Metamorphic Testing of
Developer Tools

Michael Pradel
Software Lab — University of Stuttgart

Joint work with Daniel Lehmann, Matteo Paltenghi, and
Sandro Tolksdorf

[0 Software AT———

Developer Tools

Bug trackers

Debuggers
| /

Developer Tools Version
control
\ systems
Compilers
Runtime
engines

Static analyzers

Bug trackers
Debuggers /

|
Developer Tools Version

?Control

\ systems

systems _
Runtime

Static analyzers

Metamorphic Testing of
Developer Tools

Michael Pradel
Software Lab — University of Stuttgart

Joint work with Daniel Lehmann, Matteo Paltenghi, and
Sandro Tolksdorf

[0 Software AT———

Why Testing of
Developer Tools ?

Why Testing of
Developer Tools ?

Foundation of successful
software engineering

Buggy tools cause
= Misbehaving programs

s Confused developers

Metamorphic Testing of
Developer Tools

Michael Pradel
Software Lab — University of Stuttgart

Joint work with Daniel Lehmann, Matteo Paltenghi, and
Sandro Tolksdorf

[0 Software AT———

Metamorphic Testing

Metamorphic Testing

Cransform’

Initial Test Run | Follow-up Test Run

Metamorphic Testing

Initial Test Run | Follow-up Test Run

Metamorphic Testing

Initial Test Run | Follow-up Test Run

Why use
Metamorphic Testing ?

Why use
Metamorphic Testing ?

General answer:
Addresses oracle problem

Specific to developer tools:
= Inputs (e.g., programs) have
well-defined semantics

s Can design metamorphic
transformations on top

This Talk

= Interactive Metamorphic Testing of <—
Debuggers [issta’19]

= MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

= Lessons learned and open challenges
[ICSE’24, *25, etc. ?]

Motivating Example

Debugger pauses at a breakpoint
in dead code:

> > 3 2 <) Search scripts (Ctrl+P) L€ &3
1 if (1 !== 1) {

BF) console.log("dead code!?"); // set breakpoint here
3}

Firefox bug # 1370648

Testing of Debuggers

= Inputs

o Program-to-debug

1 Sequence of actions (e.g., set breakpoint)
= Output

- Debugging trace (e.g., pausing, program state)

10

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:
s Complex input
= No well-defined oracle

= Interactive nature of debuggers

11 -

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:
Debugging actions

= Complex input depend on program

= No well-defined oracle

= Interactive nature of debuggers

11

-2

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

s Complex input _
Pause at a breakpoint

oh a comment line?
= Interactive nature of debuggers

= No well-defined oracle —

11

-3

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

s Complex input
= No well-defined oracle
= Interactive nature of debuggers

[Expected semantics of debugging
actions become clear only when
program executes

11 -

Overview

Program
Transform.

Action
Debugger Debugger

Debugging Trace, Debugging Traceg

Initial Test Run Follow-up Test Run

Action Transformations

= Add breakpoint and continue
= Replace continue by step
= Breakpoint sliding

13 -

1

Action Transformations

= Add breakpoint and continue
= Replace continue by step

= Breakpoint sliding

Adding a breakpoint at line [should
cause only additional pauses at |

function foo() {
2 | bar(); // paused here
3 // -> step out

+ stmt;

}

7 foo(); // pauses here

Action Transformations

= Add breakpoint and continue
= Replace continue by step

= Breakpoint sliding

Adding a breakpoint at line [should
cause only additional pauses at |

function foo() {
2 | bar(); // paused here
3 // —=> step out New breakpoint
4 stmt; g
5 1 3 = Should pause

7 foo(); // pauses here

Action Transformations

= Add breakpoint and continue
= Replace continue by step

= Breakpoint sliding

Adding a breakpoint at line [should
cause only additional pauses at |

function foo() { function foo() {
B bar(); // paused here W bar(); // paused here
// -> step out // -> step out

stmt; B stmt; // interrupted!

} } // -> set tmp bp at 7
[/ to resync traces
foo(); es here B foo(); // -> remove bp

Action Transformations

= Add breakpoint and continue
= Replace continue by step
= Breakpoint sliding

Setting breakpoint at /, which slides to /',
should be equal to directly setting it at !’

t.2- // requested breakpoint at this comment line...

B» var x = 0; // ...1s moved to next statement

13 -

Program Transformations

= Insert or remove dead code

= Add parameter

= Add no-op

= Replace literal with expression

14 -

1

Program Transformations

= Insert or remove dead code

= Add parameter

= Add no-op

= Replace literal with expression

Should have no influence except
changed line humbers

1f (false) {

variable = value:

}

14 -

Program Transformations

= Insert or remove dead code

= Add parameter

= Add no-op

= Replace literal with expression

Should show additional variable in program state

function foo(pl1,p2) {
®» // pl, p2 are
// 1n scope

}
foo();

14 -

Program Transformations

= Insert or remove dead code

= Add parameter

= Add no-op

= Replace literal with expression

Should show additional variable in program state

1 function foo(pl1,p2) { function foo(pl1,p2,fresh) {
2 ®» // pl, p2 are ; B» // now also expect

// 1n scope 3 // fresh == undefined

Interactive Metamorphic Testing

Traditional metamorphic testing:
= Apply transformations without executing the
program
Here:

s Need to execute to know which transformations

are applicable

15 -

1

Interactive Metamorphic Testing

Traditional metamorphic testing:
= Apply transformations without executing the
program
Here:

s Need to execute to know which transformations
are applicable

E.g., knowing what line a breakpoint slides to

r-2+ // requested breakpoint at this comment line...

B» var x = 0; // ...1s moved to next statement

15 -

Evaluation

= Target: JavaScript debugger of
Chromium

= 47k JavaScript programs

o Initial debugging actions:
Randomly created by DBDB [FSE'18]

1 One follow-up input for each program

16

Effectiveness

Issue ID Description Status

862978 Cannot set breakpoint Assigned
889481 Debugger does not pause Assigned
892622 Debugger does not pause Assigned,
release-blocking
892653 Pauses at location without breakpoint Assigned
901811 Missing variable in scope Assigned
901814 Step-in does not enter function Assigned

901816 Missing variable in scope Assigned

901819 Debugger does not pause Assigned
908054 Debugging changes program behavior Won't fix

Examples

Fails to stop at breakpoint:

/ Original input:
var a = 5; // (1) pauses --> continue
77> var slideOverMe;
var C = class{};// (1i1) pauses --> continue
var b = 42; //(111) pauses --> continue

M —2

s W

U

/ Transformed input:
var a = 5; // (1) pauses --> continue
var slideOverMe;
var C = class{};// (no pausing)
var b = 42; // (11) pauses

1
5

s

U

Chromium bug #889481

Examples

Incorrect program state:

// Original input:
function * t({x: W y}) { // pauses, y is in scope
var a = function() {

}
}
t({x: 1});

// Transformed input:
function * t({x: W y}) { // pauses, y is missing
var a = function() {
if (false) { // dead code

Chromium bug #901811

This Talk

= Interactive Metamorphic Testing of
Debuggers [issta’19]

= MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

S

= Lessons learned and open challenges
[ICSE’24, *25, etc. ?]

19

Quantum Computing Stack

Platforms (e.g., IBM’s

Qiskit and Google’s Circ)

Quantum computers

20 -

1

Quantum Computing Stack

Platforms (e.g., IBM’s Our goal:

T

Qiskit and Google’s Circ) Test this

Quantum computers

20 -

Why Relevant?

= Quantum computing: Emerging field
with huge investments

= Reliable platforms are crucial

= Novel, quantum-specific bug patterns
[OOPSLA’22]

21

Background: Quantum Software

Create circult
) Clrg = Puﬂnfum lLLULf{E}
 circ.h(0) it Jc
circ.cx (0, 1)
circ.measure_all{}
Transplile for simulator
simulator '“.ght_baCHEﬂd{’ﬁDE_E;T“;&LDf’]
clrc = transpileihirc, simulator)
Run and get counts
result = simulator.run(circ, shots=1024) .result ()

counts result.get_counts(circ)

output: {"00":

Quantum algorithm (in Qiskit):
Python program

Background: Quantum Software

Visual
representation

Background: Quantum Software

Output:
Probability
distribution

0.510 0.490

1y
u
=
0
©
o
o
-
o

22 -3

Goal & Challenges

Goal: Automatically test quantum
computing platforms

Challenges:
= Relatively few quantum programs
= No well-defined oracle

= Unreliable and difficult-to-access hardware

23 -

1

Goal & Challenges

Goal: Automatically test quantum
computing platforms

New and
Challenges: emerging domain

= Relatively few quantum programs —I
= No well-defined oracle

= Unreliable and difficult-to-access hardware

23 -

Goal & Challenges

Goal: Automatically test quantum
computing platforms

Challenges:

= Relatively few quantum programs
= No well-defined oracle
= Unreliable and difficult-to-access hardware

Low-level operations with sometimes
counterintuitive semantics

23 -

Goal & Challenges

Goal: Automatically test quantum
computing platforms

Challenges:
= Relatively few quantum programs
= No well-defined oracle

= Unreliable and difficult-to-access hardware

| Quantum noise induced by stray

electromagnetic fields or material defects

23 -

Overview of MorphQ

@ Program Generation @ Metamorphic Transformation

Vv

-~~~ 7" Rinput "~

Source Follow-Up

« —HEHB} Yy | oA

Ml Excc. Settings | Exec. Settings K]

l l

Execution OUta OUtf

&Check @ €*~>% «— >4

Behavior o crash no crash

e -

T~~~ same? --~

)74 (RDUTPUT) N’@”

Generating Programs

= Template- and grammar-based,
randomized algorithm

= Guarantee: Produces non-crashing
program

25 -

1

Generating Programs

Section: Prologue
ALL_TMPORTS>
Section: Circuilt
lu1MTHMPDTlEt Y (<N_QUBITS>, name="gr’)
,11__1uﬂlPa 7185 t r (<N_QUBITS>, name='"cr’)
cr, name="'gc’)

<TARG SET_GATE_SET>,
'='_lﬂ"al—-n£T LEVEL>

coupling_map=<COUPLING_MAP>)

Tl
Section: Execution
simulator ~.get_backend (<BACKEND_NAME>)
counts = EEELﬂtE{qL, backend=simulator,
shots=<N_SHOTS5>) .result () .get_counts (gc)

Metamorphic Transformations

1) Circuit transformations

s Change qubit order

= Inject null-effect operation
= Add quantum register

= Inject parameters

m Partitioned execution

Metamorphic Transformations

1) Circuit transformations

| Change qubit order

= Inject null-effect operation
= Add quantum register

= Inject parameters

= | Partitioned execution

26 -

Metamorphic Transformations

Change qubit
order

Metamorphic Transformations

Partitioned
execution

part 1 0 -ﬁx—é-—ﬁ-

1 0
creg

part2 0 Pl —— P

Metamorphic Transformations

2) Representation transformations

= Roundtrip conversion via QASM

3) Execution transformations

s Change of coupling map
s Change of gate size
m Change of optimization level

s Change of backend

27 -

1

Metamorphic Transformations

2) Representation transformations

= Roundtrip conversion via QASM

3) Execution transformations

= [Change of coupling map

s Change of gate size
m Change of optimization level

s Change of backend

27 -

Metamorphic Transformations

IBM Stuttgart,
Germany

IBM Melbourne,
Australia

Comparing Behavior

= Expected output relationship:
Equivalence modulo changes in
distribution

1 E.g., changing qubit order will change
measured bitstrings

= Two oracles

7 Crash vs. non-crash

o Distribution differences
(via Kolmogorov-Smirnov test)

28

Evaluation

= Target: IBM’s Qiskit quantum
computing platform

= 48-hour run
o 8,360 generated programs
1 Same number of follow-up programs
. 23.2% of follow-up programs crash

« 0.7% of non-crashing have distribution differences

29

Effectiveness

Status Bugs filed after

#7694 confirmed .
#7700 confirmed m Automated clusteri ng
#7750 confirmed _

#7749 confirmed of warnin gs

#7641 confirmed

#7326 confirmed B Delta_debugg|ng to
#7756 confirmed

#7748 fixed reduce bug-triggering

#8224 fixed program

#7769 reported
#7771 reported
#1772 reported

#7773 reported

Example

Detected by changing optimization level
and injecting null-effect operation

= Hu&ufumPcQ1ut r (11, name="qgr’)
'1ﬂ S1C ﬂlptﬂ L{ll, name='cr’)

EUbLlluUlt = QuantumCirc u1T{4L, cr, name=’'subcirc’
)

subcircuit .x (3)
. gc.append (subcircuit, gargs=qr,
qc.x(3)
qc = transpile(gc, optimization_level=2)
 # ValueError: too many subscripts in einsum

This Talk

= Interactive Metamorphic Testing of
Debuggers [issta'19]

= MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

= Lessons learned and open challenges €«—
[ICSE’24, 25, etc. ?]

32

Lessons Learned

Key ingredient:

Metamorphic transformations

= Inherently domain-specific

= Relies on some “model” of the program-under-test

0 E.g., debuggers transform programs and debugging

actions into a debugging trace

33 -

1

Lessons Learned

Key ingredient:

Metamorphic transformations

= Inherently domain-specific

= Relies on some “model” of the program-under-test

0 E.g., debuggers transform programs and debugging

actions into a debugging trace

The better the transformations,
the more bugs you find

33 -

Lessons Learned (2)

Vaguely specified programs:
Difficult to define precise metamorphic
oracles
= Negative example:
Testing git version control system

o Many underspecified corner cases

0 Failed to effectively test it

34 -

1

Lessons Learned (2)

Vaguely specified programs:
Difficult to define precise metamorphic
oracles
= Negative example:
Testing git version control system

o Many underspecified corner cases

0 Failed to effectively test it

Make sure to know (at least parts of) the
program’s intended behavior

34 -

Lessons Learned (3)

Programs that operate on programs:
Excellent target for metamorphic testing

» Indended semantics are
(relatively) clearly defined

s Can derive metamorphic relationships
from PL semantics

35 -

1

Lessons Learned (3)

Programs that operate on programs:
Excellent target for metamorphic testing

= Indended semantics are
(relatively) clearly defined
s Can derive metamorphic relationships

from PL semantics

More developer tools are waiting
to be tested

35 -

Open Challenges

= False positives
o Debugger testing: 29/59 warnings

0 MorphQ: All warnings due to distribution
differences

= Automate creation of metamorphic

relationships
o Initial evidence that ML-based prediction

may help *

* Code Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained
Language Models on Code (BareiB et al., 2022)

36

Summary

= Interactive Metamorphic Testing of
Debuggers [issta’19]

= MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

= Lessons learned and open challenges
[ICSE’24, *25, etc. ?]

Thanks!

37

