: Word
 - Embedding size=200
 - gensim’s Word2Vec implementation
<table>
<thead>
<tr>
<th>Natural language</th>
<th>Programming language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>Program</td>
</tr>
<tr>
<td>Words</td>
<td>Tokens</td>
</tr>
</tbody>
</table>
Word2Vec for Source Code

<table>
<thead>
<tr>
<th>Natural language</th>
<th>Programming language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>Program</td>
</tr>
<tr>
<td>Words</td>
<td>Tokens</td>
</tr>
</tbody>
</table>

function setPoint(x, y) { ... }

var x_dim = 23;
var y_dim = 5;
setPoint(y_dim, x_dim);
Word2Vec for Source Code

Natural language

- Sentences
- Words

Programming language

- Program
- Tokens

```javascript
function setPoint(x, y) { ... }

var x_dim = ...
var y_dim = ...
setPoint(y_dim, x_dim);
```

Context of x:

```
function - setPoint - ( - , - y - )
```
Example: Embeddings
Code Snippets as Vectors

Concatenate embeddings of names in code snippet

1) Swapped arguments

```python
someObj.someFun(arg1, arg2)
```

For each argument: Name, type, and formal parameter name
Code Snippets as Vectors

Concatenate embeddings of names in code snippet

2) + 3) Wrong binary operator/operation

For each operand:
- Name and type
- Parent and grand-parent
- AST node type

\[i \leq length \]
Learning the Bug Detector

- Given: Vector representation of code snippet
- Train neural network:
 Predict whether correct or wrong

Vector representation of code snippet

Hidden layer: size=200, dropout=0.2
RMSprop optimizer with binary cross-entropy as loss function
Predicting Bugs in New Code

- Represent **code snippet** as vector
- **Sort warnings** by predicted probability that code is incorrect
Evaluation: Setup

68 million lines of JavaScript code

- 150k files [Raychev et al.]
- 100k files for training, 50k files for validation

<table>
<thead>
<tr>
<th>Bug detector</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
</tr>
<tr>
<td>Swapped arguments</td>
<td>1,450,932</td>
</tr>
<tr>
<td>Wrong binary operator</td>
<td>4,901,356</td>
</tr>
<tr>
<td>Wrong binary operand</td>
<td>4,899,206</td>
</tr>
</tbody>
</table>
Examples of Detected Bugs

// From Angular.js

browserSingleton.startPoller(100, function (delay, fn) {
 setTimeout(delay, fn);
});
Examples of Detected Bugs

// From Angular.js

browserSingleton.startPoller(100,

 function (delay, fn) {
 setTimeout(delay, fn);
 });

First argument must be callback function
Examples of Detected Bugs

// From DSP.js

for(var i = 0; i < this.NR_OF_MULTIDELAYS; i++) {
 // Invert the signal of every even multiDelay
 mixSampleBuffers(outputSamples, ..., 2%i==0, this.NR_OF_MULTIDELAYS);
}

Examples of Detected Bugs

// From DSP.js
for(var i = 0; i<this.NR_OF_MULTIDELAYS; i++){
 // Invert the signal of every even multiDelay
 mixSampleBuffers(outputSamples, ...,
 2%i==0, this.NR_OF_MULTIDELAYS);
}

Should be i%2==0
Precision

<table>
<thead>
<tr>
<th>Bug detector</th>
<th>Inspected</th>
<th>Bugs</th>
<th>Code quality</th>
<th>False pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swapped args.</td>
<td>50</td>
<td>23</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Wrong bin. operator</td>
<td>50</td>
<td>37</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Wrong bin. operand</td>
<td>50</td>
<td>35</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>95</td>
<td>7</td>
<td>48</td>
</tr>
</tbody>
</table>
Precision

<table>
<thead>
<tr>
<th>Bug detector</th>
<th>Inspected Bugs</th>
<th>Code quality</th>
<th>False pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swapped args.</td>
<td>50</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Wrong bin. operator</td>
<td>50</td>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>Wrong bin. operand</td>
<td>50</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>95</td>
<td>7</td>
</tr>
</tbody>
</table>

68% true positives. High, even compared to manually created bug detectors
Accuracy of Classifier

Validation accuracy (after training)

<table>
<thead>
<tr>
<th>Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swapped arguments</td>
<td>94.70%</td>
</tr>
<tr>
<td>Wrong binary operator</td>
<td>92.21%</td>
</tr>
<tr>
<td>Wrong binary operand</td>
<td>89.06%</td>
</tr>
</tbody>
</table>
Accuracy of Classifier

Validation accuracy (after training)

<table>
<thead>
<tr>
<th></th>
<th>Embedding</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
<td>Learned</td>
<td></td>
</tr>
<tr>
<td>Swapped arguments</td>
<td>93.88%</td>
<td>94.70%</td>
<td></td>
</tr>
<tr>
<td>Wrong binary operator</td>
<td>89.15%</td>
<td>92.21%</td>
<td></td>
</tr>
<tr>
<td>Wrong binary operand</td>
<td>84.79%</td>
<td>89.06%</td>
<td></td>
</tr>
</tbody>
</table>
Recall of Seeded Bugs

How many of all seeded bugs are found?

Swapped arguments

Threshold for reporting warnings
Recall of Seeded Bugs

How many of all seeded bugs are found?

![Graph showing recall of seeded bugs]

- **Learned embeddings**
- **Random embeddings**

Swapped arguments

Threshold for reporting warnings

Recall
Recall of Seeded Bugs

How many of all seeded bugs are found?

- **Learned embeddings**
- **Random embeddings**

![Swapped arguments graph](image)

- **Recall**
- **Threshold for reporting warnings**

![Wrong binary operator graph](image)

- **Recall**
- **Threshold for reporting warnings**

![Wrong binary operand graph](image)

- **Recall**
- **Threshold for reporting warnings**
Recall of Seeded Bugs

How many of all seeded bugs are found?

Embeddings enable generalization across similar names
Efficiency

- Data extraction and learning:
 28 minutes – 59 minutes
 (depending on bug detector)

- Prediction of bugs:
 Less than 20ms per JavaScript file

48 Intel Xeon E5-2650 CPU cores, 64GB of memory, 1 NVIDIA Tesla P100 GPU
Open Challenges

- Bug detection based on *other code representations*
 - Token-based, graph-based, etc.
 - One representation for many bug patterns

- Support *more bug patterns*
 - Learn code transformations from version histories
 - Train one model per bug pattern
Conclusion

- **Bug detection as a learning problem**
 - Classify code as buggy or correct

- **DeepBugs: Name-based bug detector**
 - Exploit natural language information to detect otherwise missed bugs
 - Learning from seeded bugs yields classifier that detects real bugs

OOPSLA’18: *DeepBugs: A Learning Approach to Name-based Bug Detection* (Pradel & Sen)

ASE’18: *How Many of All Bugs Do We Find? A Study of Static Bug Detectors* (Habib & Pradel)