
1

Michael Pradel
Software Lab – University of Stuttgart
Joint work with Matteo Paltenghi

Thinking Like a Developer?
Comparing the Attention of Humans
with Neural Models of Code



2

Executive Summary

Direct comparison:
Developers vs. neural models of code
� Humans still (clearly) outperform models

� Partial agreement on what code to focus on

� Models ignore some tokens that developers deem

important

� Human-model agreement correlates with

prediction accuracy

Should try harder to mimic humans



3 - 1

Neural Software Analysis

Learning developer tools from large
software corpora

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

Neural Software Analysis, CACM’22



3 - 2

Neural Software Analysis

Learning developer tools from large
software corpora

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

New code,
execution,
etc.

Information
useful for
developersNeural Software Analysis, CACM’22



4 - 1

Common Tasks

Type prediction
Bug detection

Code summarization

Program repair

Code completion



4 - 2

Common Tasks

Humans could also do it.
→ Added value: Automation

Type prediction
Bug detection

Code summarization

Program repair

Code completion



5

Understanding Models of Code

� Emphasis of most papers: Accuracy

� Mostly unclear:
What do these models actually learn?

� Intellectually unsatisfying

� Risk of coincidental accuracy



6

Developers vs. Neural Models

Do neural models reason about code
similarly to human developers?

� If yes: Good news

� If no: Should mimic developers more closely



7

Methodology



8

Idea: Compare Humans & Models

� Same task

� Same code examples

� Measure attention and
effectiveness

vs.
Machine
Learning

Neural models of codeDevelopers



9

Task 1: Code Summarization

{
if (!prepared(state)) {
return state.setStatus(MovementStatus.PREPPING);

} else if (state.getStatus() == MovementStatus.PREPPING) {
state.setStatus(MovementStatus.WAITING);

}
if (state.getStatus() == MovementStatus.WAITING) {
state.setStatus(MovementStatus.RUNNING);

}
return state;

}

Input: Method body
updateState
Output: Method name

* A Convolutional Attention Network for Extreme Summarization of Source
Code, ICML’16

Dataset: 250 methods from 10 Java projects *



10

Task 2: Program Repair

public double sqrt(double x, double epsilon) {
double approx = x / 2d;
while (Math.abs(x - approx) > epsilon) {
approx = 0.5d * (approx + x / approx);

}
return approx;

}

Input: Method with a buggy line

while (Math.abs(x - approx * approx) > epsilon) {

Output: Fixed line

* QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the
Quixey Challenge, SPLASH’17 (Companion)

Dataset: 16 bugs from QuixBugs (Java) *



11

Capturing Human Attention

� Goal: Track human attention while
performing the task

� Approach: Unbluring-based web
interface

� Initially, all code blurred

� Moving mouse/cursor temporarily unblurs

tokens



12 - 1

Capturing Human Attention

Task 1: Code Summarization



12 - 2

Capturing Human Attention

� 91 participants: Undergrads, graduate
students, crowd workers

� 1,508 human attention records
� 5+ records for each of 250 methods
� On average per record:

1,271 mouse-token events



13 - 1

Capturing Human Attention

Task 2: Program Repair



13 - 2

Capturing Human Attention

� 27 participants: Software engineers,
graduate students

� 98 bug fixing records
� 5–7 records for each of 16 bugs
� On average per record: 983 unblur

events and 13 edit events



13 - 3

Capturing Human Attention

Summarize fine-grained attention record
into attention map:



14

Model Attention

Task 1: Code summarization

� Convolutional sequence-to-sequence (CNN)
A Convolutional Attention Network for Extreme Summarization of
Source Code, ICML’16

� Transformer-based, sequence-to-sequence model
A Transformer-based Approach for Source Code Summarization,
ACL’20

� Both models:

Regular attention and copy attention



15

Model Attention

Task 2: Program repair

� LSTM-based, sequence-to-sequence:
SequenceR
SequenceR: Sequence-to-Sequence Learning for End-to-End Program
Repair, TSE’21

� Regular attention and copy attention

� AST-based transformer: Recoder
A Syntax-Guided Edit Decoder for Neural Program Repair, FSE’21

� Regular attention only



16

Results



17

Human-Model Agreement

Do developers and models focus on the
same tokens?

� Given for each code example

� Human attention vector ~h

� Model attention vector ~m

� Measure agreement between them

� Spearman rank correlation:
cov(rg~h,rg~m)

σrg~h
,σrg~m



18 - 1

Results: Summarization

Human-human agreement:

Developers mostly agree on what code
matters most



18 - 2

Results: Summarization

Human vs. copy attention:

Empirical justification for copy attention



18 - 3

Results: Summarization

Humans vs. regular attention:

Lots of room for improvement!



19 - 1

Results: Program Repair

Human-human agreement:

Developers mostly agree on what code
matters most



19 - 2

Results: Program Repair

Human-model agreement:

Some room for improvement



20

Divided vs. Selective Attention

How to distribute attention over the
given code?

� One extreme: Equally distribute over all tokens

� Other extreme: Focus on a few tokens only



21 - 1

Results: Summarization

More dented
curve: Focus on
few tokens only



21 - 2

Results: Summarization

More dented
curve: Focus on
few tokens only

No model
closely
matches
developers

Overspecial-
ization to a
few tokens



22 - 1

Results: Program Repair

Focus on buggy line vs. code context:

Buggy line Context

Developers 37% 63%

SequenceR 67% 33%
Recoder 13% 87%

Again, no model closely matches
developers



22 - 2

Results: Program Repair

Human attention evolves over time:

Models could mimic human behavior:
First understand, then fix



23

Tokens to Focus On

What kind of tokens to focus on?

� Different kinds: Identifiers, separators, etc.

� For each kind, compute distance from uniformity

� = 0 means uniform attention

� −1 means no attention at all

� > 0 means more than uniform attention



24 - 1

Results: Summarization

Distance from uniformity:



24 - 2

Results: Summarization

Distance from uniformity:

Identifiers
are deemed
important



24 - 3

Results: Summarization

Distance from uniformity:

Models
mostly
ignore
some kinds
of tokens



24 - 4

Results: Summarization

Example from Transformer model:



24 - 5

Results: Summarization

Example from Transformer model:

Model “wastes” attention
on understanding syntax



24 - 6

Results: Summarization

Example from Transformer model:

Model ignores tokens
important to developers



25

Effectiveness

Comparing developers and models w.r.t.
their effectiveness at solving the task

� Strengths and weaknesses?

� Can current models compete with developers?



26

Results: Summarization

Models underperform on
non-trivial methods

Comparing different kinds of methods:



27 - 1

Results: Program Repair

Plausible patch ratio

Top-5 Top-100

SequenceR 2/80 (2.5%) 17/1395 (1.2%)
Recoder 2/80 (2.5%) 10/908 (1.1%)

5-7 developers/bug

Developers 68/98 (69.4%)

Success rate during program repair:



27 - 2

Results: Program Repair

Plausible patch ratio

Top-5 Top-100

SequenceR 2/80 (2.5%) 17/1395 (1.2%)
Recoder 2/80 (2.5%) 10/908 (1.1%)

5-7 developers/bug

Developers 68/98 (69.4%)

Success rate during program repair:

Models are far from human effectiveness



28

Effectiveness vs. Agreement

Are models more effective when they
agree more with developers?



29

Results: Summarization

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.

All Methods with
methods F1 ≥ 0.5

CNN (regular) 0.08 0.24
CNN (copy) 0.49 0.55
Transformer (reg.) -0.20 0.02
Transformer (copy) 0.47 0.55

More human-like predictions
are more accurate



30

Implications

� Direct human-model comparison

� Helps understand why models (do not) work

� Should create models that mimic
humans

� Use human attention during training

� Design models that address current

weaknesses

• E.g., understanding string literals



31

Conclusions

� Available for future research:

� Interface for capturing human attention

� Datasets of human attention records

� More details:
Thinking Like a Developer? Comparing the

Attention of Humans with Neural Models of Code,

ASE’21


